• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以酚醛包覆玻璃纖維為前驅(qū)體制備廉價(jià)活性炭纖維

    2015-10-24 08:01:19韋曉群李啟漢黎海超李慧君陳水挾
    新型炭材料 2015年6期
    關(guān)鍵詞:氯化鋅酚醛糠醛

    韋曉群,李啟漢,黎海超,李慧君,陳水挾,2

    (1.中山大學(xué)化學(xué)與化學(xué)工程學(xué)院聚合物復(fù)合材料與功能材料教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州510275;2.中山大學(xué)材料科學(xué)研究所,廣東廣州510275;3.廣東進(jìn)出口檢驗(yàn)檢疫局檢驗(yàn)檢疫中心廣東廣州510623)

    以酚醛包覆玻璃纖維為前驅(qū)體制備廉價(jià)活性炭纖維

    韋曉群1,3,李啟漢1,黎海超1,李慧君1,陳水挾1,2

    (1.中山大學(xué)化學(xué)與化學(xué)工程學(xué)院聚合物復(fù)合材料與功能材料教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州510275;2.中山大學(xué)材料科學(xué)研究所,廣東廣州510275;3.廣東進(jìn)出口檢驗(yàn)檢疫局檢驗(yàn)檢疫中心廣東廣州510623)

    以酚醛樹(shù)脂、聚乙烯醇和糠醛的混合物包覆玻璃纖維,經(jīng)炭化和氯化鋅活化制備出一種廉價(jià)的纖維狀活性炭材料。表征了這種纖維狀活性炭材料的表面形態(tài)、微晶結(jié)構(gòu)、孔結(jié)構(gòu)、表面化學(xué)特征和機(jī)械強(qiáng)度,評(píng)價(jià)了該材料的吸附性能。結(jié)果表明,在炭前驅(qū)體中加入聚乙烯醇和糠醛可以有效促進(jìn)孔隙的發(fā)育,提升所制備多孔炭材料的孔隙率。當(dāng)在前驅(qū)體中加入聚乙烯醇和糠醛時(shí),所制多孔炭材料的比表面積可達(dá)2 023 m2/g,否則其比表面積則僅為404 m2/g。聚乙烯醇的加入提高了氯化鋅的溶解性,促進(jìn)了炭前驅(qū)體的活化;而糠醛與酚醛交聯(lián)結(jié)構(gòu)的形成則提高了炭前驅(qū)體的熱穩(wěn)定性,提高了炭得率。這兩方面的措施均有利于提高樣品的比表面積并降低其制備成本。該纖維狀活性炭材料具有與傳統(tǒng)活性炭纖維相似的微晶結(jié)構(gòu)和吸附性能。

    活性炭;玻璃纖維;酚醛;氯化鋅

    1 Introduction

    Activated carbons(ACs)have received intensive interest owing to their high specific surface areas and excellent adsorption capacities.As the third generation product,activated carbon fibers(ACFs)are considered to be more promising owing to their high porosity,fast adsorption kinetics and easy regenera-tion[1].Given all these merits,ACFs seem to be the alternative adsorbentmaterialsthatovercomethe drawbacks of ACs[2,3].However,there still exists a crucial disadvantage that ACFs must overcome to be utilized in various fields,which is the high production cost[4,5].To address this limitation,there are a large number of studies on new low-cost and high-yield routes to produce ACFs.A kind of ACFs devised by Economy et al.was prepared through coating the raw material onto glass fibers and then activating it in several ways[6,7].This method does cut the price of ACFs effectively.

    Among the raw materials selected as precursor fibers,phenolic resin is known to be able to produce ACFs with a high surface area[8].Besides,the glass fibers can overcome the drawback of phenolic resinbased ACFs,which are brittle and susceptible to wear.In that case,KOH can't be used as an activation agent because of its erosion to glass fibers.Park and Jung tried to produce glass-fibers-supported phenolic resin-based ACFs with KOH activation,and they got a product with a low specific surface area finally[9].ZnCl2is an excellent activation agent as it can activate carbon at low temperature[10-15].Yue et al.[16]also attempted to activate the glass-fibers-supported phenolic resin with ZnCl2,and they faced the same problem to increase the specific surface area.Teng and Wang found that it was“unable to produce a high porosity carbon with ZnCl2”[17].This is mainly because of the low solubility of ZnCl2in solvent(usually alcohol)used to mix the phenolic resin and ZnCl2.In this study,we tried to increase the solubility of ZnCl2in alcohol by adding surfactant PEG4000(polyethylene glycol,MW 4000),which greatly increased the specific surface area of the products.Factors that affected specific surface area and the yield of the activated products were further studied.

    2 Experimental

    2.1Preparation of porous carbons

    A mixture of novolac resin(2123,Shanghai Qinan Viscose Rayon Material Factory,4.5 g)and polyethylene glycol(Abbr.PEG,Mw 4000,Guangdong Xilong Chemical Co.,Ltd.),zinc chloride(98%,GuangzhouChemicalReagentFactory,13.5 g),and furfural(Guangzhou Chemical Reagent Factory)was dissolved in ethanol(Et-OH,100 mL)to obtain a solution.Then the glass fiber mats(R-93,Changzhou Changhai Glass Fiber Reinforced Plastic Products Co.,Ltd.)were dip-coated with the solution,dried and preheated to 200℃for 4 h in an oven under air.After that,the stabilized mats were cooled in air,transferred to another furnace,carbonized and activated at 60 min for a given time in N2atmosphere with a heating rate of 10℃/min.After being cooled in flowing N2,each sample was thoroughly washed with a diluted hydrochloric acid(1 mol/L)and distilled water,then dried in vacuum at 110℃for 24 h.The resulting Novolac-ZnCl2-based porous carbons are labeled as NZ-PC,and the furfural-Novolac-PEGZnCl2-based porous carbons are labeled as x%F-NPZPC,where x stands for the furfural mass concentration in Novolac-PEG4000 precursors.When x is equal to 0,it is labeled as NPZ-PC.The carbon layers were obtained by dissolving the glass fiber mats in the samples with hydrofluoric acid for 24 h,washing with deionized water and drying in vacuum at 110℃for 24 h.The carbon content was calculated by dividing the mass of carbon layers from the total mass of the porous carbon samples.

    2.2Thermal characterization

    The thermogravimetric(TG)behavior of the raw materials was analyzed using a NetzschTG-209 analyzer(Japan)from room temperature to 600℃at a rate of 20℃/min in nitrogen flow under atmospheric pressure.

    2.3Surface area and pore structure

    The adsorption of N2at 77 K was carried out with an accelerated surface area and porosimetry system(ASAP2010,Micromeritics Corp.).The total pore volume(Vt)of a sample was estimated from the amount of N2adsorbed at p/p0=0.95.The Brunauer-Emmett-Teller(BET)equation was employed to determine the total specific surface area(SBET).The t-plot method was employed to deduce specific surface area of micropores(<2 nm)(St-plot).Barrett-Joiner-Halenda(BJH)method was applied to get the mesopore surface area(SBJH).A method based on the density functional theory(DFT)was applied to get the pore size distributions(PSDs).

    2.4Morphology

    A thermal field emission environmental scanning electron microscope(SEM,Quanta 400F,F(xiàn)EI,Netherlands)was used to characterize the morphology of the samples.The samples were dried overnight at approximately 120℃under vacuum before SEM analysis.

    2.5Tensile properties

    The static tensile properties were determined by a H10K-S universal testing machine(Hounsfield,UK)with a crosshead speed of 5 mm/min at room temperature.The width and length of the specimens were different from each other.

    2.6Raman spectroscopy

    The Raman spectra of the carbonized layers ofNPZ-PC and 13%F-NPZ-PC were obtained using an Ar+laser beam at λex=514.5 nm(Laser Micro-Raman Spectrometer,Renishaw inVia,UK).The average domain size Lawas calculated using the equations proposed by Tuinstra and Koening[18]from the intensities of D and G peaks:

    The fraction“f”of the amount of disordered(amorphous)carbon was estimated using the intensity of the two peaks(IDand IG):

    2.7X-ray diffraction(XRD)

    Powder XRD profiles were collected in the 2θ angle between 10°and 70°with a X-ray Diffract meter(D8 ADVANCE,BRüCKNER Textile Technologies GmbH&Co.KG),which was equipped with a copper-monochromatized CuKα radiation(λ= 0.154 059 8 nm)under the accelerating voltage of 40 kV and the current of 40 mA.Estimates of mean crystallite dimensions such as the interlayer spacing(d002),the crystallite size along c-axis(Lc),the size of the layer planes(La),and the number of layers(n)were calculated from powder XRD data by application of Bragg equation,Scherrer equation,and Warren equation.

    Where β is the half-peak width,λ is the X-ray wavelength and θ is the Bragg angle.

    2.8Fourier transform infrared spectroscopy(FT-IR)

    After dried in vacuum at 110℃for over 6 h,samples were mixed with 5 wt.%KBr.A FT-IR instrument(TENSOR27,BRUKER,USA)was used to analyze the surface chemical properties by FT-IR.

    2.9Adsorption experiments

    Both static and dynamic adsorption methods were utilized to determine the adsorption ability of the carbon samples.Methylene blue(MB)was used as the adsorbate.Commercialgranularactivatedcarbon(GAC)and commercial ACF were chosen as references.

    In the static adsorption experiments,proper mass of ACF(SBET=1 350 m2/g),13%F-NPZ-PC(SBET=1 193 m2/g)or GAC(SBET=880 m2/g)was added to 200 mL MB solution with a concentration of 400 mg/L in a 1 000 mL conical flask.The mixture was stirred in a rotary shaker at a speed of 140 r/min at 25±1℃.The residual MB concentration was determined at a regular interval using an ultraviolet-visible spectrophotometer.

    Fordynamicadsorptionexperimentsproper amount of ACF,13%F-NPZ-PC or GAC were packed into a glass column(1.2 cm in inner diameter)with a bed depth of around 10 cm.Mass of three samples in the columns were adjusted to make their total surface area of samples filled in the column equal.The MB solution was pumped through the fixed bed from top to bottom with a specified flow rate of 1.5 mL/min with a peristaltic pump at 25℃.Samples were collected at a regular interval during all the adsorptive process.

    3 Results and discussion

    3.1Morphology of the porous carbon

    The morphology of the NPZ-PC under SEM is shown in Fig.1.The NPZ-PC exhibits a fibrous structure.Most of the glass fibers are wrapped by carbon,but in some parts,carbon layer is peeled off and the glass fiber is naked.Carbon materials also exist between the glass fibers.The thickness of the carbon layers is from several nanometers to 2 μm.The diameter of the NPZ-PC fibers is about 10 μm,which is similar to that of the ACFs.

    3.2Microcrystalline structure of porous carbons

    XRD was employed to study the graphitic degree of the NPZ-PC and 13%F-NPZ-PC.As shown in Fig.2,two broad peaks,around 2θ=24°and 2θ= 42°,corresponding to the disordered graphitic 002 plane and the 110 plane reflection of graphite crystallite[19]are found.The calculated values of the crystalline parameters,including interlayer spacing(d002)and the crystallite size(La,Lc)within 5%error are presented in Table 1.The value of d002is 0.375 nm for NPZ-PC,and 0.360 nm for 13%F-NPZ-PC;the value of graphite layers is 5.3 for NPZ-PC,and 5.5 for 13%F-NPZ-PC.It is concluded that the graphitization degree of 13%F-NPZ-PC is higher than that of NPZ-PC.

    The same conclusion could be achieved from micro laser Raman spectroscopy.In Fig.3,the Raman spectra are similar to the report elsewhere[20-23].The D(disorder peak),D'(defect peak[24])and G(graphic peak)peaks are found at 1 350,1 500 and 1 600 cm-1,respectively.The calculated Laand“f”values estimated by equation(5)and(2)are listedin Table 1.Lavalues of the samples are 4.49 and 4.98 nm,the“f”of them are 49 and 47%,respectively,for the NPZ-PC and 13%F-NPZ-PC.The results also showed that both of them are semi-carbonized polymers,and the graphic degree of 13%F-NPZPC is higher than that of NPZ-PC.

    Fig.1 SEM images of NPZ-PC,activated at 400℃for 60 min.(a)Coating on glass fibers;(b)Cross-section of a single glass fiber coated with a carbon layer.

    Fig.2 XRD patterns of NPZ-PC and 13%F-NPZ-PC.

    3.3Pore structure of the porous carbons

    The pore structures of the NZ-PC,NPZ-PC,1 3%F-NPZ-PCand20%F-NPZ-PC(activatedat 400℃)were analyzed using N2adsorption at 77 K.The results are listed in Table 2.Since the solubility of ZnCl2is low in Et-OH,the mass ratio of ZnCl2to novolac is limited to 0.44 without PEG in the precursor.Accordingly,the SBETand Vtotalof carbon layers of the NZ-PC are 404 m2/g and 0.223 cm3/g,respectively.Adding proper amount of PEG until the mass ratio of ZnCl2to novolac increases to 3.0 results in an increase in SBETand Vtotalof the NPZ-PC to 1 257 m2/g and 0.759 cm3/g,respectively.The samples when furfural is added(13%F-NPZ-PC and 20% F-NPZ-PC)exhibit higher specific surface areas and Vtotalthan the sample without furfural.It is noteworthy that the Smicro/SBETand Vmicro/Vtotalof 13%F-NPZ-PC are only 18.0%and 12.5%,indicating that the 13% F-NPZ-PC has essentially a mesoporous structure.

    Table1 The estimated crystallite parameters from Raman spectra and XRDpatterns of the NPZ-PC and 13%F-NPZ-PC,activated at 400℃for 60 min.

    Fig.3 Raman spectra of(a)NPZ-PC and(b)13%F-NPZ-PC activated at 400℃for 60 min.

    Fig.4 displays the pore size distributions of carbon layers of the samples.These four samples present a similar micropore size distribution,which was caused by the same ZnCl2activation.Obvious mesopores centered at over 2 nm can be observed in the NPZ-PC and the x%F-NPZ-PC samples,while the NZ-PC sample has little mesopores.These data illustrate that addition of PEG in the precursor increases the solubility of ZnCl2,so that the activation of carbon precursor is facilitated.

    The effects of activation temperature on the specific surface area of porous carbons are shown in Fig.5.It can be seen that the specific surface area of the x%FNPZ-PC reaches a maximum value of 1 200 m2/g at about 450℃with activation temperature.

    Table2 Pore structure parameters of porous carbons activated at 400℃for 60 min.

    Fig.4 Pore size distributions of carbon layers of the samples activated at 400℃for 60 min.

    Fig.5 Effects of activation temperature on the surface area of the three samples.

    3.4Surface chemical structure

    FT-IR spectra were employed to evaluate the surface groups of the samples prepared at different activated temperatures(Fig.6).The bending vibration appeared at 1 055 cm-1is assigned to aliphatic ether,1 092 cm-1to aromatic ether,1 441 cm-1to methylene,1 510 cm-1tolargearomaticringand 1 595 cm-1to benzene ring.For NPZ-PC,the benzene ring turns to aromatic ring with activation temperature as manifested by the wave number change from 1 595 to 1 510 cm-1,but the methylene disappears and aromatic ether is kept.On the other hand,for the 13%F-NPZ-PC,both of benzene ring and methylene are kept below activation temperature of 500℃,aromatic ether is kept even at high activation temperature,but aliphatic ether disappears.It can be concluded from the differences between the FT-IR spectra of the NPZ-PC and 13%F-NPZ-PC that a large amount of methylene and aromatic rings connected by aliphatic ether are formed because of the crosslinking by furfural.These structures would decompose over 500℃.That's why the specific surface area reaches a maximum between 400and 500℃.

    Fig.6 FT-IR spectra of coated layers activated at different temperatures for(a)NPZ-PC and(b)13%F-NPZ-PC.

    3.5Mechanical properties

    The mechanical properties are important for practical application of porous carbons.It is found that addition of furfural in the precursor greatly improvesthe tensile strength of the products.The effect of mass percentage of furfural on the mechanical properties of the porous carbon activated at 400℃is shown in Table 3.The porous carbons have higher failure strains than glass fiber mat.With an increasing of the furfural content from 0 to 20 wt%,the tensile stresses oftheporouscarbonsincreasefrom14.55to 43.52 N.The Youngs modulus exhibits a maximum of 330.54 MPa with the furfural content.

    Table3 The tensile stress,youngs modulus of glass fiber mats and porous carbons activated at 400℃for 60 min.

    3.6Adsorption properties

    Adsorption behavior of the 13%F-NPZ-PC is compared with a commercial GAC and ACF.Table 4 shows the pore structure parameters of the three samples.ACF sample exhibits the largest specific and micropore surface area of 1 354 and 830 m2/g,respectively,and GAC sample shows the lowest specific surface area among the three samples.13%F-NPZPC has a fair high total specific surface area and the highest percentage of mesopore.

    The MB adsorption capacities of the three samples are in good agreement with their specific surface area.ACF shows a highest MB adsorption amount among the three samples(Fig.7)because of its highest specific surface area.The adsorption of MB on ACF and 13%F-NPZ-PC can reach adsorption equilibrium at about 150 min.

    Table4 Pore structure parameters of the three samples.

    The breakthrough curves of MB adsorption on the three carbon materials are shown in Fig.8.ACF shows the most excellent MB adsorption ability.It can completely adsorb all MB in the first phase,and the effluent MB concentration can be kept at 0 before 60 min.13%F-NPZ-PC shows a similar dynamic adsorption behavior with ACF,which could be ascribed to its fibrous structure.However,under the same condition,13%F-NPZ-PC can completely adsorb all MB and keep the effluent concentration at 0 below 20 min.GAC shows a different breakthrough curve.MB breaks through at the very beginning and the effluent concentration of MB gradually increases with time till saturation.

    Fig.7 The static MB adsorption versus time for the three samples.

    Fig.8 The dynamic MB adsorption curves for the three samples.

    3.7Analysis of carbonization mechanism

    Fig.9 depicts thermogravimetric(TG)and differential thermogravimetric(DTG)curves of carbon precursors.Two major weight loss peaks in each line can be observed.The first one with a minimum at around 310 to 340℃corresponds to a mass loss(about 20%)that may be due to water desorption and the second one with a minimum at about 520℃to a mass loss(about 20%to 40%)that may be due to ZnCl2volatilization.For the precursors containing PEG,PEG would decompose at about 320℃,so the first peak also includes the decomposition of PEG for the NPZ-PC and x%F-NPZ-PC samples.The percentage of weight loss increased from 48%to 66%at 600℃,respectively for the NPZ-PC and NZ-PC because of the decomposition of PEG.Some tar solid is found on the surface of the NPZ-PC sample.For the 13%F-NPZ-PC,the precursors loses only 48%of itsweight at 600℃and exhibits a weight loss peak at 506℃,and there is no tar observed after carbonization.The phenomenon indicates that furfural can improve the thermal stability of the precursor.When the precursor was preoxidized in air,oxygen would facilitate the crosslinking reaction on the surface of the precursor.The as-formed cross-linked structure would inhibit the oxygen from further penetrating into the precursor,thus forming the stable structure in the inner part of the precursor.When furfural was added into the precursor,it could cause crosslinking reaction both inside and outside the precursor,so that the thermal stability of precursor is improved.For the precursor without furfural,the structure in the precursor would be destroyed at high temperature,and is released in the form of tar.As the activation temperature increases,the pore structures formed would collapse as the unstable structure is decomposed.For the precursor with furfural,furfural and phenolic would form a lot of aromatic rings and aliphatic ether.All of these structures could be kept stable till 500℃.The thermal stable precursor will be beneficial to the development of pores.

    Fig.9 TG curves of the carbon precursors for various samples.

    4 Conclusions

    Fibrous activated carbons with a high porosity could be prepared through activating a mixture of phenolic resin,PEG and furfural coated on glass fibers using ZnCl2as an activation agent.The specific surface area of the 13%F-NPZ-PC is 1 193 m2/g based on total mass,and 2 023 m2/g based on the carbon layers.88%of the pores of this product are mesopores,whose sizes are between 2 and 4 nm.The fibrous activated carbons exhibit excellent mechanical properties,high MB adsorption capacities and fast adsorption kinetics speed,which are similar to those of a conventional ACF with a specific surface area of 1 300 m2/g.Addition of PEG into the carbon precursors can effectively increase the specific surface area of the porous carbons by increasing the ZnCl2solubility in ethanol.And addition of furfural into the carbon precursors can greatly improve the development of pores because of the formation of a crosslinked structure between phenolic and furfural.

    [1]Zhang J H,Zhang W B,Zhang Y.Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of Cu(II)[J].Bioresources,2015,10(1):566-574.

    [2]Yusof N,Ismail A F.Post spinning and pyrolysis processes of polyacrylonitrile(PAN)-based carbon fiber and activated carbon fiber:A review[J].J Anal Appl Pyrol 2012,93:1-13.

    [3]Cuerda-Correa E M,Macías-García A,Díez M,et al.Textural and morphological study of activated carbon fibers prepared from kenaf[J].Micropor Mesopor Mater 2008,111(1-3):523-529.

    [4]Nahil M A,Williams P T.Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J].J Anal Appl Pyrol 2011;91(1):67-75.

    [5]Valente N,Mouquinho A,Galacho C,et al.In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres[J].Fuel Process Technol 2008,89(5):549-555.

    [6]Economy J,Daley M A.Coated absorbent fibers[P].US patent 5834114,1998.

    [7]Economy J,Mangun C L.Design of new materials for environmental control[J].Macromol Symp 1999,143:75-79.

    [8]An H,F(xiàn)eng B,Su S.CO2capture capacities of activated carbon fibre-phenolic resin composites[J].Carbon,47(10):2396-2405.

    [9]Park S J,Jung W Y.KOH activation and characterization of glass fibers-supported phenolic resin[J].J Colloid Interface Sci,2003,265(2):245-250.

    [10]Nagashanmugam K B,Srinivasan K.Evaluation of lead(II)removal by carbon derived from gingelly oil cake[J].Asian J Chem,2010,22(7):5447-5462.

    [11]Ozdemir I,Sahin M,Orhan R,et al.Preparation and characterization of activated carbon from grape stalk by zinc chloride activation[J].Fuel Process Technol,2014,125:200-206.

    [12]Lu X C,Jiang J C,Su K,et al.Preparation and characterization of sisal fiber-based activated carbon by chemical activation with zinc chloride[J].B Kor Chem Soc,2014,35(1):103-110.

    [13]Hesas R H,Arami-Niya A,Wan D,et al.Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation[J].J Ana Appl Pyrol,2013,104:176-184.

    [14]Makeswari M,Santhi T.Optimization of preparation of activated carbon from ricinus communis leaves by microwave-assisted zinc chloride chemical activation:Competitive adsorption of Ni2+ions from aqueous solution[J].J Chem,2013:1-12.

    [15]Xiang X X,Liu E H,Huang Z Z,et al.Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes[J].J Solid State Electr,2011,15(11-12):2667-2674.

    [16]Yue Z,Mangun C L,Economy J.Preparation of fibrous porous materials by chemical activation 1.ZnCl2activation of polymercoated fibers[J].Carbon,2002,40(8):1181-1191.

    [17]Teng H,Wang S C.Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation [J].Carbon,2000,38(6):817-824.

    [18]Tuinstra F,Koenig J L.Raman spectrum of graphite[J].J Chem Phys,1970,53(3):1126-1130.

    [19]Ram K,Abbie N J,Barry J M.Transmission electron microscopy,Raman and X-ray photoelectron spectroscopy studies on neutron irradiated polycrystalline graphite[J].Radiat Phys Chem,2015,107:121-127.

    [20]Leyua-Garcia S,Nueangnoraj K,Lozano-Castello D,et al.Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy[J].Carbon,2015,89:63-73.

    [21]Li-Pook-Than A,F(xiàn)innie P.Observation of the metallic-type selective etching of single walled carbon nanotubes by real-time in situ two-laser Raman spectroscopy[J].Carbon,2015,89:232-241.

    [22]Wang H D,Liu J H,Zhang X,et al.Raman measurement of heat transfer in suspended individual carbon nanotube[J].J Nanosci Nanotechno,2015,15(4):2939-2943.

    [23]Bistricic L,Borjanovic V,Leskovac M,et al.Raman spectra,thermal and mechanical properties of poly(ethylene terephthalate)carbon-based nanocomposite films[J].J Polym Res,2015,22(3):1-12.

    [24]Kazemi-Zanjani N,Gobbo P,Zhu Z Y,et al.High-resolution Raman imaging of bundles of single-walled carbon nanotubes by tip-enhanced Raman spectroscopy[J].Can J Chem,2015,93(1):51-59 .

    The use of ZnCl2activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac,polyethylene glycol and furfural as carbon precursors

    WEI Xiao-qun1,3,LI Qi-han1,LI Hai-chao1,LI Hui-jun1,CHEN Shui-xia1,2
    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China;3.Inspection and Quarantine Technology Center of Guangdong Entry-Exit Inspection and Quarantine Bureau,Guangzhou510623,China)

    Using ZnCl2as an activation agent,low-cost porous carbonswere prepared using mixtures of Novolac,polyethylene glycol(PEG)and furfural in alcohol as carbon precursorsthat were coated onto glass fiber mats.The morphology,microcrystalline structure,pore structure,surface chemistry,mechanical strength and adsorption properties of the porous carbons were characterized.Results show that the addition of furfural and PEG to the carbon precursors greatly improves pore development.The specific surface area of the porous carbons is as high as 2 023 m2/g when PEG and furfural are added,otherwise it is only 404 m2/g.It is found that the addition of PEG to the precursors can increase the solubility of ZnCl2in alcohol,and thus facilitate the activation of the carbon precursors.The formation of a crosslinked structure of furfural with Novolac is responsible for the improvement in the thermal stability of the precursors and the increase in the carbon yield,which favors the increase in the surface area and the reduction of the production cost.The porous carbons have similar adsorption performance and microcrystalline structure to conventional activated carbon fibers.

    Activated carbon;Glass fiber;ZnCl2;Phenolic-resin

    Science and Technology Project of Guangdong Province(2014A030313192).

    CHEN Shui-xia,Professor.E-mail:cescsx@mail.sysu.edu.cn

    TQ127.1+1

    A

    廣東省科技項(xiàng)目(2014A030313192).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2015)06-0579-08

    10.1016/S1872-5805(15)60206-2

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    氯化鋅酚醛糠醛
    氯化鋅渣分離工藝探討
    不同糠醛抽出油對(duì)SBS改性瀝青性能的影響
    石油瀝青(2021年6期)2021-02-10 06:15:34
    2028年氯化鋅市場(chǎng)預(yù)計(jì)將達(dá)到4.264億美元
    憎水性ZIFs對(duì)糠醛和5-羥甲基糠醛的吸附分離性能
    氯化鋅ZnCl2制備條件實(shí)驗(yàn)淺探
    日本氯化鋅原料供求緊張
    催化合成典型5-羥甲基糠醛衍生物的研究進(jìn)展
    腰果酚醛胺固化環(huán)氧樹(shù)脂泡沫塑料性能研究
    碳納米管-聚酰胺纖維改性鄰甲酚醛環(huán)氧樹(shù)脂
    膠料中烷基酚醛增粘樹(shù)脂的鑒定
    亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 丝袜脚勾引网站| 亚洲 国产 在线| 亚洲第一青青草原| 国产一区二区三区av在线| 大码成人一级视频| 欧美乱码精品一区二区三区| 丝袜喷水一区| 亚洲精品中文字幕一二三四区 | 久久 成人 亚洲| 婷婷色av中文字幕| 在线天堂中文资源库| 在线观看免费日韩欧美大片| 日本av手机在线免费观看| 无限看片的www在线观看| 国产精品久久久久成人av| 久久午夜综合久久蜜桃| 久久午夜综合久久蜜桃| 国产精品免费大片| 男女国产视频网站| 国产日韩一区二区三区精品不卡| 免费在线观看日本一区| 国产1区2区3区精品| 一区二区三区乱码不卡18| 国产精品久久久久久精品电影小说| 麻豆乱淫一区二区| av超薄肉色丝袜交足视频| 女人久久www免费人成看片| 在线看a的网站| 丝袜人妻中文字幕| 国产熟女午夜一区二区三区| 十八禁人妻一区二区| 狠狠婷婷综合久久久久久88av| 男人操女人黄网站| 日韩大片免费观看网站| www.精华液| 男女高潮啪啪啪动态图| 美女扒开内裤让男人捅视频| 91老司机精品| 日韩免费高清中文字幕av| 王馨瑶露胸无遮挡在线观看| av电影中文网址| 少妇 在线观看| 精品亚洲乱码少妇综合久久| 热99久久久久精品小说推荐| 精品人妻熟女毛片av久久网站| 一二三四社区在线视频社区8| 视频区欧美日本亚洲| 最近中文字幕2019免费版| 满18在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩高清在线视频 | 久久久久久久大尺度免费视频| 日本黄色日本黄色录像| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人 | 国精品久久久久久国模美| 一区二区三区激情视频| 国产精品九九99| 国产欧美日韩综合在线一区二区| 女人爽到高潮嗷嗷叫在线视频| 极品少妇高潮喷水抽搐| 美女脱内裤让男人舔精品视频| 99久久精品国产亚洲精品| 亚洲av成人一区二区三| 少妇 在线观看| 一区二区三区激情视频| 性色av乱码一区二区三区2| 大香蕉久久成人网| 欧美另类亚洲清纯唯美| 人人妻人人添人人爽欧美一区卜| 又紧又爽又黄一区二区| 精品视频人人做人人爽| 91成年电影在线观看| 啪啪无遮挡十八禁网站| 久久久久久亚洲精品国产蜜桃av| 少妇猛男粗大的猛烈进出视频| 天堂俺去俺来也www色官网| 国产日韩欧美在线精品| 岛国毛片在线播放| 国产成人影院久久av| 一本—道久久a久久精品蜜桃钙片| 亚洲色图综合在线观看| 日韩一区二区三区影片| 日韩欧美一区二区三区在线观看 | 欧美另类亚洲清纯唯美| 日日夜夜操网爽| 一区二区三区激情视频| 亚洲精品久久成人aⅴ小说| 国产一区二区三区在线臀色熟女 | 日韩大码丰满熟妇| 国产av又大| 十分钟在线观看高清视频www| 青春草亚洲视频在线观看| 亚洲欧美清纯卡通| 欧美午夜高清在线| 日本av免费视频播放| 国产av国产精品国产| 丝瓜视频免费看黄片| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 97人妻天天添夜夜摸| 蜜桃在线观看..| 香蕉国产在线看| 久久久久久久久免费视频了| 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 亚洲色图 男人天堂 中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 日日夜夜操网爽| 亚洲欧美精品综合一区二区三区| 亚洲国产精品999| 国产熟女午夜一区二区三区| 欧美日韩国产mv在线观看视频| 欧美精品高潮呻吟av久久| 欧美精品一区二区大全| 色视频在线一区二区三区| 狠狠精品人妻久久久久久综合| 久久久国产精品麻豆| 国产精品亚洲av一区麻豆| 美女国产高潮福利片在线看| 老汉色av国产亚洲站长工具| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 宅男免费午夜| 免费不卡黄色视频| 国产老妇伦熟女老妇高清| 久热这里只有精品99| 午夜精品久久久久久毛片777| 久久久久久久久免费视频了| 侵犯人妻中文字幕一二三四区| 一区福利在线观看| 日本a在线网址| 日韩大片免费观看网站| 一本综合久久免费| 新久久久久国产一级毛片| 大陆偷拍与自拍| 国产麻豆69| 在线观看免费高清a一片| 亚洲国产欧美日韩在线播放| 亚洲av美国av| 欧美在线一区亚洲| 在线av久久热| 建设人人有责人人尽责人人享有的| 成年人免费黄色播放视频| 日韩制服骚丝袜av| 少妇 在线观看| 黄色视频不卡| 亚洲国产欧美在线一区| 国产高清视频在线播放一区 | 亚洲国产精品成人久久小说| 19禁男女啪啪无遮挡网站| 夜夜夜夜夜久久久久| 超碰成人久久| 成年人免费黄色播放视频| 亚洲免费av在线视频| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 91大片在线观看| 国产高清视频在线播放一区 | 国产精品一二三区在线看| 日韩熟女老妇一区二区性免费视频| 爱豆传媒免费全集在线观看| 国产精品一二三区在线看| 午夜福利在线免费观看网站| 日本猛色少妇xxxxx猛交久久| 不卡一级毛片| 大型av网站在线播放| 久久国产精品人妻蜜桃| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 窝窝影院91人妻| 搡老岳熟女国产| 桃红色精品国产亚洲av| 欧美性长视频在线观看| 亚洲精品美女久久av网站| 欧美日韩福利视频一区二区| 777米奇影视久久| 肉色欧美久久久久久久蜜桃| 美女主播在线视频| 一级片'在线观看视频| 国产av国产精品国产| 动漫黄色视频在线观看| 一区福利在线观看| 黄频高清免费视频| 亚洲欧美成人综合另类久久久| 亚洲欧美日韩高清在线视频 | 国产精品99久久99久久久不卡| 国产主播在线观看一区二区| 亚洲欧美一区二区三区黑人| 欧美大码av| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看| 我要看黄色一级片免费的| 国产伦理片在线播放av一区| 人妻久久中文字幕网| 超碰97精品在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片精品| 青春草视频在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美国产精品va在线观看不卡| 欧美黄色片欧美黄色片| 亚洲国产中文字幕在线视频| videos熟女内射| 免费高清在线观看视频在线观看| a级毛片黄视频| 免费在线观看完整版高清| 丝袜人妻中文字幕| 亚洲综合色网址| 老司机深夜福利视频在线观看 | 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 国产一级毛片在线| 国产免费现黄频在线看| 一本—道久久a久久精品蜜桃钙片| 大片免费播放器 马上看| 国产深夜福利视频在线观看| 久久久国产精品麻豆| 日韩制服骚丝袜av| 黑人操中国人逼视频| av在线老鸭窝| 男女下面插进去视频免费观看| 窝窝影院91人妻| av欧美777| 欧美日韩一级在线毛片| 侵犯人妻中文字幕一二三四区| 性高湖久久久久久久久免费观看| 9色porny在线观看| 在线观看免费视频网站a站| 最黄视频免费看| a 毛片基地| 一个人免费在线观看的高清视频 | 国产在线观看jvid| 日韩有码中文字幕| 秋霞在线观看毛片| 69av精品久久久久久 | 丝袜脚勾引网站| 久久久欧美国产精品| 麻豆国产av国片精品| 国产精品久久久久成人av| a级片在线免费高清观看视频| 操美女的视频在线观看| 三上悠亚av全集在线观看| 啪啪无遮挡十八禁网站| 国产精品熟女久久久久浪| 国产在线免费精品| 精品一区二区三区av网在线观看 | 十八禁网站免费在线| 亚洲国产欧美在线一区| 日本91视频免费播放| 中文欧美无线码| 色老头精品视频在线观看| 91成年电影在线观看| 久久热在线av| 国产主播在线观看一区二区| 久久久久国产一级毛片高清牌| 久久久久久人人人人人| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 日韩视频一区二区在线观看| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 免费久久久久久久精品成人欧美视频| 午夜福利视频在线观看免费| 日本wwww免费看| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 一区二区三区乱码不卡18| 国产一区二区三区综合在线观看| 动漫黄色视频在线观看| 天堂中文最新版在线下载| 黄色毛片三级朝国网站| www.999成人在线观看| 亚洲综合色网址| 精品亚洲乱码少妇综合久久| 午夜老司机福利片| 18禁观看日本| 久9热在线精品视频| 黄色视频在线播放观看不卡| 国产有黄有色有爽视频| 国产成人精品久久二区二区免费| www.av在线官网国产| 国产片内射在线| 国产精品久久久av美女十八| 少妇人妻久久综合中文| 久久人人97超碰香蕉20202| 国产精品偷伦视频观看了| 亚洲国产精品成人久久小说| 男女之事视频高清在线观看| 一本综合久久免费| 午夜福利免费观看在线| 中文字幕av电影在线播放| kizo精华| 久久久精品94久久精品| 亚洲国产看品久久| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三区在线| 后天国语完整版免费观看| 国产精品1区2区在线观看. | 国产av一区二区精品久久| 性少妇av在线| 亚洲 国产 在线| 欧美精品一区二区免费开放| 久久久久久免费高清国产稀缺| 欧美精品人与动牲交sv欧美| 男人爽女人下面视频在线观看| 久久女婷五月综合色啪小说| 午夜福利视频精品| 国产三级黄色录像| 中文字幕av电影在线播放| 亚洲国产精品999| 多毛熟女@视频| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 亚洲少妇的诱惑av| 免费在线观看黄色视频的| 韩国高清视频一区二区三区| 青草久久国产| 久久国产精品影院| 亚洲精品日韩在线中文字幕| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| a级毛片黄视频| 狠狠婷婷综合久久久久久88av| 男男h啪啪无遮挡| 久久中文看片网| 法律面前人人平等表现在哪些方面 | 国产精品二区激情视频| 两个人看的免费小视频| 亚洲成av片中文字幕在线观看| 中国国产av一级| 亚洲国产看品久久| 国产激情久久老熟女| 国产亚洲精品第一综合不卡| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 性少妇av在线| av在线app专区| 国产极品粉嫩免费观看在线| 自线自在国产av| 亚洲天堂av无毛| 动漫黄色视频在线观看| 男人操女人黄网站| 12—13女人毛片做爰片一| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 日本av免费视频播放| 动漫黄色视频在线观看| 欧美成狂野欧美在线观看| 丰满饥渴人妻一区二区三| 亚洲激情五月婷婷啪啪| 国产视频一区二区在线看| 亚洲精品自拍成人| 99热全是精品| 国产黄频视频在线观看| 热re99久久精品国产66热6| 亚洲av国产av综合av卡| 久久久精品区二区三区| 两性夫妻黄色片| 国产无遮挡羞羞视频在线观看| 大香蕉久久成人网| 超碰97精品在线观看| 两性夫妻黄色片| 国产日韩欧美视频二区| 亚洲精品久久久久久婷婷小说| 又紧又爽又黄一区二区| 久久精品成人免费网站| 另类精品久久| 久9热在线精品视频| 妹子高潮喷水视频| 99精品久久久久人妻精品| 欧美亚洲日本最大视频资源| 免费在线观看黄色视频的| 亚洲专区中文字幕在线| 亚洲国产av影院在线观看| 精品亚洲乱码少妇综合久久| 少妇的丰满在线观看| 精品亚洲成国产av| 欧美日韩亚洲国产一区二区在线观看 | 久久久久精品国产欧美久久久 | 老司机午夜福利在线观看视频 | 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 考比视频在线观看| 亚洲精品乱久久久久久| 国产高清视频在线播放一区 | a级毛片黄视频| 黄色视频不卡| 婷婷丁香在线五月| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 99国产精品99久久久久| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 亚洲精品第二区| 午夜福利免费观看在线| 国产高清videossex| 亚洲伊人色综图| 欧美亚洲 丝袜 人妻 在线| 无限看片的www在线观看| 亚洲av美国av| 久久久国产一区二区| 日韩制服丝袜自拍偷拍| 桃红色精品国产亚洲av| 在线十欧美十亚洲十日本专区| 日本黄色日本黄色录像| 中文字幕高清在线视频| 亚洲九九香蕉| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 一级毛片女人18水好多| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 久久久久久人人人人人| 这个男人来自地球电影免费观看| 一区二区三区乱码不卡18| 久热这里只有精品99| 欧美人与性动交α欧美精品济南到| 下体分泌物呈黄色| 美女高潮到喷水免费观看| 午夜成年电影在线免费观看| av在线app专区| 美女主播在线视频| 国产日韩欧美视频二区| 亚洲一码二码三码区别大吗| 国产免费一区二区三区四区乱码| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 国产免费福利视频在线观看| 99热全是精品| 99香蕉大伊视频| 老汉色∧v一级毛片| 国产一区二区三区av在线| 秋霞在线观看毛片| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| 少妇被粗大的猛进出69影院| 亚洲av男天堂| 天堂俺去俺来也www色官网| 日韩视频一区二区在线观看| 9色porny在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 日韩一区二区三区影片| 女人久久www免费人成看片| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻一区二区| 肉色欧美久久久久久久蜜桃| 久热爱精品视频在线9| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 女性生殖器流出的白浆| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| 下体分泌物呈黄色| 亚洲熟女精品中文字幕| 女人高潮潮喷娇喘18禁视频| 2018国产大陆天天弄谢| 另类亚洲欧美激情| 一区二区三区四区激情视频| 俄罗斯特黄特色一大片| 国产精品免费视频内射| 日韩有码中文字幕| 日本欧美视频一区| 精品第一国产精品| 日韩视频一区二区在线观看| 欧美精品亚洲一区二区| 久9热在线精品视频| 涩涩av久久男人的天堂| 精品一区在线观看国产| 女性生殖器流出的白浆| 亚洲一区中文字幕在线| 国产一区二区三区av在线| 国产在线一区二区三区精| 一级片'在线观看视频| 午夜福利,免费看| 少妇猛男粗大的猛烈进出视频| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 国产成人精品久久二区二区免费| 交换朋友夫妻互换小说| 婷婷成人精品国产| 首页视频小说图片口味搜索| a级片在线免费高清观看视频| 国精品久久久久久国模美| 久久中文字幕一级| 又紧又爽又黄一区二区| 国产精品秋霞免费鲁丝片| 国产精品香港三级国产av潘金莲| 久久综合国产亚洲精品| 亚洲性夜色夜夜综合| 一二三四在线观看免费中文在| 国产黄频视频在线观看| 91成人精品电影| 夫妻午夜视频| 日韩熟女老妇一区二区性免费视频| 五月天丁香电影| 久久性视频一级片| 国产日韩欧美亚洲二区| 成人影院久久| 国产男女超爽视频在线观看| 侵犯人妻中文字幕一二三四区| 一进一出抽搐动态| 久久亚洲精品不卡| 丁香六月欧美| 亚洲av欧美aⅴ国产| 国产高清视频在线播放一区 | 国产又爽黄色视频| 亚洲欧美日韩高清在线视频 | 亚洲国产欧美在线一区| 精品少妇黑人巨大在线播放| av不卡在线播放| 两性夫妻黄色片| 国产亚洲av片在线观看秒播厂| 欧美精品av麻豆av| 亚洲第一青青草原| 欧美乱码精品一区二区三区| 亚洲人成电影观看| 极品少妇高潮喷水抽搐| 久久影院123| 一个人免费在线观看的高清视频 | 精品免费久久久久久久清纯 | 欧美日韩国产mv在线观看视频| 亚洲精品自拍成人| 十八禁高潮呻吟视频| 亚洲欧洲精品一区二区精品久久久| 久久精品人人爽人人爽视色| 亚洲精品一卡2卡三卡4卡5卡 | 婷婷色av中文字幕| 亚洲国产欧美在线一区| 亚洲精品美女久久av网站| 岛国在线观看网站| 日韩有码中文字幕| 久久久精品免费免费高清| 男男h啪啪无遮挡| 久久免费观看电影| 国产在线一区二区三区精| 伦理电影免费视频| 俄罗斯特黄特色一大片| 性色av一级| 狂野欧美激情性xxxx| 91精品三级在线观看| 欧美精品啪啪一区二区三区 | 亚洲欧美日韩另类电影网站| 操美女的视频在线观看| 久久毛片免费看一区二区三区| netflix在线观看网站| 十八禁人妻一区二区| 免费黄频网站在线观看国产| 搡老乐熟女国产| 叶爱在线成人免费视频播放| 妹子高潮喷水视频| 别揉我奶头~嗯~啊~动态视频 | 国精品久久久久久国模美| 国产精品一区二区在线观看99| 久久人人爽人人片av| 国产成人免费观看mmmm| 高清视频免费观看一区二区| 五月天丁香电影| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲av香蕉五月 | 91大片在线观看| 国产亚洲精品久久久久5区| 国产成人欧美| √禁漫天堂资源中文www| 国产一区二区三区在线臀色熟女 | 免费不卡黄色视频| 国产伦理片在线播放av一区| 99国产精品一区二区三区| 美女主播在线视频| 国产av一区二区精品久久| 欧美日韩国产mv在线观看视频| 久久精品亚洲av国产电影网| 欧美在线黄色| 精品少妇内射三级| 久久精品亚洲av国产电影网| 欧美在线黄色| 亚洲成人手机| a在线观看视频网站| 人人妻,人人澡人人爽秒播| 亚洲国产精品一区三区| 最近最新中文字幕大全免费视频| 成年av动漫网址| 欧美大码av| 狠狠狠狠99中文字幕| 亚洲精品国产av蜜桃| 久久ye,这里只有精品| 欧美激情高清一区二区三区| 欧美日韩亚洲高清精品| 法律面前人人平等表现在哪些方面 | 欧美少妇被猛烈插入视频| 国产av精品麻豆| 啦啦啦啦在线视频资源| 一本色道久久久久久精品综合| 80岁老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 99香蕉大伊视频| 国产又色又爽无遮挡免| 亚洲色图综合在线观看| 午夜福利在线观看吧| 少妇精品久久久久久久| 国产免费视频播放在线视频| 嫁个100分男人电影在线观看| 精品一区二区三卡| 精品卡一卡二卡四卡免费| 国产一区二区三区av在线| 欧美黑人精品巨大| av电影中文网址| 操出白浆在线播放| 他把我摸到了高潮在线观看 | 成年动漫av网址|