• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以酚醛包覆玻璃纖維為前驅(qū)體制備廉價(jià)活性炭纖維

    2015-10-24 08:01:19韋曉群李啟漢黎海超李慧君陳水挾
    新型炭材料 2015年6期
    關(guān)鍵詞:氯化鋅酚醛糠醛

    韋曉群,李啟漢,黎海超,李慧君,陳水挾,2

    (1.中山大學(xué)化學(xué)與化學(xué)工程學(xué)院聚合物復(fù)合材料與功能材料教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州510275;2.中山大學(xué)材料科學(xué)研究所,廣東廣州510275;3.廣東進(jìn)出口檢驗(yàn)檢疫局檢驗(yàn)檢疫中心廣東廣州510623)

    以酚醛包覆玻璃纖維為前驅(qū)體制備廉價(jià)活性炭纖維

    韋曉群1,3,李啟漢1,黎海超1,李慧君1,陳水挾1,2

    (1.中山大學(xué)化學(xué)與化學(xué)工程學(xué)院聚合物復(fù)合材料與功能材料教育部重點(diǎn)實(shí)驗(yàn)室,廣東廣州510275;2.中山大學(xué)材料科學(xué)研究所,廣東廣州510275;3.廣東進(jìn)出口檢驗(yàn)檢疫局檢驗(yàn)檢疫中心廣東廣州510623)

    以酚醛樹(shù)脂、聚乙烯醇和糠醛的混合物包覆玻璃纖維,經(jīng)炭化和氯化鋅活化制備出一種廉價(jià)的纖維狀活性炭材料。表征了這種纖維狀活性炭材料的表面形態(tài)、微晶結(jié)構(gòu)、孔結(jié)構(gòu)、表面化學(xué)特征和機(jī)械強(qiáng)度,評(píng)價(jià)了該材料的吸附性能。結(jié)果表明,在炭前驅(qū)體中加入聚乙烯醇和糠醛可以有效促進(jìn)孔隙的發(fā)育,提升所制備多孔炭材料的孔隙率。當(dāng)在前驅(qū)體中加入聚乙烯醇和糠醛時(shí),所制多孔炭材料的比表面積可達(dá)2 023 m2/g,否則其比表面積則僅為404 m2/g。聚乙烯醇的加入提高了氯化鋅的溶解性,促進(jìn)了炭前驅(qū)體的活化;而糠醛與酚醛交聯(lián)結(jié)構(gòu)的形成則提高了炭前驅(qū)體的熱穩(wěn)定性,提高了炭得率。這兩方面的措施均有利于提高樣品的比表面積并降低其制備成本。該纖維狀活性炭材料具有與傳統(tǒng)活性炭纖維相似的微晶結(jié)構(gòu)和吸附性能。

    活性炭;玻璃纖維;酚醛;氯化鋅

    1 Introduction

    Activated carbons(ACs)have received intensive interest owing to their high specific surface areas and excellent adsorption capacities.As the third generation product,activated carbon fibers(ACFs)are considered to be more promising owing to their high porosity,fast adsorption kinetics and easy regenera-tion[1].Given all these merits,ACFs seem to be the alternative adsorbentmaterialsthatovercomethe drawbacks of ACs[2,3].However,there still exists a crucial disadvantage that ACFs must overcome to be utilized in various fields,which is the high production cost[4,5].To address this limitation,there are a large number of studies on new low-cost and high-yield routes to produce ACFs.A kind of ACFs devised by Economy et al.was prepared through coating the raw material onto glass fibers and then activating it in several ways[6,7].This method does cut the price of ACFs effectively.

    Among the raw materials selected as precursor fibers,phenolic resin is known to be able to produce ACFs with a high surface area[8].Besides,the glass fibers can overcome the drawback of phenolic resinbased ACFs,which are brittle and susceptible to wear.In that case,KOH can't be used as an activation agent because of its erosion to glass fibers.Park and Jung tried to produce glass-fibers-supported phenolic resin-based ACFs with KOH activation,and they got a product with a low specific surface area finally[9].ZnCl2is an excellent activation agent as it can activate carbon at low temperature[10-15].Yue et al.[16]also attempted to activate the glass-fibers-supported phenolic resin with ZnCl2,and they faced the same problem to increase the specific surface area.Teng and Wang found that it was“unable to produce a high porosity carbon with ZnCl2”[17].This is mainly because of the low solubility of ZnCl2in solvent(usually alcohol)used to mix the phenolic resin and ZnCl2.In this study,we tried to increase the solubility of ZnCl2in alcohol by adding surfactant PEG4000(polyethylene glycol,MW 4000),which greatly increased the specific surface area of the products.Factors that affected specific surface area and the yield of the activated products were further studied.

    2 Experimental

    2.1Preparation of porous carbons

    A mixture of novolac resin(2123,Shanghai Qinan Viscose Rayon Material Factory,4.5 g)and polyethylene glycol(Abbr.PEG,Mw 4000,Guangdong Xilong Chemical Co.,Ltd.),zinc chloride(98%,GuangzhouChemicalReagentFactory,13.5 g),and furfural(Guangzhou Chemical Reagent Factory)was dissolved in ethanol(Et-OH,100 mL)to obtain a solution.Then the glass fiber mats(R-93,Changzhou Changhai Glass Fiber Reinforced Plastic Products Co.,Ltd.)were dip-coated with the solution,dried and preheated to 200℃for 4 h in an oven under air.After that,the stabilized mats were cooled in air,transferred to another furnace,carbonized and activated at 60 min for a given time in N2atmosphere with a heating rate of 10℃/min.After being cooled in flowing N2,each sample was thoroughly washed with a diluted hydrochloric acid(1 mol/L)and distilled water,then dried in vacuum at 110℃for 24 h.The resulting Novolac-ZnCl2-based porous carbons are labeled as NZ-PC,and the furfural-Novolac-PEGZnCl2-based porous carbons are labeled as x%F-NPZPC,where x stands for the furfural mass concentration in Novolac-PEG4000 precursors.When x is equal to 0,it is labeled as NPZ-PC.The carbon layers were obtained by dissolving the glass fiber mats in the samples with hydrofluoric acid for 24 h,washing with deionized water and drying in vacuum at 110℃for 24 h.The carbon content was calculated by dividing the mass of carbon layers from the total mass of the porous carbon samples.

    2.2Thermal characterization

    The thermogravimetric(TG)behavior of the raw materials was analyzed using a NetzschTG-209 analyzer(Japan)from room temperature to 600℃at a rate of 20℃/min in nitrogen flow under atmospheric pressure.

    2.3Surface area and pore structure

    The adsorption of N2at 77 K was carried out with an accelerated surface area and porosimetry system(ASAP2010,Micromeritics Corp.).The total pore volume(Vt)of a sample was estimated from the amount of N2adsorbed at p/p0=0.95.The Brunauer-Emmett-Teller(BET)equation was employed to determine the total specific surface area(SBET).The t-plot method was employed to deduce specific surface area of micropores(<2 nm)(St-plot).Barrett-Joiner-Halenda(BJH)method was applied to get the mesopore surface area(SBJH).A method based on the density functional theory(DFT)was applied to get the pore size distributions(PSDs).

    2.4Morphology

    A thermal field emission environmental scanning electron microscope(SEM,Quanta 400F,F(xiàn)EI,Netherlands)was used to characterize the morphology of the samples.The samples were dried overnight at approximately 120℃under vacuum before SEM analysis.

    2.5Tensile properties

    The static tensile properties were determined by a H10K-S universal testing machine(Hounsfield,UK)with a crosshead speed of 5 mm/min at room temperature.The width and length of the specimens were different from each other.

    2.6Raman spectroscopy

    The Raman spectra of the carbonized layers ofNPZ-PC and 13%F-NPZ-PC were obtained using an Ar+laser beam at λex=514.5 nm(Laser Micro-Raman Spectrometer,Renishaw inVia,UK).The average domain size Lawas calculated using the equations proposed by Tuinstra and Koening[18]from the intensities of D and G peaks:

    The fraction“f”of the amount of disordered(amorphous)carbon was estimated using the intensity of the two peaks(IDand IG):

    2.7X-ray diffraction(XRD)

    Powder XRD profiles were collected in the 2θ angle between 10°and 70°with a X-ray Diffract meter(D8 ADVANCE,BRüCKNER Textile Technologies GmbH&Co.KG),which was equipped with a copper-monochromatized CuKα radiation(λ= 0.154 059 8 nm)under the accelerating voltage of 40 kV and the current of 40 mA.Estimates of mean crystallite dimensions such as the interlayer spacing(d002),the crystallite size along c-axis(Lc),the size of the layer planes(La),and the number of layers(n)were calculated from powder XRD data by application of Bragg equation,Scherrer equation,and Warren equation.

    Where β is the half-peak width,λ is the X-ray wavelength and θ is the Bragg angle.

    2.8Fourier transform infrared spectroscopy(FT-IR)

    After dried in vacuum at 110℃for over 6 h,samples were mixed with 5 wt.%KBr.A FT-IR instrument(TENSOR27,BRUKER,USA)was used to analyze the surface chemical properties by FT-IR.

    2.9Adsorption experiments

    Both static and dynamic adsorption methods were utilized to determine the adsorption ability of the carbon samples.Methylene blue(MB)was used as the adsorbate.Commercialgranularactivatedcarbon(GAC)and commercial ACF were chosen as references.

    In the static adsorption experiments,proper mass of ACF(SBET=1 350 m2/g),13%F-NPZ-PC(SBET=1 193 m2/g)or GAC(SBET=880 m2/g)was added to 200 mL MB solution with a concentration of 400 mg/L in a 1 000 mL conical flask.The mixture was stirred in a rotary shaker at a speed of 140 r/min at 25±1℃.The residual MB concentration was determined at a regular interval using an ultraviolet-visible spectrophotometer.

    Fordynamicadsorptionexperimentsproper amount of ACF,13%F-NPZ-PC or GAC were packed into a glass column(1.2 cm in inner diameter)with a bed depth of around 10 cm.Mass of three samples in the columns were adjusted to make their total surface area of samples filled in the column equal.The MB solution was pumped through the fixed bed from top to bottom with a specified flow rate of 1.5 mL/min with a peristaltic pump at 25℃.Samples were collected at a regular interval during all the adsorptive process.

    3 Results and discussion

    3.1Morphology of the porous carbon

    The morphology of the NPZ-PC under SEM is shown in Fig.1.The NPZ-PC exhibits a fibrous structure.Most of the glass fibers are wrapped by carbon,but in some parts,carbon layer is peeled off and the glass fiber is naked.Carbon materials also exist between the glass fibers.The thickness of the carbon layers is from several nanometers to 2 μm.The diameter of the NPZ-PC fibers is about 10 μm,which is similar to that of the ACFs.

    3.2Microcrystalline structure of porous carbons

    XRD was employed to study the graphitic degree of the NPZ-PC and 13%F-NPZ-PC.As shown in Fig.2,two broad peaks,around 2θ=24°and 2θ= 42°,corresponding to the disordered graphitic 002 plane and the 110 plane reflection of graphite crystallite[19]are found.The calculated values of the crystalline parameters,including interlayer spacing(d002)and the crystallite size(La,Lc)within 5%error are presented in Table 1.The value of d002is 0.375 nm for NPZ-PC,and 0.360 nm for 13%F-NPZ-PC;the value of graphite layers is 5.3 for NPZ-PC,and 5.5 for 13%F-NPZ-PC.It is concluded that the graphitization degree of 13%F-NPZ-PC is higher than that of NPZ-PC.

    The same conclusion could be achieved from micro laser Raman spectroscopy.In Fig.3,the Raman spectra are similar to the report elsewhere[20-23].The D(disorder peak),D'(defect peak[24])and G(graphic peak)peaks are found at 1 350,1 500 and 1 600 cm-1,respectively.The calculated Laand“f”values estimated by equation(5)and(2)are listedin Table 1.Lavalues of the samples are 4.49 and 4.98 nm,the“f”of them are 49 and 47%,respectively,for the NPZ-PC and 13%F-NPZ-PC.The results also showed that both of them are semi-carbonized polymers,and the graphic degree of 13%F-NPZPC is higher than that of NPZ-PC.

    Fig.1 SEM images of NPZ-PC,activated at 400℃for 60 min.(a)Coating on glass fibers;(b)Cross-section of a single glass fiber coated with a carbon layer.

    Fig.2 XRD patterns of NPZ-PC and 13%F-NPZ-PC.

    3.3Pore structure of the porous carbons

    The pore structures of the NZ-PC,NPZ-PC,1 3%F-NPZ-PCand20%F-NPZ-PC(activatedat 400℃)were analyzed using N2adsorption at 77 K.The results are listed in Table 2.Since the solubility of ZnCl2is low in Et-OH,the mass ratio of ZnCl2to novolac is limited to 0.44 without PEG in the precursor.Accordingly,the SBETand Vtotalof carbon layers of the NZ-PC are 404 m2/g and 0.223 cm3/g,respectively.Adding proper amount of PEG until the mass ratio of ZnCl2to novolac increases to 3.0 results in an increase in SBETand Vtotalof the NPZ-PC to 1 257 m2/g and 0.759 cm3/g,respectively.The samples when furfural is added(13%F-NPZ-PC and 20% F-NPZ-PC)exhibit higher specific surface areas and Vtotalthan the sample without furfural.It is noteworthy that the Smicro/SBETand Vmicro/Vtotalof 13%F-NPZ-PC are only 18.0%and 12.5%,indicating that the 13% F-NPZ-PC has essentially a mesoporous structure.

    Table1 The estimated crystallite parameters from Raman spectra and XRDpatterns of the NPZ-PC and 13%F-NPZ-PC,activated at 400℃for 60 min.

    Fig.3 Raman spectra of(a)NPZ-PC and(b)13%F-NPZ-PC activated at 400℃for 60 min.

    Fig.4 displays the pore size distributions of carbon layers of the samples.These four samples present a similar micropore size distribution,which was caused by the same ZnCl2activation.Obvious mesopores centered at over 2 nm can be observed in the NPZ-PC and the x%F-NPZ-PC samples,while the NZ-PC sample has little mesopores.These data illustrate that addition of PEG in the precursor increases the solubility of ZnCl2,so that the activation of carbon precursor is facilitated.

    The effects of activation temperature on the specific surface area of porous carbons are shown in Fig.5.It can be seen that the specific surface area of the x%FNPZ-PC reaches a maximum value of 1 200 m2/g at about 450℃with activation temperature.

    Table2 Pore structure parameters of porous carbons activated at 400℃for 60 min.

    Fig.4 Pore size distributions of carbon layers of the samples activated at 400℃for 60 min.

    Fig.5 Effects of activation temperature on the surface area of the three samples.

    3.4Surface chemical structure

    FT-IR spectra were employed to evaluate the surface groups of the samples prepared at different activated temperatures(Fig.6).The bending vibration appeared at 1 055 cm-1is assigned to aliphatic ether,1 092 cm-1to aromatic ether,1 441 cm-1to methylene,1 510 cm-1tolargearomaticringand 1 595 cm-1to benzene ring.For NPZ-PC,the benzene ring turns to aromatic ring with activation temperature as manifested by the wave number change from 1 595 to 1 510 cm-1,but the methylene disappears and aromatic ether is kept.On the other hand,for the 13%F-NPZ-PC,both of benzene ring and methylene are kept below activation temperature of 500℃,aromatic ether is kept even at high activation temperature,but aliphatic ether disappears.It can be concluded from the differences between the FT-IR spectra of the NPZ-PC and 13%F-NPZ-PC that a large amount of methylene and aromatic rings connected by aliphatic ether are formed because of the crosslinking by furfural.These structures would decompose over 500℃.That's why the specific surface area reaches a maximum between 400and 500℃.

    Fig.6 FT-IR spectra of coated layers activated at different temperatures for(a)NPZ-PC and(b)13%F-NPZ-PC.

    3.5Mechanical properties

    The mechanical properties are important for practical application of porous carbons.It is found that addition of furfural in the precursor greatly improvesthe tensile strength of the products.The effect of mass percentage of furfural on the mechanical properties of the porous carbon activated at 400℃is shown in Table 3.The porous carbons have higher failure strains than glass fiber mat.With an increasing of the furfural content from 0 to 20 wt%,the tensile stresses oftheporouscarbonsincreasefrom14.55to 43.52 N.The Youngs modulus exhibits a maximum of 330.54 MPa with the furfural content.

    Table3 The tensile stress,youngs modulus of glass fiber mats and porous carbons activated at 400℃for 60 min.

    3.6Adsorption properties

    Adsorption behavior of the 13%F-NPZ-PC is compared with a commercial GAC and ACF.Table 4 shows the pore structure parameters of the three samples.ACF sample exhibits the largest specific and micropore surface area of 1 354 and 830 m2/g,respectively,and GAC sample shows the lowest specific surface area among the three samples.13%F-NPZPC has a fair high total specific surface area and the highest percentage of mesopore.

    The MB adsorption capacities of the three samples are in good agreement with their specific surface area.ACF shows a highest MB adsorption amount among the three samples(Fig.7)because of its highest specific surface area.The adsorption of MB on ACF and 13%F-NPZ-PC can reach adsorption equilibrium at about 150 min.

    Table4 Pore structure parameters of the three samples.

    The breakthrough curves of MB adsorption on the three carbon materials are shown in Fig.8.ACF shows the most excellent MB adsorption ability.It can completely adsorb all MB in the first phase,and the effluent MB concentration can be kept at 0 before 60 min.13%F-NPZ-PC shows a similar dynamic adsorption behavior with ACF,which could be ascribed to its fibrous structure.However,under the same condition,13%F-NPZ-PC can completely adsorb all MB and keep the effluent concentration at 0 below 20 min.GAC shows a different breakthrough curve.MB breaks through at the very beginning and the effluent concentration of MB gradually increases with time till saturation.

    Fig.7 The static MB adsorption versus time for the three samples.

    Fig.8 The dynamic MB adsorption curves for the three samples.

    3.7Analysis of carbonization mechanism

    Fig.9 depicts thermogravimetric(TG)and differential thermogravimetric(DTG)curves of carbon precursors.Two major weight loss peaks in each line can be observed.The first one with a minimum at around 310 to 340℃corresponds to a mass loss(about 20%)that may be due to water desorption and the second one with a minimum at about 520℃to a mass loss(about 20%to 40%)that may be due to ZnCl2volatilization.For the precursors containing PEG,PEG would decompose at about 320℃,so the first peak also includes the decomposition of PEG for the NPZ-PC and x%F-NPZ-PC samples.The percentage of weight loss increased from 48%to 66%at 600℃,respectively for the NPZ-PC and NZ-PC because of the decomposition of PEG.Some tar solid is found on the surface of the NPZ-PC sample.For the 13%F-NPZ-PC,the precursors loses only 48%of itsweight at 600℃and exhibits a weight loss peak at 506℃,and there is no tar observed after carbonization.The phenomenon indicates that furfural can improve the thermal stability of the precursor.When the precursor was preoxidized in air,oxygen would facilitate the crosslinking reaction on the surface of the precursor.The as-formed cross-linked structure would inhibit the oxygen from further penetrating into the precursor,thus forming the stable structure in the inner part of the precursor.When furfural was added into the precursor,it could cause crosslinking reaction both inside and outside the precursor,so that the thermal stability of precursor is improved.For the precursor without furfural,the structure in the precursor would be destroyed at high temperature,and is released in the form of tar.As the activation temperature increases,the pore structures formed would collapse as the unstable structure is decomposed.For the precursor with furfural,furfural and phenolic would form a lot of aromatic rings and aliphatic ether.All of these structures could be kept stable till 500℃.The thermal stable precursor will be beneficial to the development of pores.

    Fig.9 TG curves of the carbon precursors for various samples.

    4 Conclusions

    Fibrous activated carbons with a high porosity could be prepared through activating a mixture of phenolic resin,PEG and furfural coated on glass fibers using ZnCl2as an activation agent.The specific surface area of the 13%F-NPZ-PC is 1 193 m2/g based on total mass,and 2 023 m2/g based on the carbon layers.88%of the pores of this product are mesopores,whose sizes are between 2 and 4 nm.The fibrous activated carbons exhibit excellent mechanical properties,high MB adsorption capacities and fast adsorption kinetics speed,which are similar to those of a conventional ACF with a specific surface area of 1 300 m2/g.Addition of PEG into the carbon precursors can effectively increase the specific surface area of the porous carbons by increasing the ZnCl2solubility in ethanol.And addition of furfural into the carbon precursors can greatly improve the development of pores because of the formation of a crosslinked structure between phenolic and furfural.

    [1]Zhang J H,Zhang W B,Zhang Y.Pore structure characteristics of activated carbon fibers derived from poplar bark liquefaction and their use for adsorption of Cu(II)[J].Bioresources,2015,10(1):566-574.

    [2]Yusof N,Ismail A F.Post spinning and pyrolysis processes of polyacrylonitrile(PAN)-based carbon fiber and activated carbon fiber:A review[J].J Anal Appl Pyrol 2012,93:1-13.

    [3]Cuerda-Correa E M,Macías-García A,Díez M,et al.Textural and morphological study of activated carbon fibers prepared from kenaf[J].Micropor Mesopor Mater 2008,111(1-3):523-529.

    [4]Nahil M A,Williams P T.Recycling of carbon fibre reinforced polymeric waste for the production of activated carbon fibres[J].J Anal Appl Pyrol 2011;91(1):67-75.

    [5]Valente N,Mouquinho A,Galacho C,et al.In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres[J].Fuel Process Technol 2008,89(5):549-555.

    [6]Economy J,Daley M A.Coated absorbent fibers[P].US patent 5834114,1998.

    [7]Economy J,Mangun C L.Design of new materials for environmental control[J].Macromol Symp 1999,143:75-79.

    [8]An H,F(xiàn)eng B,Su S.CO2capture capacities of activated carbon fibre-phenolic resin composites[J].Carbon,47(10):2396-2405.

    [9]Park S J,Jung W Y.KOH activation and characterization of glass fibers-supported phenolic resin[J].J Colloid Interface Sci,2003,265(2):245-250.

    [10]Nagashanmugam K B,Srinivasan K.Evaluation of lead(II)removal by carbon derived from gingelly oil cake[J].Asian J Chem,2010,22(7):5447-5462.

    [11]Ozdemir I,Sahin M,Orhan R,et al.Preparation and characterization of activated carbon from grape stalk by zinc chloride activation[J].Fuel Process Technol,2014,125:200-206.

    [12]Lu X C,Jiang J C,Su K,et al.Preparation and characterization of sisal fiber-based activated carbon by chemical activation with zinc chloride[J].B Kor Chem Soc,2014,35(1):103-110.

    [13]Hesas R H,Arami-Niya A,Wan D,et al.Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation[J].J Ana Appl Pyrol,2013,104:176-184.

    [14]Makeswari M,Santhi T.Optimization of preparation of activated carbon from ricinus communis leaves by microwave-assisted zinc chloride chemical activation:Competitive adsorption of Ni2+ions from aqueous solution[J].J Chem,2013:1-12.

    [15]Xiang X X,Liu E H,Huang Z Z,et al.Preparation of activated carbon from polyaniline by zinc chloride activation as supercapacitor electrodes[J].J Solid State Electr,2011,15(11-12):2667-2674.

    [16]Yue Z,Mangun C L,Economy J.Preparation of fibrous porous materials by chemical activation 1.ZnCl2activation of polymercoated fibers[J].Carbon,2002,40(8):1181-1191.

    [17]Teng H,Wang S C.Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation [J].Carbon,2000,38(6):817-824.

    [18]Tuinstra F,Koenig J L.Raman spectrum of graphite[J].J Chem Phys,1970,53(3):1126-1130.

    [19]Ram K,Abbie N J,Barry J M.Transmission electron microscopy,Raman and X-ray photoelectron spectroscopy studies on neutron irradiated polycrystalline graphite[J].Radiat Phys Chem,2015,107:121-127.

    [20]Leyua-Garcia S,Nueangnoraj K,Lozano-Castello D,et al.Characterization of a zeolite-templated carbon by electrochemical quartz crystal microbalance and in situ Raman spectroscopy[J].Carbon,2015,89:63-73.

    [21]Li-Pook-Than A,F(xiàn)innie P.Observation of the metallic-type selective etching of single walled carbon nanotubes by real-time in situ two-laser Raman spectroscopy[J].Carbon,2015,89:232-241.

    [22]Wang H D,Liu J H,Zhang X,et al.Raman measurement of heat transfer in suspended individual carbon nanotube[J].J Nanosci Nanotechno,2015,15(4):2939-2943.

    [23]Bistricic L,Borjanovic V,Leskovac M,et al.Raman spectra,thermal and mechanical properties of poly(ethylene terephthalate)carbon-based nanocomposite films[J].J Polym Res,2015,22(3):1-12.

    [24]Kazemi-Zanjani N,Gobbo P,Zhu Z Y,et al.High-resolution Raman imaging of bundles of single-walled carbon nanotubes by tip-enhanced Raman spectroscopy[J].Can J Chem,2015,93(1):51-59 .

    The use of ZnCl2activation to prepare low-cost porous carbons coated on glass fibers using mixtures of Novolac,polyethylene glycol and furfural as carbon precursors

    WEI Xiao-qun1,3,LI Qi-han1,LI Hai-chao1,LI Hui-jun1,CHEN Shui-xia1,2
    (1.PCFM Lab,School of Chemistry and Chemical Engineering,Sun Yat-Sen University,Guangzhou510275,China;2.Materials Science Institute,Sun Yat-Sen University,Guangzhou510275,China;3.Inspection and Quarantine Technology Center of Guangdong Entry-Exit Inspection and Quarantine Bureau,Guangzhou510623,China)

    Using ZnCl2as an activation agent,low-cost porous carbonswere prepared using mixtures of Novolac,polyethylene glycol(PEG)and furfural in alcohol as carbon precursorsthat were coated onto glass fiber mats.The morphology,microcrystalline structure,pore structure,surface chemistry,mechanical strength and adsorption properties of the porous carbons were characterized.Results show that the addition of furfural and PEG to the carbon precursors greatly improves pore development.The specific surface area of the porous carbons is as high as 2 023 m2/g when PEG and furfural are added,otherwise it is only 404 m2/g.It is found that the addition of PEG to the precursors can increase the solubility of ZnCl2in alcohol,and thus facilitate the activation of the carbon precursors.The formation of a crosslinked structure of furfural with Novolac is responsible for the improvement in the thermal stability of the precursors and the increase in the carbon yield,which favors the increase in the surface area and the reduction of the production cost.The porous carbons have similar adsorption performance and microcrystalline structure to conventional activated carbon fibers.

    Activated carbon;Glass fiber;ZnCl2;Phenolic-resin

    Science and Technology Project of Guangdong Province(2014A030313192).

    CHEN Shui-xia,Professor.E-mail:cescsx@mail.sysu.edu.cn

    TQ127.1+1

    A

    廣東省科技項(xiàng)目(2014A030313192).

    陳水挾,教授.E-mail:cescsx@mail.sysu.edu.cn

    1007-8827(2015)06-0579-08

    10.1016/S1872-5805(15)60206-2

    English edition available online ScienceDirect(http://www.sciencedirect.com/science/journal/18725805).

    猜你喜歡
    氯化鋅酚醛糠醛
    氯化鋅渣分離工藝探討
    不同糠醛抽出油對(duì)SBS改性瀝青性能的影響
    石油瀝青(2021年6期)2021-02-10 06:15:34
    2028年氯化鋅市場(chǎng)預(yù)計(jì)將達(dá)到4.264億美元
    憎水性ZIFs對(duì)糠醛和5-羥甲基糠醛的吸附分離性能
    氯化鋅ZnCl2制備條件實(shí)驗(yàn)淺探
    日本氯化鋅原料供求緊張
    催化合成典型5-羥甲基糠醛衍生物的研究進(jìn)展
    腰果酚醛胺固化環(huán)氧樹(shù)脂泡沫塑料性能研究
    碳納米管-聚酰胺纖維改性鄰甲酚醛環(huán)氧樹(shù)脂
    膠料中烷基酚醛增粘樹(shù)脂的鑒定
    少妇的丰满在线观看| 级片在线观看| 夜夜夜夜夜久久久久| 国产97色在线日韩免费| 精品日产1卡2卡| 亚洲第一欧美日韩一区二区三区| 午夜成年电影在线免费观看| 在线播放国产精品三级| 日本三级黄在线观看| 啦啦啦韩国在线观看视频| 国产亚洲精品综合一区在线观看| 成人高潮视频无遮挡免费网站| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 嫩草影院入口| 亚洲男人的天堂狠狠| 一本综合久久免费| av天堂在线播放| 国产午夜精品久久久久久| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 一本综合久久免费| 美女午夜性视频免费| 国产一区二区三区在线臀色熟女| 99久久精品国产亚洲精品| 成人欧美大片| 国产精品久久久久久亚洲av鲁大| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人与动物交配视频| 看免费av毛片| 成人av一区二区三区在线看| 国产亚洲欧美在线一区二区| 后天国语完整版免费观看| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 无遮挡黄片免费观看| 亚洲精品美女久久久久99蜜臀| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式 | 亚洲人成网站高清观看| 亚洲色图av天堂| 巨乳人妻的诱惑在线观看| 黄色视频,在线免费观看| 国产欧美日韩一区二区精品| 亚洲av成人精品一区久久| av天堂中文字幕网| 国产伦精品一区二区三区视频9 | 好男人在线观看高清免费视频| 在线播放国产精品三级| 日本黄大片高清| 久久婷婷人人爽人人干人人爱| 亚洲九九香蕉| 精品日产1卡2卡| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| av在线天堂中文字幕| 成人av在线播放网站| 日韩大尺度精品在线看网址| 999精品在线视频| 香蕉av资源在线| 最近视频中文字幕2019在线8| 一本一本综合久久| 一级毛片女人18水好多| 97碰自拍视频| 91在线精品国自产拍蜜月 | 人妻丰满熟妇av一区二区三区| 日本黄色视频三级网站网址| 男人舔女人下体高潮全视频| 亚洲精品久久国产高清桃花| 日本在线视频免费播放| 亚洲专区国产一区二区| 中文字幕人妻丝袜一区二区| 欧美成人一区二区免费高清观看 | 99精品欧美一区二区三区四区| 国模一区二区三区四区视频 | 亚洲成人中文字幕在线播放| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 国产成人精品久久二区二区免费| 日本与韩国留学比较| 亚洲性夜色夜夜综合| 国产成人av教育| 国产欧美日韩精品一区二区| 国产精品影院久久| 90打野战视频偷拍视频| 夜夜夜夜夜久久久久| 国产伦一二天堂av在线观看| 2021天堂中文幕一二区在线观| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 国产1区2区3区精品| 成人av一区二区三区在线看| 精品久久久久久久毛片微露脸| 亚洲成人久久爱视频| 99久久精品一区二区三区| 老熟妇仑乱视频hdxx| 亚洲精品粉嫩美女一区| 午夜激情欧美在线| 香蕉久久夜色| 91av网一区二区| 久久中文字幕一级| 婷婷丁香在线五月| 午夜福利在线观看免费完整高清在 | 亚洲精品国产精品久久久不卡| 一个人观看的视频www高清免费观看 | 亚洲aⅴ乱码一区二区在线播放| 精品一区二区三区视频在线 | 亚洲欧美激情综合另类| 校园春色视频在线观看| 亚洲中文日韩欧美视频| 亚洲人成网站在线播放欧美日韩| 亚洲自拍偷在线| 精品乱码久久久久久99久播| 观看美女的网站| 成人无遮挡网站| 免费看日本二区| 一级毛片女人18水好多| 精品不卡国产一区二区三区| 亚洲自拍偷在线| 久久久久久大精品| 免费观看的影片在线观看| 欧美极品一区二区三区四区| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕人成人乱码亚洲影| 91在线精品国自产拍蜜月 | 亚洲国产精品合色在线| 久久这里只有精品中国| 亚洲成av人片免费观看| 国产伦精品一区二区三区四那| 此物有八面人人有两片| а√天堂www在线а√下载| 亚洲男人的天堂狠狠| 黑人巨大精品欧美一区二区mp4| 1024香蕉在线观看| 国产麻豆成人av免费视频| 国产亚洲精品av在线| 天天躁狠狠躁夜夜躁狠狠躁| 十八禁人妻一区二区| 亚洲在线观看片| 伊人久久大香线蕉亚洲五| 一个人免费在线观看的高清视频| 欧美成人免费av一区二区三区| 久久精品亚洲精品国产色婷小说| 男女下面进入的视频免费午夜| 麻豆av在线久日| 精品久久久久久久久久免费视频| 亚洲av成人不卡在线观看播放网| 日本 欧美在线| 真实男女啪啪啪动态图| 精品一区二区三区视频在线观看免费| a级毛片a级免费在线| 夜夜夜夜夜久久久久| 亚洲av五月六月丁香网| 久久中文看片网| 亚洲人与动物交配视频| 久久久久国产精品人妻aⅴ院| 国产精品一及| 可以在线观看的亚洲视频| 亚洲中文日韩欧美视频| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 精品久久久久久久人妻蜜臀av| 人人妻,人人澡人人爽秒播| 搡老妇女老女人老熟妇| 亚洲 欧美一区二区三区| 国产精品影院久久| 国产精品久久久久久人妻精品电影| 99久久成人亚洲精品观看| 免费在线观看影片大全网站| 在线观看美女被高潮喷水网站 | 国内毛片毛片毛片毛片毛片| 嫩草影院入口| 搡老岳熟女国产| 亚洲国产欧美一区二区综合| 97人妻精品一区二区三区麻豆| 午夜免费成人在线视频| 亚洲国产欧洲综合997久久,| 最近最新中文字幕大全免费视频| 俺也久久电影网| 久久久久国产一级毛片高清牌| 中文字幕高清在线视频| 人妻夜夜爽99麻豆av| 日韩欧美一区二区三区在线观看| 日本 欧美在线| 亚洲av电影不卡..在线观看| 在线国产一区二区在线| 午夜两性在线视频| 久久天堂一区二区三区四区| 麻豆av在线久日| 亚洲国产精品久久男人天堂| www日本在线高清视频| 日韩成人在线观看一区二区三区| 露出奶头的视频| 亚洲欧美日韩高清专用| 国产精品 欧美亚洲| 日本成人三级电影网站| 两个人的视频大全免费| 亚洲无线在线观看| 色尼玛亚洲综合影院| 亚洲中文字幕日韩| 搡老妇女老女人老熟妇| 免费看美女性在线毛片视频| 久久精品国产99精品国产亚洲性色| 免费观看精品视频网站| av天堂中文字幕网| 色综合站精品国产| 国产久久久一区二区三区| ponron亚洲| 亚洲国产精品成人综合色| 久久热在线av| 97碰自拍视频| 久久午夜亚洲精品久久| 一本综合久久免费| 亚洲中文av在线| 亚洲国产精品久久男人天堂| 精品久久久久久,| 99国产精品一区二区蜜桃av| 色综合婷婷激情| av欧美777| 麻豆成人午夜福利视频| 搞女人的毛片| a级毛片a级免费在线| 成人18禁在线播放| 一级a爱片免费观看的视频| 国模一区二区三区四区视频 | 亚洲,欧美精品.| 欧美日本亚洲视频在线播放| 国产欧美日韩精品亚洲av| 久久精品91无色码中文字幕| 国产高清videossex| 夜夜看夜夜爽夜夜摸| 国产成年人精品一区二区| 黄片大片在线免费观看| 亚洲第一电影网av| 白带黄色成豆腐渣| 97人妻精品一区二区三区麻豆| 日本a在线网址| xxxwww97欧美| 在线国产一区二区在线| 亚洲精品一区av在线观看| 18禁美女被吸乳视频| 久久久久国产一级毛片高清牌| 婷婷亚洲欧美| 此物有八面人人有两片| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 网址你懂的国产日韩在线| 国产主播在线观看一区二区| 一边摸一边抽搐一进一小说| 国产 一区 欧美 日韩| 三级男女做爰猛烈吃奶摸视频| 他把我摸到了高潮在线观看| 久久久色成人| 国产激情欧美一区二区| 国产乱人视频| 亚洲性夜色夜夜综合| 欧美色欧美亚洲另类二区| 亚洲 欧美 日韩 在线 免费| 国产精品 国内视频| 看片在线看免费视频| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 欧美绝顶高潮抽搐喷水| 男女午夜视频在线观看| 两性夫妻黄色片| 免费无遮挡裸体视频| 亚洲中文av在线| 国产 一区 欧美 日韩| www日本黄色视频网| 在线观看免费午夜福利视频| 麻豆久久精品国产亚洲av| a级毛片在线看网站| 99国产精品99久久久久| 国产成年人精品一区二区| 国产精品久久电影中文字幕| 免费看a级黄色片| 给我免费播放毛片高清在线观看| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀| 日本三级黄在线观看| 精品久久久久久,| 熟女人妻精品中文字幕| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 又黄又粗又硬又大视频| 亚洲九九香蕉| 香蕉久久夜色| 99国产综合亚洲精品| 成人一区二区视频在线观看| 88av欧美| 国产在线精品亚洲第一网站| 亚洲,欧美精品.| 欧美中文综合在线视频| 啦啦啦免费观看视频1| bbb黄色大片| 亚洲熟女毛片儿| 久久久久久久精品吃奶| 99国产精品一区二区三区| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 九九热线精品视视频播放| 日本一本二区三区精品| 97超视频在线观看视频| 美女扒开内裤让男人捅视频| 18禁黄网站禁片免费观看直播| 精品无人区乱码1区二区| 色哟哟哟哟哟哟| 久久精品91无色码中文字幕| av福利片在线观看| 99久久无色码亚洲精品果冻| 老司机在亚洲福利影院| 一个人观看的视频www高清免费观看 | 嫩草影视91久久| 99在线视频只有这里精品首页| 久久香蕉精品热| 亚洲av熟女| 无限看片的www在线观看| 综合色av麻豆| 可以在线观看毛片的网站| 亚洲精品色激情综合| av黄色大香蕉| 日本五十路高清| 久久久国产精品麻豆| 久久午夜亚洲精品久久| 国内久久婷婷六月综合欲色啪| 成年版毛片免费区| 99在线人妻在线中文字幕| 久久人妻av系列| 2021天堂中文幕一二区在线观| av视频在线观看入口| 国产激情久久老熟女| 黄色日韩在线| 国产精品av久久久久免费| 日本在线视频免费播放| 九九在线视频观看精品| 亚洲av日韩精品久久久久久密| 高潮久久久久久久久久久不卡| 免费av毛片视频| 欧洲精品卡2卡3卡4卡5卡区| avwww免费| 国产视频内射| 女人高潮潮喷娇喘18禁视频| 亚洲一区高清亚洲精品| 欧美日本亚洲视频在线播放| 又爽又黄无遮挡网站| 男女午夜视频在线观看| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 搡老岳熟女国产| 国产单亲对白刺激| 日韩欧美精品v在线| 精品一区二区三区四区五区乱码| 此物有八面人人有两片| av片东京热男人的天堂| 在线视频色国产色| 狂野欧美激情性xxxx| 精品人妻1区二区| 午夜激情福利司机影院| 久久精品人妻少妇| 国产成人一区二区三区免费视频网站| 又粗又爽又猛毛片免费看| 可以在线观看的亚洲视频| 一区二区三区高清视频在线| 热99re8久久精品国产| 一进一出抽搐gif免费好疼| 美女cb高潮喷水在线观看 | 操出白浆在线播放| 国产乱人视频| 在线看三级毛片| www.自偷自拍.com| 免费在线观看成人毛片| 国产精品久久久久久亚洲av鲁大| 国产69精品久久久久777片 | 国产aⅴ精品一区二区三区波| 婷婷六月久久综合丁香| 99久久成人亚洲精品观看| 免费av毛片视频| 国产人伦9x9x在线观看| 亚洲,欧美精品.| 国产在线精品亚洲第一网站| 天堂√8在线中文| 高潮久久久久久久久久久不卡| 十八禁网站免费在线| 一级毛片女人18水好多| 综合色av麻豆| 搞女人的毛片| 夜夜爽天天搞| 欧美日韩综合久久久久久 | 成人无遮挡网站| 高潮久久久久久久久久久不卡| 色在线成人网| 亚洲欧美日韩高清专用| 日韩精品中文字幕看吧| 哪里可以看免费的av片| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 成人无遮挡网站| 国产免费男女视频| 国产精品一及| 欧美黑人巨大hd| 男女做爰动态图高潮gif福利片| 精品无人区乱码1区二区| 免费看光身美女| 97碰自拍视频| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美| 男人舔奶头视频| 国产真实乱freesex| 中文亚洲av片在线观看爽| 免费av毛片视频| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| a级毛片在线看网站| 搡老熟女国产l中国老女人| 美女黄网站色视频| 国产成人欧美在线观看| 18禁观看日本| 日本 欧美在线| 一个人看的www免费观看视频| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 色哟哟哟哟哟哟| 91久久精品国产一区二区成人 | 精品免费久久久久久久清纯| 看片在线看免费视频| 久久久成人免费电影| 桃色一区二区三区在线观看| 免费在线观看影片大全网站| 免费人成视频x8x8入口观看| 亚洲最大成人中文| 国产91精品成人一区二区三区| 美女高潮的动态| 亚洲 欧美 日韩 在线 免费| 90打野战视频偷拍视频| 99国产精品99久久久久| 亚洲国产欧洲综合997久久,| 91麻豆av在线| 日韩免费av在线播放| 久久亚洲真实| 国语自产精品视频在线第100页| 88av欧美| 欧美国产日韩亚洲一区| 91字幕亚洲| 757午夜福利合集在线观看| 亚洲美女黄片视频| 一进一出抽搐动态| 麻豆成人av在线观看| 国产精品电影一区二区三区| 久久久久久人人人人人| 亚洲av电影在线进入| 制服人妻中文乱码| 村上凉子中文字幕在线| 给我免费播放毛片高清在线观看| 不卡av一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 99久国产av精品| 男女午夜视频在线观看| 午夜福利在线观看吧| 嫁个100分男人电影在线观看| 欧美大码av| 久久这里只有精品中国| 99久国产av精品| 欧美日本亚洲视频在线播放| e午夜精品久久久久久久| 伊人久久大香线蕉亚洲五| 可以在线观看的亚洲视频| 精品国产亚洲在线| 久久久久国内视频| 一个人看视频在线观看www免费 | 国产精品久久久av美女十八| 18禁裸乳无遮挡免费网站照片| 不卡av一区二区三区| 国产精品日韩av在线免费观看| 国产高清videossex| 美女午夜性视频免费| 免费在线观看成人毛片| 亚洲一区二区三区色噜噜| 一区福利在线观看| 国产精品亚洲av一区麻豆| 成人av一区二区三区在线看| 99riav亚洲国产免费| 熟妇人妻久久中文字幕3abv| 亚洲精品粉嫩美女一区| 国产精品 欧美亚洲| 亚洲乱码一区二区免费版| 麻豆国产av国片精品| 国产视频一区二区在线看| 18禁美女被吸乳视频| 熟妇人妻久久中文字幕3abv| 精品久久久久久久毛片微露脸| 人人妻人人看人人澡| a级毛片a级免费在线| 色综合婷婷激情| 99国产精品一区二区蜜桃av| 人妻夜夜爽99麻豆av| 两人在一起打扑克的视频| 九九久久精品国产亚洲av麻豆 | 日韩欧美一区二区三区在线观看| 国产激情偷乱视频一区二区| 欧美日韩乱码在线| 成年女人看的毛片在线观看| 日本黄色片子视频| 18禁国产床啪视频网站| 成人精品一区二区免费| 亚洲狠狠婷婷综合久久图片| 老司机在亚洲福利影院| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 国产aⅴ精品一区二区三区波| 久久久久久国产a免费观看| 757午夜福利合集在线观看| 两性夫妻黄色片| 亚洲乱码一区二区免费版| 天堂影院成人在线观看| 亚洲狠狠婷婷综合久久图片| 又紧又爽又黄一区二区| 国产美女午夜福利| 久久精品夜夜夜夜夜久久蜜豆| 啦啦啦韩国在线观看视频| 91av网站免费观看| 亚洲精品在线美女| www国产在线视频色| 久久久久久久久久黄片| 国产亚洲精品av在线| 免费看十八禁软件| av天堂在线播放| 久久草成人影院| 丰满人妻一区二区三区视频av | 日韩精品中文字幕看吧| 精品一区二区三区视频在线 | 国产高清有码在线观看视频| 国产99白浆流出| 久久精品国产99精品国产亚洲性色| 精品乱码久久久久久99久播| 亚洲专区字幕在线| 俺也久久电影网| 日本与韩国留学比较| 最近最新中文字幕大全电影3| 亚洲真实伦在线观看| 国产欧美日韩一区二区精品| 夜夜看夜夜爽夜夜摸| 亚洲七黄色美女视频| 手机成人av网站| 欧美成人性av电影在线观看| 在线国产一区二区在线| 久久中文字幕人妻熟女| 搡老熟女国产l中国老女人| 久久精品综合一区二区三区| 国产精品野战在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av中文字字幕乱码综合| 久久久久久大精品| 日日摸夜夜添夜夜添小说| 老汉色av国产亚洲站长工具| 在线播放国产精品三级| 精品国产三级普通话版| 国产久久久一区二区三区| 美女黄网站色视频| 精品一区二区三区av网在线观看| 美女黄网站色视频| 国内精品久久久久精免费| 国产成人福利小说| 精品国内亚洲2022精品成人| 老汉色av国产亚洲站长工具| 一级毛片高清免费大全| 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| 午夜福利在线观看免费完整高清在 | 日韩精品青青久久久久久| 一进一出抽搐动态| 久久欧美精品欧美久久欧美| 国产亚洲精品久久久com| 一进一出抽搐gif免费好疼| 亚洲人与动物交配视频| 午夜视频精品福利| 亚洲一区高清亚洲精品| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看亚洲国产| 亚洲美女黄片视频| 亚洲第一电影网av| 天堂√8在线中文| 成人一区二区视频在线观看| 成年女人永久免费观看视频| 小蜜桃在线观看免费完整版高清| 国产精品女同一区二区软件 | 一二三四在线观看免费中文在| 日本一二三区视频观看| 悠悠久久av| 18禁黄网站禁片午夜丰满| 亚洲自拍偷在线| 成人三级做爰电影| 他把我摸到了高潮在线观看| 免费观看精品视频网站| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 中亚洲国语对白在线视频| 麻豆久久精品国产亚洲av| 免费在线观看成人毛片| 国产男靠女视频免费网站| 97超级碰碰碰精品色视频在线观看| www日本黄色视频网| 观看免费一级毛片| 国产精品九九99| 国产高清videossex| 国产午夜精品久久久久久| 国产精品99久久久久久久久| 亚洲精品中文字幕一二三四区| 国产精品一区二区三区四区免费观看 | 特级一级黄色大片| 亚洲成av人片免费观看|