劉鈺豪 徐永馳 陳泓潔
摘 要:水力壓裂過(guò)程中涉及到眾多固液兩相流問(wèn)題,如使用壓裂液將支撐劑輸送至地層、壓裂液返排時(shí)對(duì)支撐劑的攜帶等。由于目前使用的支撐劑密度多大于壓裂液密度,支撐劑在隨壓裂液運(yùn)動(dòng)的同時(shí)會(huì)發(fā)生沉降。支撐劑在壓裂液中的沉降速度直接關(guān)系到現(xiàn)場(chǎng)的工藝設(shè)計(jì),因此有必要對(duì)支撐劑沉降進(jìn)行深入研究。目前煤層氣壓裂主要為清水壓裂。針對(duì)清水壓裂,對(duì)常用支撐劑沉降模型的計(jì)算值與實(shí)驗(yàn)數(shù)據(jù)進(jìn)行對(duì)比,最終優(yōu)選出與實(shí)際符合最好的支撐劑沉降模型。
關(guān) 鍵 詞:支撐劑;沉降模型;煤層氣
中圖分類號(hào):TE 357 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1671-0460(2015)06-1253-04
Comparison and Selection of Proppant Settling Models in the CBM Fracturing
LIU Yu-hao1,2, XU Yong-chi3, CHEN Hong-jie4
(1. Sichuan Key Laboratory of Oil/Gas Field Applied Chemistry,Chengdu,Sichuan 610051, China;
2. Downhole Service Company Chuanqing Drilling Engineering Co.,Ltd.,CNPC,Chengdu,Sichuan 610051, China;
3. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu Sichuan 610500, China;
4. Dagang Oilfield Company The First Oil Prouction Plant,Dagang,Tianjin 300280, China)
Abstract: There exist a lot of issues about solid-liquid two-phase flow in hydraulic fracturing, such as fracturing fluid transporting proppants to the fomation or carrying them out while flowback. Proppant settling always occurs because its density is higher than fracturing fluid, and the settling velocity directly relates to the process design. Therefore, it is necessary to study the settlement of proppants. Currently, water fracturing has been widely used in coalbed methane. In this paper, calculated values of each model were compared with experimental data, the best model was selected ultimately.
Key words: proppant; settling model; coalbed methane
我國(guó)埋深2 000 m以淺煤層氣地質(zhì)資源量約36.81×1012m3,居世界第三位。對(duì)煤層氣進(jìn)行科學(xué)合理的開(kāi)發(fā),具有極大的重要性。我國(guó)絕大多數(shù)煤層具有滲透率低、地層壓力低的特點(diǎn),水力壓裂改造技術(shù)是目前煤層氣開(kāi)采的主要增產(chǎn)措施之一。
目前煤層氣壓裂中常用清水壓裂液,本文結(jié)合實(shí)際,對(duì)球形固體顆粒在牛頓流體中的沉降模型進(jìn)行對(duì)比和分析,并與國(guó)外實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比較,尋找最適合的支撐劑沉降模型。
1 支撐劑在牛頓流體中自由沉降機(jī)理[1]
在牛頓流體中,一定質(zhì)量的顆粒受到重力、浮力和阻力的作用,會(huì)以一定的速度沉降。
(1)
其中:
(2)
(3)
式中:F—重力、浮力和阻力的合力,N;
m—顆粒質(zhì)量,kg;
ρp—支撐劑密度, kg/m3;
ρ—壓裂液密度,kg/m3;
CD—沉降阻力系數(shù);
A—垂直于沉降方向的顆粒面積,m2;
ut—支撐劑沉降速度,m/s;
ap—支撐劑顆粒直徑,m。
根據(jù)運(yùn)動(dòng)方程可知:
(4)
將(4)代入(1)后,整理得:
(5)
當(dāng)支撐劑以勻速(dut/dt=0)沉降時(shí),可得單個(gè)顆粒在牛頓流體中的沉降速度公式為:
(6)
由上式可知,對(duì)于支撐劑沉降速度的計(jì)算關(guān)鍵在于沉降阻力系數(shù)CD的計(jì)算。
2 阻力系數(shù)模型
2.1 Stokes模型與Oseen模型
(1)Stokes模型 [2]:Stokes在阻力公式的推導(dǎo)過(guò)程中,忽略了基本方程中慣性項(xiàng)的零階近似解,得到:
(7)
式中:Re——雷諾數(shù),無(wú)因次。
該方程適用范圍為:Re<1。
(2)Oseen模型:Oseen將速度場(chǎng)假設(shè)成無(wú)窮遠(yuǎn)處的均勻流場(chǎng)與擾動(dòng)流場(chǎng)疊加。由于求解過(guò)程中保留了慣性項(xiàng)的主要部分,它在整個(gè)流場(chǎng)中與實(shí)際情況符合程度高于Stokes模型,但其求解過(guò)程比Stokes模型更難。