戎松魁
人民教育出版社2014年出版的義務(wù)教育教科書六年級(jí)《數(shù)學(xué)》中有兩個(gè)習(xí)題值得探討。
習(xí)題一 “參賽作品共有125幅,一等獎(jiǎng)6幅,二等獎(jiǎng)?wù)紖①愖髌返?6%,三等獎(jiǎng)的數(shù)量比二等獎(jiǎng)的數(shù)量多4%。提出用百分?jǐn)?shù)解決的問題,并進(jìn)行解答?!保昙?jí)上冊(cè)第93頁練習(xí)19的第10題)
根據(jù)題中所給條件,容易算得二等獎(jiǎng)的數(shù)量為20幅,又根據(jù)“三等獎(jiǎng)的數(shù)量比二等獎(jiǎng)的數(shù)量多4%”,可以得到算式20×(1+4%)=20.8(幅),就是說三等獎(jiǎng)的數(shù)量是20.8幅。顯然,獲獎(jiǎng)作品數(shù)量應(yīng)當(dāng)是整數(shù)幅,不可能是20.8幅,可見這個(gè)習(xí)題出了問題。究其原因,主要問題是出在“4%”這個(gè)數(shù)據(jù)上。一般來說,舉辦一次書法作品或美術(shù)作品比賽,在獲獎(jiǎng)數(shù)量分配上,三等獎(jiǎng)的數(shù)量不可能只比二等獎(jiǎng)數(shù)量多4%。如果我們將“4%”改成“80%”(或更大一點(diǎn)的百分?jǐn)?shù)),則可得到三等獎(jiǎng)的數(shù)量是36幅(或更多一點(diǎn)),不會(huì)出現(xiàn)“三等獎(jiǎng)作品是20.8幅”的尷尬。與教科書配套的《教師教學(xué)用書》在該題的“編寫意圖”中指出,要使學(xué)生“進(jìn)一步提高解決百分?jǐn)?shù)實(shí)際問題的能力”。那就首先要使提出的問題與實(shí)際生活情況基本相符,然而該題所給出的條件與實(shí)際情況完全不相符合,因此難以提高學(xué)生解決實(shí)際問題的能力。
如果說習(xí)題中的問題是教材編寫者的粗心所致,那么與教材配套的《教師教學(xué)用書》第175頁上所寫的“編寫意圖”更是令人費(fèi)解。“編寫意圖”中指出:“第10題,讓學(xué)生根據(jù)相關(guān)信息,提出用百分?jǐn)?shù)解決的問題。既可以培養(yǎng)學(xué)生選擇合適的條件提出問題的能力,又可以回顧之前所學(xué)的相關(guān)的百分?jǐn)?shù)知識(shí),理清數(shù)量之間的關(guān)系,進(jìn)一步提高解決百分?jǐn)?shù)實(shí)際問題的能力。例如,一等獎(jiǎng)?wù)紖①愖髌返陌俜种畮祝慷泉?jiǎng)和三等獎(jiǎng)分別有多少幅?二等獎(jiǎng)比三等獎(jiǎng)多百分之幾?一等獎(jiǎng)比二等獎(jiǎng)、三等獎(jiǎng)分別多百分之幾?獲獎(jiǎng)的作品占參賽作品的百分之幾?”
根據(jù)已知條件已經(jīng)知道一等獎(jiǎng)6幅,由計(jì)算得出二等獎(jiǎng)20幅,三等獎(jiǎng)20.8幅,在這種情況下,怎么能求出“二等獎(jiǎng)比三等獎(jiǎng)多百分之幾”呢?又怎么能求出“一等獎(jiǎng)比二等獎(jiǎng)、三等獎(jiǎng)分別多百分之幾”呢?在教材中出現(xiàn)這樣的問題真的令人難以相信。
習(xí)題二 ?“甲、乙兩個(gè)足球隊(duì)之間近期的5場(chǎng)比賽成績?nèi)缬冶?。如果兩個(gè)隊(duì)現(xiàn)在進(jìn)行一場(chǎng)比賽,請(qǐng)預(yù)測(cè)一下哪個(gè)隊(duì)獲勝的可能性大。為什么?”(六年級(jí)下冊(cè)第99頁練習(xí)21第7題)
該題早在2006年義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》六年級(jí)下冊(cè)第113頁上就出現(xiàn)了。當(dāng)時(shí)與該教材配套的《教師教學(xué)用書》在第165頁上給出了這樣的答案:“從兩隊(duì)的歷史戰(zhàn)績來看,各是兩勝一平兩負(fù),不相上下;從這一點(diǎn)來判斷,兩隊(duì)獲勝的可能性都是二分之一。但是,仔細(xì)觀察可以發(fā)現(xiàn):在離比賽最近的兩場(chǎng)比賽中均是乙隊(duì)獲勝,說明最近乙隊(duì)的狀態(tài)好于甲隊(duì),由此可以預(yù)測(cè):乙隊(duì)獲勝的可能性稍大一些。這種判斷也有一定道理。”
筆者曾撰文(發(fā)表在《中小學(xué)數(shù)學(xué)(小學(xué)版)》2014年第12期上)指出,《教師教學(xué)用書》所說的“兩隊(duì)獲勝的可能性都是二分之一”是錯(cuò)誤的,說“乙隊(duì)獲勝的可能性稍大一些”也是不完整的。像這樣的習(xí)題是不宜作為小學(xué)生的練習(xí)的。然而,在2014年人教社出版的義務(wù)教育教科書《數(shù)學(xué)》六年級(jí)下冊(cè)第99頁上又出現(xiàn)了這個(gè)習(xí)題。題目并沒有變,而答案進(jìn)行了修改。在與新課本配套的《教師教學(xué)用書》第205頁的“編寫意圖”中給出了如下的答案:“第7題,答案不唯一,只要理由相對(duì)合理即可。從兩隊(duì)的歷史戰(zhàn)績來看,各是兩勝一平兩負(fù),不相上下,兩隊(duì)獲勝的可能性差不多;從進(jìn)球數(shù)看,在所有比賽中,甲隊(duì)比乙隊(duì)多進(jìn)一球,甲隊(duì)進(jìn)球能力有可能會(huì)比乙隊(duì)強(qiáng)些,甲隊(duì)獲勝的可能性大一些;但是,仔細(xì)觀察可以發(fā)現(xiàn),最近的兩場(chǎng)比賽中均是乙隊(duì)獲勝,而且進(jìn)球數(shù)也增加了,說明最近乙隊(duì)的狀態(tài)好于甲隊(duì),因此預(yù)測(cè)乙隊(duì)獲勝的可能性稍大一些?!?/p>
“編寫意圖”指出該題的“答案不唯一”,這里似乎給出了3個(gè)答案。為了敘述方便,把答案進(jìn)行編號(hào)。答案1:兩隊(duì)獲勝的可能性差不多。答案2:甲隊(duì)獲勝的可能性大一些。答案3:乙隊(duì)獲勝的可能性稍大一些。由于在每個(gè)答案前都給出了“相對(duì)合理”的理由,因此“編寫意圖”中認(rèn)為這三個(gè)答案都是對(duì)的。
此題果真有這樣三個(gè)答案嗎?值得探討。
首先我們來分析答案2和答案3。
如果甲同學(xué)如“編寫意圖”中所說的那樣對(duì)比賽情況作了分析,然后回答:“甲隊(duì)獲勝的可能性大?!辈糠纸處熅蜁?huì)按“編寫意圖”所說,認(rèn)為他分析得有理,給予“答案正確”的評(píng)價(jià)。
而乙同學(xué)如果也如“編寫意圖”中所說的那樣對(duì)比賽情況作了分析,然后回答:“乙隊(duì)獲勝的可能性稍大一些?!蓖瑯訒?huì)獲得“答案正確”的評(píng)價(jià)。這樣一來,從不同的角度進(jìn)行分析,可以得出完全不同的答案,這兩個(gè)答案都正確嗎?
事實(shí)上,甲同學(xué)在分析中看到甲隊(duì)的有利條件,而沒有看到乙隊(duì)的有利條件,分析問題并不全面,因而得到的結(jié)論并不可靠。同理,乙同學(xué)只看到乙隊(duì)的有利條件,沒有看到甲隊(duì)的有利條件,得到的結(jié)論也不可靠,而且兩位同學(xué)都沒有考慮到甲、乙兩隊(duì)獲勝的可能性可能相等的情況。因此,這兩個(gè)答案都不能說是正確的答案。
我們?cè)賮砜疾齑鸢?:“兩隊(duì)獲勝的可能性差不多?!边@里并沒有回答哪一隊(duì)獲勝的可能性大,而是使用了“差不多”這一模糊的概念來給出答案。“差不多”與“差得多”并無明確的界線,這里“獲勝的可能性差不多”是什么意思呢?似乎囊括了“甲隊(duì)獲勝的可能性比乙隊(duì)大”“乙隊(duì)獲勝的可能性比甲隊(duì)大”“甲、乙兩隊(duì)獲勝的可能性相同”這些情況,如果這樣,答案1也包含了答案2和答案3。因此,“編寫意圖”中說“答案不唯一”,并給出了這樣三個(gè)答案是不妥的。值得注意的是,在答案2中說“甲隊(duì)獲勝的可能性大一些”,而在答案3中說“乙隊(duì)獲勝的可能性稍大一些”,這里分別用“大一些”和“稍大一些”表示比較結(jié)果。這樣的差別是怎么得到的呢?
事實(shí)上,“編寫意圖”中對(duì)5場(chǎng)比賽情況的分析還是有可取之處的。但不能把分析的結(jié)果割裂開來當(dāng)作該題的三個(gè)答案。如果我們把分析的結(jié)果“綜合”起來就會(huì)發(fā)現(xiàn):僅僅根據(jù)甲、乙兩隊(duì)前面5場(chǎng)這樣的比賽結(jié)果,我們無法正確預(yù)測(cè)“下一場(chǎng)比賽哪個(gè)隊(duì)獲勝的可能性大”。
足球比賽的情況比較復(fù)雜,各隊(duì)上場(chǎng)隊(duì)員隨時(shí)可以調(diào)整,連比賽場(chǎng)地(主場(chǎng)、客場(chǎng))都會(huì)影響比賽結(jié)果。足球場(chǎng)上的情況也可以說是瞬息萬變的。特別是對(duì)于兩個(gè)實(shí)力相當(dāng)?shù)那蜿?duì)來說,如果僅僅根據(jù)前5場(chǎng)比賽結(jié)果,要預(yù)測(cè)下一場(chǎng)比賽哪一個(gè)隊(duì)獲勝的可能性大,并要說出“為什么”,真的不是一件容易的事。從《教師教學(xué)用書》對(duì)該題答案的修改可以看出,有些教師也難以給出該題的正確答案,為什么要小學(xué)生來解這樣的題呢?如果我們對(duì)學(xué)生各種不同的預(yù)測(cè)都給予肯定的評(píng)價(jià),那將不利于培養(yǎng)學(xué)生全面分析問題的能力。為此,筆者再次建議,像這樣的習(xí)題應(yīng)該從小學(xué)數(shù)學(xué)課本中刪去。
(杭州師范大學(xué)教育學(xué)院 ? 311100)