• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice?

    2019-08-06 02:06:16XinLi李欣RongYu俞榕andQimiaoSi
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李欣

    Xin Li(李欣), Rong Yu(俞榕), and Qimiao Si

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices,

    Renmin University of China,Beijing 100872,China

    4Department of Physics&Astronomy,Rice Center for Quantum Materials,Rice University,Houston,Texas 77005,USA

    Keywords: heavy fermion system,Kondo insulator,spin-orbit coupling

    1. Introduction

    Exploring novel quantum phases and the associated phase transitions in systems with strong electron correlations is a major subject of contemporary condensed matter physics.[1-3]In this context, heavy fermion (HF) compounds play a crucial role.[3-7]In these materials, the coexisted itinerant electrons and local magnetic moments (from localized f electrons) interact via the antiferromagnetic exchange coupling, resulting in the famous Kondo effect.[8]Meanwhile, the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, namely the exchange coupling among the local moments mediated by the itinerant electrons, competes with the Kondo effect.[9]This competition gives rise to a rich phase diagram with an antiferromagnetic (AFM) quantum critical point (QCP) and various emergent phases nearby.[3,10]

    In the HF metals,experiments[11,12]have provided strong evidence for local quantum criticality,[13,14]which is characterized by the beyond-Landau physics of Kondo destruction at the AFM QCP. Across this local QCP, the Fermi surface jumps from large in the paramagnetic HF liquid phase to small in the AFM phase with Kondo destruction. A natural question arises: how does this local QCP connect to the conventional spin density wave(SDW)QCP described by the Hertz-Millis theory?[15,16]A proposed global phase diagram[17-20]makes this connection via the tuning of the quantum fluctuations in the local-moment magnetism. Besides the HF metals,it is also interesting to know whether a similar global phase diagram can be realized in Kondo insulators(KIs),where the chemical potential is inside the Kondo hybridization gap when the electron filling is commensurate. The KIs are band insulators where the band gap originates from nontrivial strong electron-correlation effects. A Kondo-destruction transition is expected to accompany the closure of the band gap. The question that remains open is: do the local moments immediately order or do they form a different type of magnetic state,such as spin liquid or valence bond solid(VBS),when the Kondodestruction takes place?

    Recent years have seen extensive studies about the effect of a fine spin-orbit coupling(SOC)on the electronic bands.In topological insulators(TIs),the bulk band gap opens due to a non-zero SOC,and there exist gapless surface states.The nontrivial topology of the band structure is protected by the time reversal symmetry(TRS).Even for a system with broken TRS,the conservation of combination of TRS and translational symmetry can give rise to a topological antiferromagnetic insulator(T-AFMI).[21]In general,these TIs and TAFIs can be tuned to topologically trivial insulators via topological quantum phase transitions. But how the strong electron correlations influence the properties of these symmetry dictated topological phases and the related phase transitions is still under active discussion.

    The SOC also has important effects in HF materials.[20]For example, the SOC can produce a topologically nontrivial band structure and induce exotic Kondo physics.[22,23]It may give rise to a topological Kondo insulator(TKI),[24]which has been invoked to understand the resistivity plateau of the heavyfermion SmB6at low temperatures.[25]

    From a more general perspective, the SOC provides an additional tuning parameter enriching the global phase diagram of the HF systems.[20,26]Whether and how the topological nontrivial quantum phases can emerge in this phase diagram is a timely issue. Recent studies have advanced a Weyl-Kondo semimetal phase.[27]The new heavy fermion compound Ce3Bi4Pd3displays thermodynamic[28]and zerofield Hall transport[29]properties that provide evidence for the salient features of the Weyl-Kondo semimetal. These measurements probe the linearly dispersing electronic excitations with a velocity that is renormalized by several orders of magnitude and singularities in the Berry-curvature distribution.

    Theoretical studies are also of interest for a Kondo lattice model defined on a honeycomb lattice,[30]which readily accommodates the SOC.[31]In the diluted carrier limit, this model supports a nontrivial Dirac-Kondo semimetal(DKSM)phase,which can be tuned to a TKI by increasing the SOC.[32]In Ref. [30], it was shown that, at half-filling, increasing the Kondo coupling induces a direct transition from a TI to a KI.A related model,with the conduction-electron part of the Hamiltonian described by a Haldane model[33]on the honeycomb lattice,was subsequently studied.[34]

    Here we investigate the global phase diagram of a spinorbit-coupled Kondo lattice model on the honeycomb lattice at half-filling. We show that the competing interactions in this model give rise to a very rich phase diagram containing a TI,a KI, and two AFM phases. We focus on discussing the influence of magnetic frustration on the phase diagram. In the TI,the local moments develop a VBS order. In the two AFM phases, the moments are ordered, respectively, in the plane of the honeycomb lattice(denoted as AFMxy)and perpendicular to the plane (AFMz). Particularly in the AFMzphase,the conduction electrons may have a topologically nontrivial band structure, although the TRS is explicitly broken. This T-AFMzstate connects to the trivial AFMzphase via a topological phase transition as the SOC is reduced.

    The remainder of the paper is organized as follows. We start by introducing the model and our theoretical procedure in Section 2. In Section 3,we discuss the magnetic phase diagram of the Heisenberg model for the local moments.Next,we obtain the global phase diagram of the full model in Section 4.In Section 5,we examine the nature of the conduction-electron band structures in the AFM states,with a focus on their topological characters. We discuss the implications of our results in Section 6.

    2. Model and method

    The model that we consider here is defined on an effective double-layer honeycomb lattice. The top layer contains conduction electrons realizing the Kane-Mele Hamiltonian.[31]The conduction electrons are Kondo coupled(i.e.,via AF exchange coupling JK)to the localized magnetic moments in the bottom layer. The local moments interact among themselves through direct exchange interaction,as well as the conduction electron mediated RKKY interaction; the interactions are described by a simple J1-J2model. Both the conduction bands and the localized bands are half-filled. This Kondo-lattice Hamiltonian takes the following form on the honeycomb lattice:

    We use the spinon representation for Si, i.e., rewriting Si= f?iσσσσ′fiσ′along with the constraint ∑σf?iσfiσ= 1,where f?iσis the spinon operator. The constraint is enforced by introducing the Lagrange multiplier term ∑iλi(∑σf?iσfiσ-1)in the Hamiltonian. To study both the non-magnetic and magnetic phases, We decouple the Heisenberg Hamiltonian into two channels

    Here x is a parameter that is introduced in keeping with the generalized procedure of Hubbard-Stratonovich decouplings and will be fixed to conveniently describe the effect of quantum fluctuations. The corresponding valence bond(VB)parameter Qijand sublattice magnetization Miare Qij=〈∑αf?iαfjα〉 and Mi= 〈Si〉, respectively. Throughout this paper, we consider the two-site unit cell, thus excluding any states that break the lattice translation symmetry. Under this construction, there are three independent VB mean fields Qi,i = 1,2,3 for the NN bonds and six independent VB mean fields Qi, i=4,5,...,9 for the NNN bonds, which are illustrated in Fig.1.We consider only AFM exchange interactions,J1>0 and J2>0, and will thus only take into account AFM order with M =Mi∈A=-Mi∈B.

    Fig.1.(a),(b)Definition of nearest neighboring and next nearest neighboring valence bond mean fields Qij. Filled and empty circles denote the two sublattices A and B,respectively. Different bond directions are labeled by different colors. (c) First Brilluion zone corresponds to the two-sublattice unit cell.

    To take into account the Kondo hybridization and the possible magnetic order on an equal footing,we follow the treatment of the Heisenberg interaction as outlined in Eq. (2) and decouple the Kondo interaction as follows:

    Here we have introduced the mean-field parameter for the Kondo hybridization,, and the conduction electron magnetization mi=〈si〉. For nonzero b,the conduction electrons will Kondo hybridize with the local moments and the system at half-filling is a KI.On the other hand,when b is zero and M is nonzero, magnetization (m/=0) on the conduction electron band will be induced by the Kondo coupling,and various AFM orders can be stabilized depending on the strength of the SOC.Just like the parameter x in Eq.(2)is chosen so that a saddle-point treatment captures the quantum fluctuations in the form of spin-singlet bond parameters,[19]the parameter y will be specified according to the criterion that the treatment at the same level describes the quantum fluctuations in the form of Kondo-insulator state.

    3. Phase diagram of the Heisenberg model for the local moments

    Because of the complexity of the full Hamiltonian, we start by setting JK=0 and discuss the possible ground-state phases of the J1-J2Heisenberg model for the local moments.By treating the problem at the saddle-point level in Eq.(2),we obtain the phase diagram in the x-J2/J1plane shown in Fig.2.Here,the x-dependence is studied in the same spirit as that for the Shastry-Sutherland lattice in Ref. [19]. In the parameter regime explored, an AFM ordered phase (labeled as “AFM”in the figure)and a valence bond solid(VBS)phase are stabilized. The AF order stabilized is the two-sublattice N′eel order on the honeycomb lattice, and the VBS order refers to covering of dimer singlets with |Qi|=Q/=0 for one out of the three NN bonds(e.g.,Q1/=0,Q2=Q3=0)and|Qi|=0 for all the NNN bonds. This VBS state spontaneously breaks the C3rotational symmetry of the lattice. We thus define the order parameter for the VBS state to be Q=|∑j=1,2,3Qjei(2πj/3)|.

    In Fig. 3, we plot the evolution of VBS and AF order parameters Q and M as a function of J2/J1. A direct firstorder transition(signaled by the mid-point of the jump of the order parameters) between these two phases is observed for x 0.6. For the sake of understanding the global phase diagram of the full Kondo-Heisenberg model, we limit our discussion to J2/J1<1, where only the NN VBS is relevant. A different decoupling scheme approach has been used to study this model,[37]and the obtained results are consistent with ours in the parameter regime of overlap. To fix the parameter x,we compare our results with those about the J1-J2model derived from previous numerical studies. DMRG studies[38]found that the AFM state is stabilized for J2/J1<0.22, and VBS exists for J2/J1>0.35, while in between the nature of the ground states is still under debate. In this parameter regime,the DMRG calculations suggest a plaquette resonating valence bond(RVB)state,[38]while other methods implicate possibly spin liquids.[39]In light of these numerical results, we take x=0.4 in our calculations. This leads to a direct transition from AFM to VBS at J2/J1?0.27,close to the values of phase boundaries of these two phases determined by other numerical methods.

    Fig. 2. Ground-state phase diagram of the J1-J2 Hamiltonian for the local moments in the x-J2/J1 plane. A NN VBS and an AFM state are stabilized in the parameter regime shown.

    Fig. 3. Evolution of (a) the VBS order parameter Q and (b) the AFM order parameter M as a function of J2/J1 for x=0.3,0.4,0.5.

    4. Global phase diagram of the Kondo-lattice model

    We now turn to the global phase diagram of the full model by turning on the Kondo coupling. For definiteness, we set J1=1 and consider t =1 and λso=0.4. As prescribed in the previous section, we take x=0.4. Similar considerations for y require that its value allows for quantum fluctuations in the form of Kondo-singlet formation. This has guided us to take y=0.7 (see below). The corresponding phase diagram as a function of JKand the frustration parameter J2/J1is shown in Fig.4.

    In our calculation, the phase boundaries are determined by sweeping JKwhile along multiple horizontal cuts for several fixed J2/J1values, as shown in Fig. 5. For small JKand large J2/J1, the local moments and the conduction electrons are still effectively decoupled. The conduction electrons form a TI for finite SOC, and the local moments are in the VBS ground state as discussed in the previous section. When both JKand J2/J1are small, the ground state is AFM. Due to the Kondo coupling, finite magnetization m is induced for the conduction electrons. This opens an SDW gap in the conduction band, and therefore the ground state of the system is an AFM insulator. The SOC couples the rotational symmetry in the spin space to the one in the real space. As a consequence, the ordered moments in the AFM phase can be either along the z direction (AFMz)or in the x-y plane (AFMxy). For finite SOC, these two AFM states with different energies, which can be tuned by JK. As shown in the phase diagram, the AFM phase contains two ordered states, the AFMzand AFMxy. They are separated by a spin reorientation transition at JK/J1≈0.8.For the value of SOC taken, the AFM state is topologically nontrivial, and is hence denoted as T-AFMzstate. The nature of this state and the associated topological phase transition is discussed in detail in the next section.

    Fig. 4. Global phase diagram at T =0 from the saddle-point calculations with x=0.4 and y=0.7. The ground states include the valencebond solid (VBS) and Kondo insulator (KI), as well as two antiferromagnetic orders,T-AFMz and AFMxy,as described in Section 5.

    Fig. 5. Evolution of parameters (a) b, (b) Q, (c) Mx, and (d) Mz as a function of JK for different ratios of J2/J1.

    For sufficiently large JK, the Kondo hybridization b is nonzero (see Fig. 5(a)), and the ground state is a KI. Note that for finite SOC, this KI does not have a topological nontrivial edge state, as a consequence of the topological no-go theorem.[30,40,41]In our calculation at the saddle-point level,the KI exists for y ≥0.6; this provides the basis for taking y=0.7,as noted earlier. Going beyond the saddle-point level,the dynamical effects of the Kondo coupling will appear,and we will expect the KI phase to arise for other choices of y.

    Several remarks are in order. The phase diagram,Fig.4,has a similar profile of the global phase diagram for the Kondo insulating systems.[26,42]However, the presence of SOC has enriched the phase diagram. In the AF state,the ordered moment may lie either within the plane or be perpendicular to it. These two states have very different topological properties.We now turn to a detailed discussion of this last point.

    5. Topological properties of the AFM states

    In this section, we discuss the properties of the AFMxyand AFMzstates,in particular to address their topological nature. For a clear discussion, we fix t =1, J1=1, and J2=0.Since the Kondo hybridization is not essential to the nature of the AFM states, in this section we simply the discussion by setting y=0.

    We start by defining the order parameters of the two states

    Note that for the AFMxystate,we set My=my=0 without losing generality. In Fig.6, we plot the evolution of these AFM order parameters with JKfor a representative value of SOC λso=0.1. Due to the large J1value we take, the sublattice magnetizations of the local moments are already saturated to 0.5. Therefore, at the saddle-point level, they serve as effective (staggered) magnetic fields to the conduction electrons.The Kondo coupling then induces finite sublattice magnetizations for the conduction electrons, and they increase linearly with JKfor small JKvalues. But mxis generically different from mz,which is important for the stabilization of the states.

    Fig. 6. The conduction electron magnetization for the AFMxy and AFMz states at λso=0.1.

    We then discuss the energy competition between the AFMxyand AFMzstates. The conduction electron part of the mean-field Hamiltonian reads

    with

    for the AFMxystate and

    for the AFMzstate. Here=t1(1+e-ik·a1+e-ik·a2),∈?(k)is the complex conjugate of ∈(k), and a1=are the primitive vectors. For both states,the eigenvalues are doubly degenerate

    The eigenenergies of the spinon band can be obtained in a similar way

    The expression of the total energy for either state is then

    The first line of the above expression comes from filling the bands up to the Fermi energy(which is fixed to be zero here).The second line is the constant term in the mean-field decomposition. The factor 2 in the k summation is to take into account the double degeneracy of the energies. Nkrefers to the number of k points in the first Brillouin zone.

    By comparing the expressions of Ec-(k)in Eqs.(11)and(12),we find that adding a small Mxis to increase the size of the gap at both of the two(inequivalent)Dirac points,thereby pushing the states further away from the Fermi-energy. While adding a small Mzis to enlarge the gap at one Dirac point but reduce the gap size at the other one.Therefore,an AFMxystate is more favorable than the AFMzstate in lowering the energy of the conduction electrons ∑kEc-(k).

    Meanwhile, from Eqs.(13)-(15), we see that the overall effect of adding a magnetization of the conduction band, m,is to increase the total energy Etot(the main energy increase comes from the 2JK(M·m)term). Because|mz|<|mx|from the self consistent solution,as shown in Fig.6,the energy increase of the AFMzstate is smaller than that in the AFMxystate.

    Fig.7. Energy difference between AFMz and AFMxy states as a function of JK for various values of spin-orbital coupling λso.

    With increasing JK,the two effects from the magnetic orders compete,resulting in different magnetic ground states as shown in Fig.4. This analysis is further supported by our selfconsistent mean-field calculation. In Fig. 7, we plot the energy difference between these two states ΔE =Exy-Ezas a function of JKat several λsovalues. In the absence of SOC,the model has the spin SU(2) symmetry, and the AFMzand AFMxystates are degenerate with ΔE =0. For finite λso, at small JKvalues,the energy gain from the ∑kEc-(k)term dominates, ΔE >0, and the ground state is an AFMzstate. With increasing JK, the contribution from the 2JK(M ·m) term is more important. ΔE crosses zero to be negative, and the AFMxystate is eventually energetically favorable for large JK.

    Next we discuss the topological nature of the AFMzand AFMxystates. In the absence of Kondo coupling JK,the conduction electrons form a TI, which is protected by the TRS.There, the left- and right-moving edge states connecting the conduction and valence bands are respectively coupled to up and down spin flavors (eigenstates of the Szoperator) as the consequence of SOC,and these two spin polarized edge states do not mix.

    Once the TRS is broken by the AFM order, generically,topologically nontrivial edge states are no longer guaranteed.However,in the AFMzstate,the structure of the Hamiltonian for the conduction electrons is the same as that in a TI. This is clearly shown in Eq. (10) the effect of magnetic order is only to shift Λ(k)to Λ(k)+JKMz/2. In particular,the spinup and spin-down sectors still do not mix with each other.Therefore, the two spin polarized edge states are still well defined as in the TI, and the system is topologically nontrivial,though without the protection of TRS.Note that the above analysis is based on assuming JKMz?Λ(k),where the bulk gap between the conduction and valence bands is finite. Forthe bulk gap closes at one of the inequivalent Dirac points and the system is driven to a topologically trivial phase via a topological phase transition.[30]We also note that a similar AFMzstate arises in a Kondo lattice model without SOC but with a Haldane coupling,as analyzed in Ref.[34].

    For the AFMxystate,we can examine the Hamiltonian for the conduction electrons in a similar way.As shown in Eq.(9),the transverse magnetic order Mxmixes the spin-up and spindown sectors. As a result, a finite hybridization gap opens between the two edge states,making the system topologically trivial.

    To support this analysis, we perform calculations of the energy spectra of the conduction electrons in the AFMzand AFMxystates, as shown in Eqs. (9) and (10), on a finite slab of size Lx×Ly, with Lx=200 and Ly=40. The boundary condition is chosen to be periodic along the x direction and open and zig-zag-type along the y direction. In Fig. 8, we show the energy spectra with three different sets of parameters:(a) λso=0.01, JK=0.4, Mz=0.5, (b) λso=0.1, JK=0.4,Mz=0.5, and (c) λso=0.1, JK=0.8, Mx=0.5, which respectively correspond to the topologically trivial AFMzstate,topological AFMzinsulator,and AFMxystate.As clearly seen,the gapless edge states only exist for parameter set(b),where the system is in the topological AFMzstate. Note that in this state,the spectrum is asymmetric with respect to the Brilluion zone boundary (kx= π), reflecting the explicit breaking of TRS. Based on our analysis and numerical calculations, we construct a phase diagram(as shown in Fig.9)to illustrate the competition of these AFM states.As expected,the AFMzstate is stabilized for,and is topological for JK<123λso(above the red line).

    Fig.8. Energy spectra of(a)the trivial AFMz state,(b)the topological AFMz insulator, and (c) the AFMxy state from finite slab calculations.Black lines denote the bulk states and red lines denote the edge states.The topological AFMz state is characterized by the gapless edge states.See text for detailed information on the parameters.

    Fig.9. Phase diagram in the λso-JK plane showing the competition of various AFM states. The red line denotes a topological phase transition between the topological trivial and topological nontrivial AFMz states,and the black curve gives the boundary between the AFMz and AFMxy states. These two states become equivalent in the limit of λso →0.

    6. Discussion

    We have discussed the properties of various phases in the ground-state phase diagram of the spin-orbit-coupled Kondo lattice model on the honeycomb lattice at half filling. We have shown how the competition of SOC,Kondo interaction,and magnetic frustration stabilizes these phases. For example,in the AFM phase the moments can order either along the z-direction or within the x-y plane. In our model, the AFM order is driven by the RKKY interaction,and the competition of SOC and Kondo interaction dictates the direction of the ordered magnetic moments.

    Throughout this work, we have discussed the phase diagram of the model at half filling. The phase diagram away from half-filling is also an interesting problem. We expect that the competition between the AFMzand AFMxystates persist at generic fillings, but the topological feature will not. Another interesting filling would be the dilute-carrier limit,where a DKSM exists, and can be tuned to a TKI by increasing the SOC.[32]

    In this work, we have considered a particular type of SOC, which is inherent in the band structure of the itinerant electrons. In real materials,there are also SOC terms that involve the magnetic ions. Such couplings will lead to models beyond the current work, and may further enrich the global phase diagram.

    Although the model in this work is defined on the honeycomb lattice, our conclusion on the global phase diagram is quite general, and will be important in understanding the nature of the transition between the Kondo insulating phase and the antiferromagnetic phase in real materials. For example, the Kondo insulator compound SmB6undergoes a magnetic transition under pressure.[44]The Kondo-insulatorto-antiferromagnet transition may also be realized by doping CeNiSn with Pt or Pd ions since both CePtSn and CePdSn are antiferromagnetic at low temperatures.[44-46]Nontrivial topological properties in the antiferromagnetic phase are expected given that the 5d electrons of CePtSn may contain a large SOC.Moreover, because the Kane-Mele model describes the electron states in graphene,our model may also shed light on the properties of graphene with 5d adatoms.[47]

    7. Conclusion

    We have investigated the ground state phase diagram of a spin-orbit coupled Kondo lattice model at half-filling. The combination of SOC,Kondo and RKKY interactions produces various quantum phases,including a Kondo insulator,a topological insulator with VBS spin correlations, and two AFM phases. Depending on the strength of SOC,the magnetic moments in the AFM phase can be either ordered perpendicular to or in the x-y plane. We further show that the z-AFM state is topologically nontrivial for strong and moderate SOC, and can be tuned to a topologically trivial one via a topological phase transition by varying either the SOC or the Kondo coupling. Our results shed new light on the global phase diagram of heavy fermion materials.

    Acknowledgment

    We thank W Ding, P Goswami, S E Grefe, H H Lai, Y Liu,S Paschen,J H Pixley,T Xiang,and G M Zhang for useful discussions.

    猜你喜歡
    李欣
    Merging and splitting dynamics between two bright solitons in dipolar Bose–Einstein condensates?
    瘋狂夜飛兔
    為挽回戀情,網(wǎng)上找道士作法
    方圓(2021年21期)2021-11-20 06:35:57
    一口奶
    幼兒圖畫(huà)
    選對(duì)羽絨服, 不再怕冷
    選對(duì)羽絨服,不再怕冷
    愛(ài)你(2019年46期)2019-12-18 02:12:22
    獵頭的秘密
    Study of fluid resonance between two side-by-side floating barges*
    目 光
    亚洲四区av| 97超碰精品成人国产| 久久鲁丝午夜福利片| 日韩人妻高清精品专区| 国产精品国产三级国产av玫瑰| 我要搜黄色片| 日本撒尿小便嘘嘘汇集6| 免费一级毛片在线播放高清视频| 欧美日韩在线观看h| 99久久中文字幕三级久久日本| 青春草亚洲视频在线观看| 国产人妻一区二区三区在| 九九爱精品视频在线观看| 久久久久久久久久成人| 夫妻性生交免费视频一级片| av国产免费在线观看| 久久精品国产亚洲av香蕉五月| 哪里可以看免费的av片| 老司机影院成人| 国产大屁股一区二区在线视频| 人妻制服诱惑在线中文字幕| 久久精品国产自在天天线| 99九九线精品视频在线观看视频| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频| 国产亚洲5aaaaa淫片| 国产成年人精品一区二区| 在线观看午夜福利视频| 久久久久久久久久久丰满| 大香蕉久久网| 九九久久精品国产亚洲av麻豆| 两个人视频免费观看高清| 婷婷色av中文字幕| 日韩成人伦理影院| 2021天堂中文幕一二区在线观| 久久久精品94久久精品| 少妇人妻精品综合一区二区 | 成人特级黄色片久久久久久久| av国产免费在线观看| 日韩成人av中文字幕在线观看| 久久久久性生活片| 日本熟妇午夜| 日韩制服骚丝袜av| 丝袜美腿在线中文| 级片在线观看| 一进一出抽搐gif免费好疼| 亚洲自偷自拍三级| 久久精品夜色国产| 久久久久久久久久成人| 久久婷婷人人爽人人干人人爱| 69av精品久久久久久| 特大巨黑吊av在线直播| 老熟妇乱子伦视频在线观看| 亚洲av男天堂| 国产亚洲精品久久久com| 乱码一卡2卡4卡精品| 国产精品1区2区在线观看.| 国产高清激情床上av| 91久久精品国产一区二区成人| 中出人妻视频一区二区| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 日本av手机在线免费观看| 久久精品久久久久久久性| av在线亚洲专区| 亚洲真实伦在线观看| 青春草亚洲视频在线观看| 久久99热6这里只有精品| 亚洲精华国产精华液的使用体验 | 成人亚洲精品av一区二区| 精品少妇黑人巨大在线播放 | 欧美激情在线99| 亚洲av不卡在线观看| 少妇熟女aⅴ在线视频| 久久国产乱子免费精品| 好男人视频免费观看在线| 亚洲精品乱码久久久v下载方式| 国产精品.久久久| 26uuu在线亚洲综合色| 成人午夜高清在线视频| 老师上课跳d突然被开到最大视频| 成人亚洲欧美一区二区av| 99热网站在线观看| 国产真实乱freesex| 看片在线看免费视频| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美人成| 99久国产av精品| 国内精品一区二区在线观看| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 国产精品久久久久久久电影| 亚洲av成人av| 99热全是精品| 国产精品.久久久| 日韩欧美一区二区三区在线观看| 1024手机看黄色片| 亚洲无线观看免费| 26uuu在线亚洲综合色| 精品久久久久久久末码| 日韩视频在线欧美| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频| 别揉我奶头 嗯啊视频| 国产高清不卡午夜福利| 国国产精品蜜臀av免费| 国产单亲对白刺激| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品,欧美在线| 国内精品宾馆在线| 亚洲国产日韩欧美精品在线观看| 在线观看一区二区三区| 日本欧美国产在线视频| 国产午夜精品一二区理论片| 婷婷色综合大香蕉| 亚洲高清免费不卡视频| 久久久精品大字幕| 欧美日本亚洲视频在线播放| 能在线免费看毛片的网站| 国产色爽女视频免费观看| 人妻夜夜爽99麻豆av| 亚洲精品国产成人久久av| 麻豆av噜噜一区二区三区| 亚洲国产精品合色在线| 在线免费观看的www视频| 麻豆国产av国片精品| 国产精品人妻久久久久久| 美女大奶头视频| 91精品一卡2卡3卡4卡| 黄片无遮挡物在线观看| 春色校园在线视频观看| 亚洲图色成人| 国产久久久一区二区三区| 国产精华一区二区三区| 国产一区二区三区在线臀色熟女| 久久久精品94久久精品| 中文字幕免费在线视频6| av福利片在线观看| 成人特级av手机在线观看| 亚洲成a人片在线一区二区| 九草在线视频观看| 国产男人的电影天堂91| 亚洲精品456在线播放app| 亚洲av二区三区四区| 国产精品免费一区二区三区在线| 久久人人爽人人片av| 黄色一级大片看看| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 日日摸夜夜添夜夜添av毛片| 久久久久久久久大av| 99在线视频只有这里精品首页| 午夜免费男女啪啪视频观看| www.色视频.com| 在线免费十八禁| 欧美+日韩+精品| 国产高清激情床上av| 一本一本综合久久| 国产精品乱码一区二三区的特点| 99热网站在线观看| 在线免费观看不下载黄p国产| 内射极品少妇av片p| 婷婷六月久久综合丁香| 最近的中文字幕免费完整| 内射极品少妇av片p| 国产精品久久久久久精品电影| 毛片女人毛片| 精品少妇黑人巨大在线播放 | 性色avwww在线观看| 看片在线看免费视频| 18禁黄网站禁片免费观看直播| 一本久久中文字幕| 国产成人freesex在线| 国产精品国产三级国产av玫瑰| 午夜激情欧美在线| 国产亚洲精品久久久久久毛片| 床上黄色一级片| 久久久国产成人精品二区| 国产老妇女一区| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 日韩一本色道免费dvd| а√天堂www在线а√下载| 亚洲天堂国产精品一区在线| 欧美日本亚洲视频在线播放| 国产老妇伦熟女老妇高清| 欧美激情国产日韩精品一区| 变态另类丝袜制服| 亚洲久久久久久中文字幕| 国产女主播在线喷水免费视频网站 | 人人妻人人看人人澡| 精品久久久久久久久亚洲| 国产精品嫩草影院av在线观看| 国产亚洲精品av在线| 九九久久精品国产亚洲av麻豆| 能在线免费观看的黄片| 欧美激情久久久久久爽电影| 国产视频首页在线观看| 亚洲在线自拍视频| 看非洲黑人一级黄片| 毛片女人毛片| 免费无遮挡裸体视频| 国产一区二区在线av高清观看| 人妻久久中文字幕网| 永久网站在线| 亚洲婷婷狠狠爱综合网| 欧美日韩国产亚洲二区| 久久精品影院6| 91精品国产九色| 欧美三级亚洲精品| 一区二区三区四区激情视频 | 偷拍熟女少妇极品色| 久久久久久久久久久丰满| 波多野结衣高清无吗| 欧美xxxx黑人xx丫x性爽| 国产午夜精品一二区理论片| 亚洲自偷自拍三级| 久久久久久久久久久丰满| 日韩精品青青久久久久久| 亚洲五月天丁香| 成人欧美大片| 久久精品国产清高在天天线| 热99re8久久精品国产| 亚洲色图av天堂| 中文精品一卡2卡3卡4更新| 欧美3d第一页| 国产爱豆传媒在线观看| 久久久久九九精品影院| 国产精品国产高清国产av| 欧美精品国产亚洲| 色尼玛亚洲综合影院| 午夜福利在线在线| 免费观看的影片在线观看| 日韩国内少妇激情av| 五月玫瑰六月丁香| 尤物成人国产欧美一区二区三区| 亚洲精品日韩av片在线观看| 午夜激情福利司机影院| 12—13女人毛片做爰片一| 久久6这里有精品| 成人一区二区视频在线观看| 久久中文看片网| 免费看日本二区| 国产精品综合久久久久久久免费| 欧美xxxx黑人xx丫x性爽| 尾随美女入室| 日韩三级伦理在线观看| 国产91av在线免费观看| 少妇人妻一区二区三区视频| 亚洲人与动物交配视频| 国产精品一区二区性色av| 99久久无色码亚洲精品果冻| 国产免费男女视频| 色综合站精品国产| 欧美一级a爱片免费观看看| av国产免费在线观看| 国产美女午夜福利| 亚洲中文字幕一区二区三区有码在线看| а√天堂www在线а√下载| 免费一级毛片在线播放高清视频| 精品午夜福利在线看| 欧美另类亚洲清纯唯美| 成人毛片a级毛片在线播放| 男女视频在线观看网站免费| 欧美激情国产日韩精品一区| 乱人视频在线观看| 午夜免费男女啪啪视频观看| 国产精品三级大全| 亚洲av成人精品一区久久| avwww免费| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 国产真实乱freesex| 女同久久另类99精品国产91| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 色哟哟·www| 亚洲天堂国产精品一区在线| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品国产鲁丝片午夜精品| 亚洲乱码一区二区免费版| 1024手机看黄色片| 寂寞人妻少妇视频99o| 中文资源天堂在线| a级毛片a级免费在线| 日韩欧美国产在线观看| 欧美bdsm另类| 成人鲁丝片一二三区免费| 在线观看av片永久免费下载| 在现免费观看毛片| 免费无遮挡裸体视频| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 99热网站在线观看| 极品教师在线视频| 亚洲国产高清在线一区二区三| 亚洲最大成人av| 中文在线观看免费www的网站| 在线天堂最新版资源| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 哪里可以看免费的av片| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| av天堂在线播放| 99在线视频只有这里精品首页| 欧美区成人在线视频| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 又黄又爽又刺激的免费视频.| 最新中文字幕久久久久| 国产91av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一二三区在线看| 天天躁夜夜躁狠狠久久av| 一本一本综合久久| 你懂的网址亚洲精品在线观看 | 高清毛片免费看| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 久久久午夜欧美精品| 国产人妻一区二区三区在| 亚洲中文字幕一区二区三区有码在线看| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 超碰av人人做人人爽久久| 国产在线男女| 噜噜噜噜噜久久久久久91| 久久这里有精品视频免费| 长腿黑丝高跟| 久久人妻av系列| 99热网站在线观看| 国产 一区 欧美 日韩| 99久久精品热视频| 高清在线视频一区二区三区 | 亚洲精品粉嫩美女一区| 99热精品在线国产| 在线免费观看的www视频| 天堂影院成人在线观看| 国产成人91sexporn| 亚洲av不卡在线观看| 97人妻精品一区二区三区麻豆| 少妇熟女欧美另类| 国产亚洲5aaaaa淫片| 一级黄片播放器| 日韩av不卡免费在线播放| 亚洲五月天丁香| 亚洲丝袜综合中文字幕| 欧美区成人在线视频| 久久中文看片网| 久久久国产成人免费| 中文字幕av在线有码专区| 五月伊人婷婷丁香| 亚洲五月天丁香| 亚洲欧美日韩高清在线视频| 91aial.com中文字幕在线观看| 久久午夜福利片| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩高清专用| 亚洲欧美成人精品一区二区| 九九久久精品国产亚洲av麻豆| 成人性生交大片免费视频hd| 两性午夜刺激爽爽歪歪视频在线观看| 亚州av有码| 99久国产av精品| 99久久久亚洲精品蜜臀av| 色播亚洲综合网| 国产精品野战在线观看| 久久久成人免费电影| 可以在线观看的亚洲视频| 成人亚洲欧美一区二区av| 一区二区三区免费毛片| 99视频精品全部免费 在线| 午夜福利在线观看吧| 久久久久久久久久久免费av| 日韩欧美精品免费久久| 日本黄大片高清| 国产精品嫩草影院av在线观看| 亚洲一区二区三区色噜噜| 1024手机看黄色片| 亚洲精品乱码久久久久久按摩| 精品人妻熟女av久视频| 只有这里有精品99| 国产一级毛片在线| 亚洲欧美成人综合另类久久久 | 国产精品一区二区在线观看99 | 久久中文看片网| 十八禁国产超污无遮挡网站| 亚洲av成人av| 国产伦精品一区二区三区四那| 久久久久久久午夜电影| 91精品一卡2卡3卡4卡| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 亚洲av第一区精品v没综合| 成人高潮视频无遮挡免费网站| 99国产精品一区二区蜜桃av| 国产高清不卡午夜福利| 精品欧美国产一区二区三| 国内精品美女久久久久久| 日本欧美国产在线视频| 亚洲精品乱码久久久久久按摩| 欧美色欧美亚洲另类二区| 精品人妻视频免费看| 欧美极品一区二区三区四区| 久久精品国产亚洲av香蕉五月| 中文字幕人妻熟人妻熟丝袜美| 亚洲av免费在线观看| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 午夜免费男女啪啪视频观看| 嫩草影院新地址| 看十八女毛片水多多多| 性色avwww在线观看| 午夜福利在线观看免费完整高清在 | 国产探花极品一区二区| 免费人成视频x8x8入口观看| 全区人妻精品视频| 国产人妻一区二区三区在| 午夜福利在线在线| 成人亚洲精品av一区二区| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| 一边亲一边摸免费视频| 亚洲成av人片在线播放无| 国产黄色小视频在线观看| 伦理电影大哥的女人| 最后的刺客免费高清国语| 国内精品美女久久久久久| 日韩 亚洲 欧美在线| 午夜福利在线在线| 人妻久久中文字幕网| 免费av毛片视频| 黄色欧美视频在线观看| 青春草亚洲视频在线观看| 少妇熟女aⅴ在线视频| 18禁在线无遮挡免费观看视频| 日本-黄色视频高清免费观看| 国产片特级美女逼逼视频| 午夜福利在线在线| 中文字幕免费在线视频6| av免费在线看不卡| 麻豆一二三区av精品| 免费观看人在逋| 久久久久久久久久久免费av| 美女 人体艺术 gogo| av在线观看视频网站免费| 精品日产1卡2卡| 久久婷婷人人爽人人干人人爱| 男女那种视频在线观看| 亚洲最大成人av| 亚洲最大成人中文| 尤物成人国产欧美一区二区三区| 爱豆传媒免费全集在线观看| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 欧美日韩综合久久久久久| 精品欧美国产一区二区三| 久久久午夜欧美精品| 特大巨黑吊av在线直播| 亚洲av免费在线观看| 中文字幕av在线有码专区| 一夜夜www| 国产精品一区二区在线观看99 | 精品久久国产蜜桃| 国产成人freesex在线| 日韩高清综合在线| 久久精品人妻少妇| 欧美另类亚洲清纯唯美| 国产成人精品婷婷| 熟妇人妻久久中文字幕3abv| 一本久久精品| 波多野结衣高清无吗| 一卡2卡三卡四卡精品乱码亚洲| 久久久成人免费电影| 啦啦啦韩国在线观看视频| 免费大片18禁| 熟女电影av网| 久久久久性生活片| 精品一区二区免费观看| 亚洲丝袜综合中文字幕| 亚洲七黄色美女视频| 你懂的网址亚洲精品在线观看 | 久久久久免费精品人妻一区二区| 亚洲高清免费不卡视频| 久久热精品热| 国产91av在线免费观看| 一边亲一边摸免费视频| 天天一区二区日本电影三级| 一本久久精品| av在线观看视频网站免费| 别揉我奶头 嗯啊视频| 九色成人免费人妻av| 久久久久免费精品人妻一区二区| 97热精品久久久久久| 欧美一区二区精品小视频在线| 国产69精品久久久久777片| 久久婷婷人人爽人人干人人爱| 一级毛片aaaaaa免费看小| 国产黄片视频在线免费观看| 女同久久另类99精品国产91| 一级黄片播放器| 婷婷六月久久综合丁香| 免费一级毛片在线播放高清视频| 女人十人毛片免费观看3o分钟| 欧美日韩一区二区视频在线观看视频在线 | 天堂av国产一区二区熟女人妻| 欧美日韩乱码在线| 日本-黄色视频高清免费观看| 国产视频内射| 国产成人91sexporn| 亚洲人成网站在线观看播放| 免费人成视频x8x8入口观看| 午夜福利高清视频| 蜜桃久久精品国产亚洲av| 一边亲一边摸免费视频| www.av在线官网国产| 久久国内精品自在自线图片| 91aial.com中文字幕在线观看| 国产又黄又爽又无遮挡在线| 99九九线精品视频在线观看视频| 九九在线视频观看精品| 精品无人区乱码1区二区| 99久久精品热视频| 免费av观看视频| 欧美成人a在线观看| 日韩av不卡免费在线播放| 内地一区二区视频在线| 97在线视频观看| 国语自产精品视频在线第100页| 国产片特级美女逼逼视频| 哪个播放器可以免费观看大片| 亚洲在线观看片| 嫩草影院新地址| 人妻夜夜爽99麻豆av| 特大巨黑吊av在线直播| 亚洲精品粉嫩美女一区| 国产黄片美女视频| 午夜激情福利司机影院| 亚洲av.av天堂| av在线亚洲专区| 午夜福利视频1000在线观看| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 日本爱情动作片www.在线观看| av在线蜜桃| 中出人妻视频一区二区| 一边亲一边摸免费视频| 白带黄色成豆腐渣| 熟女人妻精品中文字幕| 日韩精品有码人妻一区| 国产在线男女| 最后的刺客免费高清国语| 人人妻人人澡欧美一区二区| 国产在线精品亚洲第一网站| 免费观看人在逋| 国产精品一区二区性色av| 欧美极品一区二区三区四区| 久久精品综合一区二区三区| 一级黄色大片毛片| 日本黄色片子视频| 亚洲熟妇中文字幕五十中出| 婷婷亚洲欧美| 国产中年淑女户外野战色| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 欧美色视频一区免费| 久久精品国产自在天天线| a级一级毛片免费在线观看| 久久午夜福利片| 日本与韩国留学比较| 国产色爽女视频免费观看| 亚洲七黄色美女视频| 22中文网久久字幕| 精品久久久久久久久久久久久| 激情 狠狠 欧美| 国产亚洲精品久久久久久毛片| 又爽又黄无遮挡网站| 变态另类丝袜制服| 欧美最新免费一区二区三区| 麻豆av噜噜一区二区三区| 波多野结衣高清作品| 少妇熟女aⅴ在线视频| 国产麻豆成人av免费视频| 美女国产视频在线观看| 欧美+日韩+精品| 国产精品久久久久久精品电影小说 | 免费不卡的大黄色大毛片视频在线观看 | 成年免费大片在线观看| 高清日韩中文字幕在线| 天天一区二区日本电影三级| 最近2019中文字幕mv第一页| 久久久成人免费电影| 国产免费男女视频| 精品人妻熟女av久视频| 国产精品久久久久久精品电影| 久久久久久久久久成人| 能在线免费观看的黄片| 亚洲av男天堂| 亚洲欧美日韩东京热| 亚洲成人久久爱视频| 色吧在线观看| 国产成人freesex在线| 午夜激情欧美在线| 国产精品人妻久久久影院| 国产黄片美女视频| 欧美丝袜亚洲另类| 亚洲av免费在线观看| 看十八女毛片水多多多| 美女高潮的动态| 久久久久久国产a免费观看|