• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Video-based vehicle tracking considering occlusion

    2015-05-08 03:34:18ZhuZhouLuXiaobo
    關(guān)鍵詞:子塊東南大學(xué)馬爾可夫

    Zhu Zhou Lu Xiaobo

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2School of Automation, Southeast University, Nanjing 210096, China)(3Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education,Southeast University, Nanjing 210096, China)

    ?

    Video-based vehicle tracking considering occlusion

    Zhu Zhou1,3Lu Xiaobo2,3

    (1School of Transportation, Southeast University, Nanjing 210096, China)(2School of Automation, Southeast University, Nanjing 210096, China)(3Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education,Southeast University, Nanjing 210096, China)

    To track the vehicles under occlusion, a vehicle tracking algorithm based on blocks is proposed. The target vehicle is divided into several blocks of uniform size, in which the edge block can overlap its neighboring blocks. All the blocks’ motion vectors are estimated, and the noise motion vectors are detected and adjusted to decrease the error of motion vector estimation. Then, by moving the blocks based on the adjusted motion vectors, the vehicle is tracked. Aiming at the occlusion between vehicles, a Markov random field is established to describe the relationship between the blocks in the blocked regions. The neighborhood of blocks is defined using the Euclidean distance. An energy function is defined based on the blocks’ histograms and optimized by the simulated annealing algorithm to segment the occlusion region. Experimental results demonstrate that the proposed algorithm can track vehicles under occlusion accurately.

    vehicle tracking; occlusion processing; motion vector; Markov random field

    With the development of the economy, more cameras have been installed on roads to monitor the traffic. How to make the most out of videos to gather traffic information is a problem. In theory, video-based vehicle tracking technology can automatically collect traffic information such as traffic volume, speed, density and traffic incidents[1], so it has received much attention in recent years.

    The main challenge of video-based vehicle tracking is to track vehicles effectively in complicated environments such as the occlusion phenomenon between vehicles, during changing illumination and so on[2-4]. There are several object tracking algorithms considering the occlusion. Harguess et al.[5-6]tracked objects under occlusion using binocular video, but these binocular vision methods are unsuitable for practical applications. In the field of monocular vision, Zhang et al.[7]segmented the occlusion region in a geometrical way and when the outline of vehicles is unbroken, it works well. In addition, the weighted histogram is integrated with a mean shift[8-11]or a particle filter[12-13]to track objects under occlusion. In general, they can effectively track the objects whose size changes little, but in the traffic scene, the vehicle’s scale may undergo a large change. It is difficult for these algorithms to update the size of the tracking window adaptively. In Ref.[14], Kamijo et al. presented a block-based vehicle tracking method and used the Markov random field to segment the occlusion region. This method can process occlusion and adapt to the change of vehicle’s size simultaneously. However, it also has limitations. First, when a vehicle is close to but not occluded by another vehicle, it may be considered to be mistakenly occluded by the latter in tracking. Secondly, it fails to segment the vehicles whose motion vectors are similar. Furthermore,the two negative factors may appear simultaneously to make the tracking unsuccessful.

    To deal with the above problems, a novel vehicle tracking algorithm is proposed. First, the target vehicle is divided in a different way to reduce the influence of its neighboring vehicle. Then, the block’s histogram is used to define the Markov random field’s energy function and make the occlusion segmentation insensitive to the vehicles’ motion vectors. Experimental results demonstrate the effectiveness of the proposed method.

    1 Regular Block-Based Vehicle Tracking Method

    In Kamijo’s vehicle tracking method, the image is divided into regular blocks, each of which consists of 8×8 pixels and has a single label. All of the blocks’ labels constitute a label map, and vehicle tracking is equivalent to updating the label map continually.

    Lnis the label map of then-th image. When the (n+1)-th image comes, the motion vectors of the vehicle’s blocks are estimated. In them, the most frequent one is considered as the vehicle’s motion vector, and based on it, the vehicle’s blocks inLnare moved to new places. Then, the moved blocks are expanded as candidate blocks whose labels will be checked next. If the difference between intensities at a candidate block and those at the background image is greater than the threshold value, the block’s label is set to be the vehicle’s label, or else to be 0. After checking the candidate blocks, a new label mapLn+1can be obtained.

    (a)

    (b)

    (c)

    When a vehicle occludes another vehicle, the labels of the blocks in the occlusion region needs to be optimized. Each block’s label is a discrete random variable and the combination of all block’s labels is assumed to be a Markov random field. To blockykin the occlusion region, its label is optimized by minimizing the energy functionU(yk) defined in Ref.[14]. IfU(O1)≤U(O2), then blockykis considered to belong to vehicleO1or else belongs to vehicleO2.

    (a)

    (b)

    2 Novel Block-Based Vehicle Tracking Method

    2.1 Vehicle division

    The method in Ref.[14] divides the whole image and the vehicle simultaneously into several blocks, whereas the proposed method only divides the vehicle into blocks, each of which consists ofN×Npixels.Nis chosen according to the vehicles’ resolutions. When the vehicles contain more pixels,Nis set to be larger and vice versa. Because the vehicle’s length and width are not always the integral multiples ofNpixels, the blocks on the vehicle’s edge may overlap with its adjacent blocks. The two ways of division are compared in Fig.3.

    (a)

    (b)

    Fig.3 Two ways of division. (a) The division in Ref.[14]; (b) The proposed division (N=11)

    2.2 Detection and adjustment of noise motion vectors

    After division, all the blocks’ motion vectors are estimated as shown in Fig.4(a). To avoid the expansion of blocks described in Section 1, the proposed method moves each block based on its own motion vector, but some motion vectors may be incorrect. So, it is necessary to detect and adjust noise motion vectors before moving the blocks.

    (a)

    (b)

    It is observed that the differences between the noise motion vector and its surrounding motion vectors are relatively large while the difference between the normal motion vector and its surrounding motion vectors are relatively small. Based on the smoothness of the motion vectors’ spatial distribution, the noise motion vectors are detected and adjusted as below.

    Viis the motion vector of blockBi, and the neighborhood ofBiis defined as

    (1)

    where dis(Bi,Bj) is the distance betweenBiandBj.

    (2)

    2.3 Blocks moving

    After the adjustment of motion vectors, each block is moved using its own motion vector. If two moved blocks have the same coordinates, one of them is deleted from the set of blocks to reduce computational time. Finally, the rest of blocks constitute the vehicle’s new location in the current frame.

    Since we only divide the vehicle into a group of blocks and the moved blocks can be located at any position in the image, it is unnecessary to expand the moved blocks as described in Section 1. It means that the vehicle will be influenced little by its neighboring vehicle in tracking. The first shortcoming of the method in Ref.[14] has been avoided until now.

    2.4 Occlusion segmentation

    In the proposed algorithm, each vehicle’s position is represented by the minimum rectangle which contains all the blocks belonging to the vehicle. If a rectangle overlaps another rectangle, one vehicle is considered to occlude another. The overlapping region is defined as the occlusion region, and occlusion segmentation is equivalent to determining the labels of the blocks in the occlusion region. It is assumed that each block’s label is a discrete random variable whose distribution relies only on the distribution of its neighborhood, and all the blocks’ labels compose a Markov random field. The neighborhood is defined as

    (3)

    Fig.5 The neighborhood of block i

    Based on the above assumption, the occlusion segmentation is equivalent to maximizing the probabilityP(Z/Q), whereZis the combination of labels andQis the current image. According to the Bayes rule, the optimal combination of labelsZ*is

    Z*=argmax(P(Q/Z)P(Z))

    (4)

    The Hammersley-Clifford theorem proves that a Markov random filed can be expressed by a Gibbs distribution. So, we can obtain

    (5)

    (6)

    whereM1andM2are the normalization constants.

    Eq.(4) is equivalent toZ*=argmin(U(Q/Z)+U(Z)), and the energy functionU(Z) is defined as

    (7)

    (8)

    wherec={zi,zj} is a clique andCis the set of cliques.

    We assume that the distance between the histogram of blockiand that of the non-occlusion region has the same label which follows that Gaussian distribution. So the energy functionU(Q/Z) can be defined as

    (9)

    wherehi,hOiare the color histograms of blockiand the non-occlusion region of vehicleOi(The number of each histogram’s bins is 64(43)). If the label of blockiisO1,Oi=O1; otherwise,Oi=O2.ui=0, andσiis estimated empirically.

    The minimization of the energy function is a combinatorial optimization problem. We use the simulated annealing algorithm[15]to minimize it. Finally, the labelsZ*are given to the corresponding blocks and the occlusion region is segmented.

    Fig.6 shows an example of occlusion segmentation. In Fig.6(a), the black blocks constitute the occlusion region, and in Fig.6(b) they are segmented accurately by minimizing the energy function.

    (a)

    (b)

    Fig.6 Occlusion segmentation. (a) Before segmentation; (b) After segmentation

    It can be seen from Eqs.(7) to (9) that using the spatial color information instead of the motion vector to segment the occlusion region, the proposed method is insensitive to the motion vectors of vehicles in occlusion.

    3 Experiments

    To demonstrate the effectiveness of the proposed method, we apply it and the method in Ref.[14] to two traffic videos and define the tracking error of two adjacent vehicles as

    (10)

    In the first video, no occlusion occurred but a couple of vehicles were close to each other. The tracking results are shown in Fig.7. Due to the closeness, they were connected together and a false occlusion was created by the method in Ref.[14]. By contrast, they were still separated and tracked well by the proposed method.

    (a)

    (b)

    In the second video, there are 19 pairs of vehicles in occlusion. If the tracking error exceeds 20 pixels, we consider it a failed tracking. As a result, the method in Ref.[14] and the proposed method can respectively track 14 and 17 pairs of vehicles. Three pairs of vehicles cannot be tracked well by the method in Ref.[14] because of their similar motion vectors; and two pairs of vehicles cannot be tracked by both methods because the occlusions occur at the beginning of tracking and the vehicles’ initial locations are difficult to obtain. Fig.8 shows the tracking results of a pair of vehicles which have similar motion vectors.V1andV2are motion vectors of the upper vehicle

    (a)

    (b)

    and the lower vehicle, respectively, and in the tracking, the distance between them is less than 4 pixels. In the left images,V1={-2,-4} andV2={-3,-6}. In the middle images,V1={-2,-4} andV2={-3,-5}. In the right images,V1={-1,-3} andV2={-2,-4}.

    The tracking errors of two pairs of vehicles are shown in Fig.9 and Fig.10, respectively. The above experiments demonstrated that the proposed method can track vehicles under occlusion more accurately than the method in Ref.[14].

    Fig.9 Tracking errors of the first couple of vehicles

    Fig.10 Tracking errors of the second couple of vehicles

    4 Conclusion

    In this paper, a novel vehicle tracking algorithm based on blocks is proposed. The vehicle is divided into a group of blocks, in which the edge block can overlap its neighboring block. The advantage of this division method is that the target vehicle is influenced little by its neighboring vehicle in tracking. Then the noise motion vectors of blocks are detected and adjusted. Based on the adjusted motion vectors, the blocks are moved to update the vehicle’s location. When a vehicle is occluded by another vehicle, we establish a Markov random field to segment the occlusion region. In the Markov random field, the neighborhood system is defined using the Euclidean distance and the energy function is built based on the block’s histogram rather than the vehicle’s motion vector. This allows vehicles under occlusion which have similar motion vectors to also be segmented accurately. Experimental results demonstrate the effectiveness of the proposed method.

    [1]Mallikarjuna C, Phanindra A, Ramachandra K R. Traffic data collection under mixed traffic conditions sing video image processing[J].JournalofTransportationEngineering, 2009, 135(4): 174-182.

    [2]Hu W M, Tan T N, Wang L, et al. A survey on visual surveillance of object motion and behaviors[J].IEEETransactionsonSystems,Man,andCybernetics:ApplicationsandReviews, 2004, 34(3): 334-352.

    [3]Hou Z Q, Han C Z. A survey of visual tracking [J].ActaAutomaticaSinica, 2006, 32(4): 603-617.

    [4]Yilmaz A, Javad O, Shah M. Object tracking: a survey[J].ACMComputingSurveys, 2006, 38(4) :1-45.

    [5]Harguess J, Hu C B, Aggarwal J K. Occlusion robust multi-camera face tracking[C]//Proceedingsofthe2011IEEEComputerSocietyConferenceonComputerVisionandPatternRecognitionWorkshops. Colorado Springs, CO, USA, 2011: 31-38.

    [6]Qian Z, King N N. Segmentation and tracking multiple objects under occlusion from multi-view video[J].IEEETransactionsonImageProcessing, 2011, 20(11): 3308-3313.

    [7]Zhang W, Wu Q M J, Yang X K, et al. Multilevel framework to detect and handle vehicle occlusion[J].IEEETransactionsonIntelligentTransportationSystems, 2008, 9(1): 161-174.

    [8]Li Z, Tang Q L, Sang N. Improved mean shift algorithm for occlusion pedestrian tracking[J].ElectronicsLetters, 2008, 44(10): 622-623.

    [9]Yan J, Wu M Y. Anti-occlusion tracking algorithm based on mean shift and fragments[J].OpticsandPrecisionEngineering, 2010, 18(6): 1413-1419.

    [10]Panahi R, Gholampour I, Jamzad M. Real time occlusion handling using Kalman filter and mean-shift[C]//The8thIranianConferenceonMachineVisionandImageProcessing. Zanjan, Iran, 2013: 320-323.

    [11]Khan B, Khan A K, Raja G, et al. Implementation of modified mean-shift tracking algorithm for occlusion handling[J].LifeScienceJournal, 2013, 10(11): 337-342.

    [12]Wang Z W, Yang X K, et al. Camshift guided particle filter for visual tracking[J].PatternRecognitionLetters, 2009, 30(4): 407-413.

    [13]Abramson H, Avidan S. Tracking through scattered occlusion[C]//Proceedingsofthe2011IEEEComputerSocietyConferenceonComputerVisionandPatternRecognitionWorkshops. Colorado Springs, CO, USA, 2011: 1-8.

    [14]Kamijo S, Sakauchi M. Segmentation of vehicles and pedestrians in traffic scene by spatio-temporal Markov random field model [C]//Proceedingsofthe21stInternationalConferenceonDataEngineeringWorkshops. Tokyo, Japan, 2005: 1-8.

    [15]Tang L S, Xie Y, You S Y.Non-numericparallelalgorithm-simulatedannealingalgorithm[M].Beijing: Science Press, 2000:22-55. (in Chinese)

    考慮遮擋的視頻車輛跟蹤

    朱 周1,3路小波2,3

    (1東南大學(xué)交通學(xué)院,南京 210096)

    (2東南大學(xué)自動化學(xué)院,南京 210096)

    (3東南大學(xué)復(fù)雜工程系統(tǒng)測量與控制教育部重點實驗室,南京 210096)

    為了對遮擋情況下的運動車輛進(jìn)行跟蹤,提出一種基于分塊的車輛跟蹤算法.該算法將目標(biāo)車輛以可重疊的方式劃分為若干大小一致的子塊.在分塊的基礎(chǔ)上估計所有子塊的運動矢量,檢測噪聲運動矢量并進(jìn)行調(diào)整,以減少運動矢量估計的誤差,然后對子塊進(jìn)行移位以實現(xiàn)車輛跟蹤.為了處理車輛間的遮擋現(xiàn)象建立了馬爾可夫隨機場描述子塊之間的關(guān)系,利用歐氏距離定義塊的鄰域,并基于塊的直方圖構(gòu)建能量函數(shù),最后利用模擬退火法對能量函數(shù)進(jìn)行優(yōu)化,以對遮擋區(qū)域進(jìn)行分割.實驗結(jié)果表明,該算法能夠?qū)φ趽踯囕v進(jìn)行準(zhǔn)確跟蹤.

    車輛跟蹤;遮擋處理;運動矢量;馬爾可夫隨機場

    U491.1

    Foundation item:The National Natural Science Foundation of China (No.60972001, 61374194).

    :.Zhu Zhou, Lu Xiaobo. Video-based vehicle tracking considering occlusion[J].Journal of Southeast University (English Edition),2015,31(2):266-271.

    10.3969/j.issn.1003-7985.2015.02.019

    10.3969/j.issn.1003-7985.2015.02.019

    Received 2014-10-18.

    Biographies:Zhu Zhou(1984—), male, graduate; Lu Xiaobo(corresponding author), male, doctor, professor, xblu@seu.edu.cn.

    猜你喜歡
    子塊東南大學(xué)馬爾可夫
    基于八叉樹的地震數(shù)據(jù)多級緩存方法
    基于八叉樹的地震數(shù)據(jù)分布式存儲方法研究
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    基于特征值算法的圖像Copy-Move篡改的被動取證方案
    基于波浪式矩陣置換的稀疏度均衡分塊壓縮感知算法
    保費隨機且?guī)в屑t利支付的復(fù)合馬爾可夫二項模型
    基于SOP的核電廠操縱員監(jiān)視過程馬爾可夫模型
    亚洲第一电影网av| 在线观看免费视频日本深夜| 麻豆成人午夜福利视频| 亚洲av第一区精品v没综合| 男女视频在线观看网站免费| 一夜夜www| 久久久精品欧美日韩精品| 在线免费观看的www视频| 久久婷婷人人爽人人干人人爱| 精品乱码久久久久久99久播| 国产不卡一卡二| 他把我摸到了高潮在线观看| 99久久精品热视频| av中文乱码字幕在线| 日韩欧美在线乱码| 99精品在免费线老司机午夜| 国产精品久久久久久久久免| 欧美黑人巨大hd| 俄罗斯特黄特色一大片| 日本精品一区二区三区蜜桃| 欧美日本亚洲视频在线播放| 国产精品自产拍在线观看55亚洲| 日韩欧美 国产精品| 精品一区二区三区视频在线观看免费| 一级黄色大片毛片| 成人美女网站在线观看视频| 成人av在线播放网站| а√天堂www在线а√下载| 搡女人真爽免费视频火全软件 | 国产精品av视频在线免费观看| 国产精品综合久久久久久久免费| 又粗又爽又猛毛片免费看| 国产精品久久久久久久电影| 欧美精品啪啪一区二区三区| 男女那种视频在线观看| 极品教师在线视频| 亚洲欧美激情综合另类| 高清毛片免费观看视频网站| 国产av不卡久久| 亚洲18禁久久av| 国内揄拍国产精品人妻在线| 精品人妻1区二区| 精品一区二区三区人妻视频| 国产老妇女一区| 特级一级黄色大片| 乱码一卡2卡4卡精品| 国产真实乱freesex| 国产精品自产拍在线观看55亚洲| 国产精品一及| 亚洲av中文av极速乱 | av国产免费在线观看| 日韩一本色道免费dvd| 免费观看在线日韩| 老司机深夜福利视频在线观看| 亚洲三级黄色毛片| 又爽又黄a免费视频| 国产精品一区二区免费欧美| 午夜精品一区二区三区免费看| 91精品国产九色| 亚洲欧美清纯卡通| 欧美zozozo另类| 一区二区三区免费毛片| 制服丝袜大香蕉在线| 变态另类丝袜制服| 国产69精品久久久久777片| 日韩精品有码人妻一区| 日本与韩国留学比较| 午夜福利在线在线| 国产午夜精品久久久久久一区二区三区 | 婷婷亚洲欧美| 国产精品1区2区在线观看.| av专区在线播放| 亚洲不卡免费看| 成人二区视频| 一本一本综合久久| 男女视频在线观看网站免费| 免费搜索国产男女视频| 97热精品久久久久久| 少妇人妻精品综合一区二区 | 狂野欧美白嫩少妇大欣赏| 久9热在线精品视频| 99在线视频只有这里精品首页| a在线观看视频网站| 欧美日韩乱码在线| 国产高清视频在线观看网站| www.色视频.com| 欧美bdsm另类| 国产一区二区三区av在线 | 狂野欧美激情性xxxx在线观看| 日韩欧美精品v在线| 日本免费一区二区三区高清不卡| 特级一级黄色大片| 成人一区二区视频在线观看| 真实男女啪啪啪动态图| 久久99热6这里只有精品| 一本一本综合久久| 久久国内精品自在自线图片| 在现免费观看毛片| 成年人黄色毛片网站| 午夜免费激情av| 桃红色精品国产亚洲av| 亚洲最大成人手机在线| 在现免费观看毛片| 国产精品嫩草影院av在线观看 | 亚洲最大成人手机在线| 久久久色成人| 久久久国产成人免费| 午夜福利在线观看吧| 一夜夜www| 日韩高清综合在线| 亚洲av一区综合| 嫩草影院精品99| 欧美精品国产亚洲| 国产高清激情床上av| 国产蜜桃级精品一区二区三区| 日本-黄色视频高清免费观看| 成人国产综合亚洲| 91狼人影院| 中出人妻视频一区二区| 中国美女看黄片| 免费搜索国产男女视频| 国产高清有码在线观看视频| 一区二区三区四区激情视频 | 中文字幕高清在线视频| 精品人妻偷拍中文字幕| 亚洲成人中文字幕在线播放| 久久精品国产清高在天天线| 亚洲熟妇熟女久久| 淫秽高清视频在线观看| 我要搜黄色片| 女人十人毛片免费观看3o分钟| 岛国在线免费视频观看| 欧美在线一区亚洲| videossex国产| 成人鲁丝片一二三区免费| 蜜桃久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 99热这里只有是精品50| 精品久久久久久久人妻蜜臀av| 免费av观看视频| 老熟妇乱子伦视频在线观看| 免费无遮挡裸体视频| 免费av不卡在线播放| 国产高清不卡午夜福利| av福利片在线观看| 在线天堂最新版资源| 我的老师免费观看完整版| 97碰自拍视频| 亚洲欧美日韩无卡精品| 亚洲真实伦在线观看| 日本 av在线| 色综合亚洲欧美另类图片| 国产精品免费一区二区三区在线| 美女高潮喷水抽搐中文字幕| 男女之事视频高清在线观看| 亚洲成人久久爱视频| 一级av片app| 亚洲国产精品久久男人天堂| 成人亚洲精品av一区二区| 色尼玛亚洲综合影院| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线播| 极品教师在线视频| 国产人妻一区二区三区在| 精品一区二区三区视频在线| 国产日本99.免费观看| 成熟少妇高潮喷水视频| 国产在线精品亚洲第一网站| 午夜免费男女啪啪视频观看 | 久久国内精品自在自线图片| 国产美女午夜福利| 91麻豆av在线| 国产精品永久免费网站| 久久久久久久久久久丰满 | 麻豆av噜噜一区二区三区| 国产精品伦人一区二区| 色av中文字幕| 欧美一级a爱片免费观看看| 亚洲欧美日韩东京热| 亚洲成人免费电影在线观看| 老熟妇仑乱视频hdxx| 婷婷色综合大香蕉| 黄色女人牲交| 久久中文看片网| 欧美一区二区国产精品久久精品| 国产黄色小视频在线观看| 给我免费播放毛片高清在线观看| 中出人妻视频一区二区| 亚洲avbb在线观看| 国产色婷婷99| 午夜视频国产福利| 少妇高潮的动态图| 国产精品综合久久久久久久免费| 久久热精品热| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲精品色激情综合| 天堂√8在线中文| 中文字幕熟女人妻在线| 欧美黑人巨大hd| 亚洲最大成人手机在线| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 国产精品一区二区三区四区免费观看 | 一边摸一边抽搐一进一小说| 能在线免费观看的黄片| 色视频www国产| 亚洲av电影不卡..在线观看| 又爽又黄a免费视频| 看片在线看免费视频| 老司机深夜福利视频在线观看| 永久网站在线| 波多野结衣高清无吗| 国产伦精品一区二区三区视频9| 淫秽高清视频在线观看| 中亚洲国语对白在线视频| 国产美女午夜福利| 国产综合懂色| 在线观看舔阴道视频| 亚洲电影在线观看av| 国产精品无大码| 男女边吃奶边做爰视频| 嫁个100分男人电影在线观看| 两人在一起打扑克的视频| 日本一本二区三区精品| 又黄又爽又免费观看的视频| 自拍偷自拍亚洲精品老妇| 精品久久国产蜜桃| 啪啪无遮挡十八禁网站| 桃色一区二区三区在线观看| 高清在线国产一区| 99热精品在线国产| 成人国产综合亚洲| 男女啪啪激烈高潮av片| 国产一区二区在线观看日韩| 国产一区二区亚洲精品在线观看| 精品免费久久久久久久清纯| 好男人在线观看高清免费视频| 欧美另类亚洲清纯唯美| 成人永久免费在线观看视频| 1000部很黄的大片| 国产精品国产三级国产av玫瑰| 制服丝袜大香蕉在线| 国产真实乱freesex| 日韩欧美在线二视频| 老司机深夜福利视频在线观看| 男人舔奶头视频| 亚洲av成人av| 在线观看免费视频日本深夜| 精品人妻1区二区| 91在线观看av| 此物有八面人人有两片| 国国产精品蜜臀av免费| 国产成人aa在线观看| 亚洲图色成人| 精品福利观看| 亚洲欧美日韩无卡精品| 香蕉av资源在线| 日本成人三级电影网站| 国产 一区精品| 国产高清有码在线观看视频| 久久精品国产亚洲av天美| 在线播放无遮挡| 神马国产精品三级电影在线观看| 深夜a级毛片| 又紧又爽又黄一区二区| 日本 av在线| 夜夜爽天天搞| 欧洲精品卡2卡3卡4卡5卡区| 国产熟女欧美一区二区| 国产高清激情床上av| 亚洲欧美清纯卡通| 天堂网av新在线| 国内少妇人妻偷人精品xxx网站| 黄色视频,在线免费观看| 免费看av在线观看网站| 成人永久免费在线观看视频| 欧美xxxx黑人xx丫x性爽| 一级黄片播放器| 国产亚洲精品综合一区在线观看| 亚洲专区中文字幕在线| 免费看a级黄色片| 超碰av人人做人人爽久久| 日本欧美国产在线视频| 亚洲男人的天堂狠狠| 亚洲无线观看免费| 黄色日韩在线| 日本与韩国留学比较| 国产精品一区二区三区四区久久| 久久久国产成人免费| 午夜视频国产福利| 999久久久精品免费观看国产| 国产精品av视频在线免费观看| а√天堂www在线а√下载| 又爽又黄无遮挡网站| 国产精品不卡视频一区二区| 久久精品人妻少妇| 长腿黑丝高跟| 国产麻豆成人av免费视频| 国产在线精品亚洲第一网站| 久久久久国产精品人妻aⅴ院| 91午夜精品亚洲一区二区三区 | 深爱激情五月婷婷| 乱系列少妇在线播放| 国产在视频线在精品| 黄色日韩在线| 日本 av在线| 69人妻影院| 精品99又大又爽又粗少妇毛片 | 男女下面进入的视频免费午夜| 亚洲狠狠婷婷综合久久图片| 日韩亚洲欧美综合| 精品人妻熟女av久视频| 国产精品永久免费网站| 国产精品国产高清国产av| 亚洲美女黄片视频| 88av欧美| 禁无遮挡网站| 中文字幕久久专区| 国产免费一级a男人的天堂| 色吧在线观看| 国模一区二区三区四区视频| 女人被狂操c到高潮| 日日夜夜操网爽| 国产精品1区2区在线观看.| 久久精品夜夜夜夜夜久久蜜豆| 制服丝袜大香蕉在线| 两人在一起打扑克的视频| 久久国产精品人妻蜜桃| 亚洲av二区三区四区| 久久亚洲精品不卡| 我要搜黄色片| 亚洲av不卡在线观看| 国产黄片美女视频| av在线观看视频网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 日韩人妻高清精品专区| 色哟哟·www| 蜜桃亚洲精品一区二区三区| 在线天堂最新版资源| 最近中文字幕高清免费大全6 | 精品福利观看| 亚洲精品国产成人久久av| 99久久成人亚洲精品观看| 亚洲自拍偷在线| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 精品一区二区免费观看| 51国产日韩欧美| 国产伦一二天堂av在线观看| 久久久久久伊人网av| 成人鲁丝片一二三区免费| 1000部很黄的大片| 久久午夜福利片| 最近最新中文字幕大全电影3| 亚洲精品在线观看二区| videossex国产| 伊人久久精品亚洲午夜| 亚洲国产欧美人成| 老女人水多毛片| 国产 一区精品| 高清毛片免费观看视频网站| 国产高清三级在线| 一进一出抽搐gif免费好疼| av视频在线观看入口| 欧美一级a爱片免费观看看| 久久这里只有精品中国| 韩国av在线不卡| 亚洲国产精品合色在线| 床上黄色一级片| 精品99又大又爽又粗少妇毛片 | 深爱激情五月婷婷| 直男gayav资源| 午夜免费成人在线视频| 毛片女人毛片| 日韩,欧美,国产一区二区三区 | 久久九九热精品免费| 亚洲,欧美,日韩| 国产成人福利小说| 久久精品国产鲁丝片午夜精品 | 热99re8久久精品国产| 搞女人的毛片| 免费电影在线观看免费观看| 成人亚洲精品av一区二区| 波多野结衣高清无吗| 亚洲av免费高清在线观看| 国产毛片a区久久久久| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 午夜影院日韩av| 男女视频在线观看网站免费| 日韩大尺度精品在线看网址| 婷婷色综合大香蕉| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 日韩 亚洲 欧美在线| 在线天堂最新版资源| 成人午夜高清在线视频| 国产精品不卡视频一区二区| 99在线人妻在线中文字幕| 直男gayav资源| 美女大奶头视频| 麻豆国产av国片精品| 国产熟女欧美一区二区| 亚洲无线在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产三级在线视频| 欧美成人a在线观看| 亚洲中文日韩欧美视频| 不卡视频在线观看欧美| 男人舔女人下体高潮全视频| 无人区码免费观看不卡| 亚洲一区二区三区色噜噜| 免费看美女性在线毛片视频| 国产高清三级在线| 最新中文字幕久久久久| 很黄的视频免费| 国产午夜福利久久久久久| 日本a在线网址| 国内精品久久久久精免费| 搡老岳熟女国产| 亚洲成a人片在线一区二区| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 欧美日本视频| 久久热精品热| 亚洲狠狠婷婷综合久久图片| 欧美最黄视频在线播放免费| 国产午夜精品久久久久久一区二区三区 | 日本在线视频免费播放| 亚洲精品在线观看二区| 一本一本综合久久| 欧美日本视频| 深夜精品福利| 亚洲国产精品久久男人天堂| 日韩中字成人| 很黄的视频免费| 老熟妇仑乱视频hdxx| 毛片女人毛片| 国产高清不卡午夜福利| 久久天躁狠狠躁夜夜2o2o| 婷婷精品国产亚洲av| 亚洲国产精品成人综合色| 国产毛片a区久久久久| 亚洲欧美日韩卡通动漫| 成人高潮视频无遮挡免费网站| 免费观看人在逋| 国产精品亚洲美女久久久| 欧美性猛交╳xxx乱大交人| 亚洲国产日韩欧美精品在线观看| 日韩强制内射视频| 在线观看舔阴道视频| 99九九线精品视频在线观看视频| netflix在线观看网站| 舔av片在线| 小蜜桃在线观看免费完整版高清| 久久久久久久午夜电影| 成人欧美大片| 国产精品三级大全| 日日摸夜夜添夜夜添小说| 99热网站在线观看| 亚洲欧美激情综合另类| 成人av一区二区三区在线看| 国产亚洲av嫩草精品影院| 欧美日韩综合久久久久久 | 男女下面进入的视频免费午夜| 国产麻豆成人av免费视频| ponron亚洲| 成人av在线播放网站| 不卡一级毛片| 给我免费播放毛片高清在线观看| 在线天堂最新版资源| 性插视频无遮挡在线免费观看| 99在线视频只有这里精品首页| 亚洲第一电影网av| 搡老熟女国产l中国老女人| 免费高清视频大片| 久久久久久久久久久丰满 | 亚洲美女视频黄频| 免费看av在线观看网站| 国产高潮美女av| 欧美在线一区亚洲| 尾随美女入室| 国产高清视频在线观看网站| 中文字幕免费在线视频6| 欧美又色又爽又黄视频| 久9热在线精品视频| 在线观看免费视频日本深夜| 搡老妇女老女人老熟妇| 小蜜桃在线观看免费完整版高清| 亚洲av免费在线观看| 亚洲久久久久久中文字幕| 国产三级在线视频| 国产淫片久久久久久久久| 国产精品一区二区三区四区免费观看 | 亚洲av成人精品一区久久| 人人妻人人澡欧美一区二区| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 亚洲18禁久久av| 欧美极品一区二区三区四区| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 高清日韩中文字幕在线| 免费看日本二区| 在线观看av片永久免费下载| 日韩欧美精品免费久久| 一个人看的www免费观看视频| 日韩强制内射视频| 又爽又黄a免费视频| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 日韩大尺度精品在线看网址| 在线观看一区二区三区| 三级毛片av免费| 一级黄色大片毛片| 日本爱情动作片www.在线观看 | 又爽又黄无遮挡网站| 22中文网久久字幕| 日本一二三区视频观看| 99久久九九国产精品国产免费| 狂野欧美激情性xxxx在线观看| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| 一进一出抽搐动态| 国产黄片美女视频| 亚洲av第一区精品v没综合| 美女被艹到高潮喷水动态| 久久久久久久久大av| 欧美高清性xxxxhd video| 亚洲成人中文字幕在线播放| 久久99热6这里只有精品| 国产爱豆传媒在线观看| 欧美xxxx黑人xx丫x性爽| 网址你懂的国产日韩在线| 欧美在线一区亚洲| 看十八女毛片水多多多| 天天躁日日操中文字幕| 99久久九九国产精品国产免费| 成人国产一区最新在线观看| 免费人成视频x8x8入口观看| 欧美黑人巨大hd| 免费av观看视频| 最近视频中文字幕2019在线8| 少妇的逼水好多| 99热网站在线观看| 午夜久久久久精精品| 亚洲av免费在线观看| 亚洲欧美日韩高清在线视频| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| 舔av片在线| 免费在线观看成人毛片| 国产精品亚洲一级av第二区| 男人的好看免费观看在线视频| 最近在线观看免费完整版| 中文字幕av成人在线电影| 欧美色欧美亚洲另类二区| av国产免费在线观看| 亚洲av不卡在线观看| 亚洲综合色惰| 国产久久久一区二区三区| 亚洲成人中文字幕在线播放| 一级av片app| 国产蜜桃级精品一区二区三区| 亚洲美女搞黄在线观看 | 久久久久久九九精品二区国产| 免费在线观看成人毛片| 国产极品精品免费视频能看的| 国产精品嫩草影院av在线观看 | 精品久久久久久久久av| 天堂网av新在线| 国国产精品蜜臀av免费| 亚洲午夜理论影院| 最近中文字幕高清免费大全6 | 国产伦精品一区二区三区视频9| 亚洲图色成人| 97超视频在线观看视频| 大又大粗又爽又黄少妇毛片口| a级毛片a级免费在线| 久久精品国产亚洲av涩爱 | 在线天堂最新版资源| 午夜精品久久久久久毛片777| 大型黄色视频在线免费观看| 麻豆av噜噜一区二区三区| 美女免费视频网站| 国产久久久一区二区三区| 色吧在线观看| 99精品在免费线老司机午夜| a级毛片a级免费在线| 国产伦在线观看视频一区| 啪啪无遮挡十八禁网站| 在线天堂最新版资源| 久9热在线精品视频| 午夜福利在线在线| 老司机福利观看| 日日撸夜夜添| 欧美最黄视频在线播放免费| 综合色av麻豆| 看免费成人av毛片| 亚洲精品久久国产高清桃花| 国产免费一级a男人的天堂| x7x7x7水蜜桃| 美女免费视频网站| 国产又黄又爽又无遮挡在线| 成年女人永久免费观看视频| 国产免费男女视频| 香蕉av资源在线| 99在线视频只有这里精品首页|