• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model of limestone calcination/sulfation under oxy-fuel fluidized bed combustion

    2015-05-08 02:32:28WangChunboLiuHongcaiChenLiang
    關(guān)鍵詞:富氧石灰石流化床

    Wang Chunbo Liu Hongcai Chen Liang

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

    ?

    Model of limestone calcination/sulfation under oxy-fuel fluidized bed combustion

    Wang Chunbo Liu Hongcai Chen Liang

    (School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, China)

    The characteristics of the simultaneous calcination/sulfation of limestone under oxy-fuel fluidized bed combustion were studied and compared with those of the sulfation of precalcined CaO. During the calcination stage, SO2can react with product CaO and slow down the CaCO3decomposition rate by the covering effect of the CaSO4product. The sulfation rate of simultaneous calcination/sulfation is slower than that of precalcined CaO, but with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of the precalcined CaO. A grain-micrograin model is established to describe the simultaneous calcination, sintering and sulfation of limestone. The grain-micrograin model can reflect the true reaction process of the calcination and sulfation of limestone in oxy-fuel fluidized bed combustion.

    oxy-fuel; limestone; simultaneous calcination/sulfation; grain-micrograin model

    Under the oxy-fuel fluidized bed combustion conditions, CO2concentration in flue gas can be enriched up to 80% (air-dry basis) or even higher because of recycle gases. Limestone is usually used for controlling SOxemission. Furthermore, it can greatly decrease NOxemissions because there is no N2in the combustion atmosphere. Therefore, oxy-fuel combustion is one of promising new technologies that can integrally control the discharge of pollutants by coal combustion[1-3]. The relationship of limestone decomposition temperature and CO2partial pressure is[4]

    (1)

    Under the condition of 80%CO2, the temperature of the limestone calcined to CaO is 885 ℃, and at the operating temperature (850 ℃) of the conventional CFBB, the sulfation of sorbent is called direct sulfation:

    (2)

    However, when the fuel is petroleum coke or anthracite, the temperature of operation in the furnace is over 900 ℃ and the sulfation occurring in this way is called indirect sulfation:

    CaCO3→CaO+CO2

    (3)

    (4)

    The common experimental method in previous studies concerning reactions (2) and (4) is: First, limestone is calcined to form CaO, and then the sulfation characteristics of CaO are investigated[5-8]. However, under the oxy-fuel CFBB combustion conditions, the CO2concentration in flue gas is high, which will delay the decomposition of limestone, and the limestone will be calcined and sulphated simultaneously.

    In the past decades, many models were established to simulate the process of calcination and sulfation of limestone. The random pore model was established and used for the reaction of CaO and SO2by Bhatia et al.[9-11]and the grain model was founded by Szekely et al[12]. Hartman et al.[13]modified the pore structure. However, most of the sulfation models treat the calcination and sulfation of limestone separately, which is suitable for the sulfation of limestone under the furnace injection conditions due to the high reaction temperature and small particle size causing an instant calcination[14-16]. Yet, they are not appropriate for sulfation in the CFBB when the calcination and sulfation occur simultaneously over a relatively long duration. A combined calcination and sulfation model for reaction of SO2and CaCO3was built[17]to study the calcination and sulfation of limestone integrally under furnace injection conditions, but the applicability of this model to the oxy-fuel CFBB is not clear.

    In this work, a grain-micrograin model was used to simulate the process of simultaneous calcination, sintering and sulfation of limestone under the oxy-fuel CFBB conditions. The calcination and sulfation experiments were carried out in a constant temperature tube furnace which can record sample weight change continuously to study the simultaneous calcination and sulfation reactions and verify the model.

    1 Model for Simultaneous Calcination and Sulfation

    The grain-micrograin model for the simultaneous calcination and sulfation of limestone is presented and the physical schematic is shown in Fig.1. The original limestone particles are assumed to be nonporous as shown in Fig.1(a). CaCO3grains are calcined from outside to inside and CaO micrograins generate around the uncalcined CaCO3grain. Meanwhile, CaO micrograins are sintered and sulfated. The SO2from bulk gas and CO2generated in the decomposition reaction diffuse inside and outside respectively through the pores among CaO micrograins. The CaSO4product layers was generated around the CaO micrograins, as shown in Fig.1(b). The heat transfer resistance was ignored in the particle, so the temperature of the particle is equal to the ambient temperature, and gas diffusion resistance from the surface of the particle to bulk gas is also ignored. Pseudo-steady-state approximation is adopted here. According to the analysis above, the grain-micrograin model is described as follows.

    Fig.1 Grain-micrograin model. (a) The structure of a lomestone grain; (b) A sulfated CaO micrograin

    The calcination reaction rate is assumed to be proportional to the reaction rate constant and reaction surface area, and inversely proportional to the CO2pressure of the reaction area. So the calcination rate of limestone is

    (5)

    wherekcis the reaction rate constant andpeis the CO2equilibrium partial pressure of limestone. CO2generated in the decomposition reaction diffuses outside through the gaps between the CaO micrograins, which can be described by

    (6)

    with the initial conditionst=0,p=0; and the boundary conditions

    whereDeis the effective diffusion coefficient of CO2and it is primarily controlled by the Kundsen diffusion,

    (7)

    andDkcis the Kundsen diffusion coefficient

    (8)

    SO2from flue gas diffuses inside through the gaps between the CaO micrograins, which can be described as

    (9)

    with boundary conditions

    rSO2is the sulfation reaction rate, andDseis the effective diffusion coefficient of SO2in the CaO particles,

    (10)

    in whichDksis the Kundsen diffusion coefficient,

    (11)

    andrkis the average pore radius between the CaO micrograins

    (12)

    whereεiis the local porosity of the particle andSiis the local specific surface area. Due to the sintering and sulfation, the specific surface area and porosity of porous CaO decrease quickly. The sintering rate of CaO is heavily influenced by the specific surface area, which has been investigated by many researchers, and the sintering rate meets the two order dynamic rules[18-19]. So, the change of specific surface area caused by sintering can be calculated by

    (13)

    whereSais the asymptotic specific surface area with the value of about 5 m2/g[19], andKshis the sintering rate constant.

    Integrating Eq.(13), we can obtain

    (14)

    The porosity is related to the specific surface area as

    (15)

    The local porosityεSdecreases along with the sulfation reaction because the molar volume of CaSO4is larger than that of CaO. According to Hartman et al[13], the porosity change can be described as

    εS=ε0-(Z-1)(1-ε0)χS

    (16)

    So the local porosity of CaO can be described as

    (17)

    withε0=0.54 andS0=104 m2/g according to the investigation of Borgwardt[20].Zis the molar volume ratio of CaSO4to CaO, andχSis the local sulfation conversion of CaO.

    The local specific surface area of CaO particles can be calculated by

    (18)

    The calcination conversion of CaCO3to CaO is calculated by

    (19)

    in whichrpis the initial radius of CaCO3grain.

    The sulfation rate of CaO can be calculated by

    (20)

    with the initial conditionst=0,r1=r2=r0.

    The sulfation rate of per unit grain volume based on the state ion diffusion obtained by Mahuli[17]is

    (21)

    The sulfation rate of sintered CaO equals the diffusion rate of state ion through the CaSO4layer according to Lindner[21], so

    (22)

    whereL=r1-r2;Dionis the state ion diffusion coefficient;CCis the state ion density on the reaction surface equal to the molar density of CaO; and Savis the average cross-sectional area of state ion diffusion.

    Combining Eqs.(21) and (22), we obtain the sulfation rate controlled by intrinsic kinetics and product layer state ion diffusion as

    (23)

    For CaO grains at the same area,

    rSO2=rCaO

    (24)

    Combining Eqs.(20), (23) and (24), we obtain

    (25)

    The local sulfation conversion conversionχSis

    (26)

    and the grain size changes along with the sulfation reaction

    (27)

    The Ca conversion to CaSO4can be obtained by integrating local conversion conversion of all layers, so

    (28)

    The relative quality change at the simultaneous calcination and sulfation is

    (29)

    2 Experiment Facility and Procedure

    The isothermal thermo-gravimetric experiment system to investigate simultaneous calcination and sulfation of limestone at constant temperature is shown in Fig.2. The tube furnace is 40 mm in diameter and 800 mm in length. The temperature in the furnace was monitored by an automatic controller with a range of 20 to 1 200 ℃. The change of sample weights was monitored by the computer constantly and the precision of the weight sensor was 0.1 mg. Simulated flue gas consists of 75%CO2, 5%O2, 0.2%SO2and N2as balance. In all tests, the flow rate of the gas mixtures was maintained at 1 200 mL/min. This flow rate is selected as it has been verified that at this flow rate, the mass transfer is not the limiting factor for the reactions. Previous work[22-23]operated on this device has verified that it has sufficient accuracy.

    Shandian limestone was used in the experiment. The X-ray fluorescence (XRF) analysis result of limestone is given in Tab.1. A known amount of limestone sample (about 80 mg) was loaded into a quartz boat (100 mm in length, 10 mm in width and 10 mm in depth). In order to be close to the working conditions of industry as much as possible, the temperature was raised to the desired level and maintained for 60 min, and then the quartz boat (with limestone) was sent into the furnace quickly.

    Tab.1 Main component of limestone %

    The calcium conversion of sample (after limestone decomposes into CaO completely) is calculated by

    (30)

    Fig.2 Experimental system

    whereXis the conversion of calcium;mtis the mass at the timet;m0is the original sample mass of CaO formed by calcined limestone without SO2;miis the initial sample mass of limestone;Ais the mass fraction of the CaCO3in the original samples;wCaCO3,wCaSO4andwCaOare the molar mass of CaCO3, CaSO4and CaO, respectively.

    The experiments of simultaneous calcination and sulfation (termed simultaneous calcination/sulfation) are carried out with 0.2%SO2; and are compared, experiments in which limestone calcined in pure N2to CaO and then sulfated (termed calcination-sulfation) with 0.2% SO2are also given.

    3 Results and Discussion

    The characteristics of simultaneous calcination/sulfation and calcination-sulfation along with the calculation result of the model is shown in Fig.3.

    Fig.3 Tesing and model prediction(900 ℃, 150 to 250 μm, 0.2%SO2,5%O2, 75%CO2, N2 as balance)

    Fig.3 shows the ratio of sample weightWto the initial weightW0in the process of experiment. First, a significant difference can be found when comparing the experimental data of calcination-sulfuration to those of the simultaneous calcination/sulfation reaction. Compared with calcination-sulfuration, the weight loss rate of simultaneous calcination/sulfation in the weight decline stage is slightly slower, but the lowest weight point is obviously higher. The cause is that the calcination and sulfation reaction occurs at the same time in the calcination stage of the simultaneous calcination/sulfation experiment, which, on the one hand, increases the sample weight due to the sulfation of CaO; and on the other hand, prevents the calcination of CaCO3by the product layer of CaSO4. What should be pointed out is that when calcination and sulfation occur simultaneously, the limestone loses weight due to calcination but gains weight by sulfation; which can lead to the result that the lowest weight point is not the point that limestone is calcined completely usually, but only a balance point between weight gain and loss.

    The next significant difference obtained from Fig.3 is that during the period of weight rise, although there remains two reaction stages which include a fast reaction stage controlled by reaction kinetics and a slow reaction stage controlled by product layer diffusion for both of the two experimental conditions; the percentage of weight gain is relatively lower in the early stage and higher in the later stage for simultaneous calcination/sulfation experiments.

    The calculating results of the grain-micrograin model established is consistant with the testing results and can be used to describe the simultaneous calcination and sulfation of limestone, as shown in Fig.3. Even if in pure N2, it needed about 500 s for the limestone particle of 150 to 250 μm to be calcined completely. Therefore, it is necessary to take the sulfation of CaO into account in this long calcination stage, because not only the calcination of CaCO3but also the sulfation of CaO are influenced by it. Data will not reflect reality if sulfation of the precalcined CaO is taken as the sulfation of limestone in an oxy-fuel CFBC. Simultaneous sulfation with calcination of limestone should not be ignored for both experiment and model derivation when studying sulfation phenomenon in oxy-fuel CFBB.

    To calculate the sulfation ratio of limestone, it must be ensured that all CaCO3in the sample is calcined to CaO completely. To detect if there is CaCO3in the samples, several samples undergoing different reaction times after the lowest weight point are quickly cooled in N2to room temperature and grinded to less than 10 μm, and then calcined again at 900 ℃ in pure N2within sufficient time. If a sample does not lose weight in this process, it can be ensure that there is no CaCO3in the sample. Also, the test results show that the samples after 680 s do not lose mass anymore, which means that there is no CaCO3in these samples. So, the calcium conversion formula can be used to calculate the calcium conversion to CaSO4, as shown in Fig.4.

    Fig.4 Conversion for simultaneous calcinations/sulfation and calcinations-sulfation of limestone

    From Fig.4, it can be shown that the sulfation rate of calcination-sulfation experiment was faster at first but declined quickly when compared with simultaneous calcinations/sulfation. Although the calcium conversion of calcination-sulfation is higher after the cross point in Fig.4, its conversion rate slowed down finally, so if with a longer reaction time, the conversion of simultaneous calcinations/sulfation should exceed that of calcinations-sulfation.

    Perhaps one contrast test is not sufficient to illustrate the problems, so several other contrast tests and model calculations are carried out, and Fig.5 and Fig 6 show two of them.

    Fig.5 is the result of experiment and model calculation for a particle size of 75 to 97 μm, and Fig.6 is for a temperature of 950 ℃ compared with Fig.4. It can be found that a similar phenomenon occurs for different experimental temperatures and particle sizes, which illustrates that the differences between simultaneous calcination/sulfation and calcination-sulfation conditions are not an accidental phenomenon. The grain-micrograin model established in this work can also describe the true process of simultaneous calcination/sulfation under different experimental conditions.

    Fig.5 Tesing and model prediction (900 ℃, 75 to 97 μm, 0.2%SO2, 5%O2, 75%CO2, N2 as balance)

    Fig.6 Tesing and model prediction (950 ℃, 150 to 250 μm, 0.2%SO2, 5%O2, 75%CO2, N2 as balance)

    4 Conclusion

    The simultaneous calcination/sulfation of limestone under oxy-fuel fluidized bed combustion conditions is different from the sulfation of CaO. Also, during the calcination stage, SO2will slow down the CaCO3decomposition rate via the covering effect of the CaSO4product. The sulfation rate of simultaneous calcination/sulfation declines slower than that of precalcined CaO, and with a long enough sulfation time, the calcium conversion of simultaneous calcination/sulfation is higher than that of precalcined CaO. The grain-micrograin model combining simultaneous calcination, sintering and sulfation can reflect the true process of the calcination and sulfation of limestone under an oxy-fuel fluidized bed combustion. When studying the calcination and sulfation of limestone under oxy-fuel CFBB conditions, it is necessary to pay attention to the calcination and sulfation of limestone at the same time.

    [1]Liu H, Okazaki K. Simultaneous easy CO2recovery and drastic reduction and NOxin O2/CO2coal combustion with heat recirculation[J].Fuel, 2003, 82(11): 1427-1436.

    [2]Liu Hao, Ren Ruiqi, Huang Yongjun, et al. Reduction and emission of NO in oxy-fuel system[J].JournalofChemicalIndustryandEngineering, 2011, 62(2): 495-501. (in Chinese)

    [3]Duan Lunbo, Zhou Wu, Qu Chengrui, et al. SO2emission from a coal-fired circulating fluidized bed combustor under O2/CO2atmosphere[J].JournalofEngineeringThermophysics, 2012, 33(1): 151-154.

    [4]Baker E H. The calcium oxide-carbon dioxide system in the pressure range 1-300 atmopheres[J/OL].JournaloftheChemicalSociety(Resumed), 1962:464-470.http://pubs.rsc.org/en/content/articlepdf/1962/jr/jr9620000464.

    [5]Wang W Y, Bjerle I. Modeling of high-temperature desulfurization by Ca-based sorbents[J].ChemicalEngineeringScience, 1998, 53(11): 1973-1989.

    [6]Wang C, Jia L, Tan Y, et al. The effect of water on the sulfation of limestone[J].Fuel, 2010, 89(9): 2628-2632.

    [7]Stewart M C, Manovic V, Anthony E J, et al. Enhancement of indirect sulfation of limestone by steam addition[J].EnvironmentalScienceandTechnology, 2010, 44(22): 8781-8786.

    [8] García-Labiano F, Rufas A, de Diego L F, et al. Calcium-based sorbents behaviour during sulfation at oxy-fuel fluidised bed combustion conditions[J].Fuel, 2011, 90(10): 3100-3108.

    [9]Bhatia S K, Perlmutter D D. A random pore model for fluid-solid reactions: Ⅰ. Isothermal, kinetic control[J].AIChEJournal, 1980,26(3):379-386.

    [10]Bhatia S K, Perlmutter D D. A random pore model for fluid-solid reactions: Ⅱ. Diffusion and transport effects[J].AIChEJournal, 1981,27(2):247-254.

    [11]Bhatia S K, Perlmutter D D. The effect of pore structure on fluid-solid reactions: application to the SO2-lime reaction[J].AIChEJournal1981, 27(2):226-234.

    [12]Szekely J, Evans J W. A structural model for gas-solid reactions with a moving boundary[J].ChemicalEngineeringScience, 1970, 25(6):1091-1107.

    [13]Hartman M, Coughlin R W. Reaction of sulfur dioxide with limestone and the grain model[J].AIChEJournal, 1976, 22(3):490-498.

    [14]Silcox G D, Kramlich J C. A mathematical model for the flash calcination of dispersed CaCO3and Ca(OH)2particles [J].IndustrialEngineeringChemistryResearch,1989, 28(2):155-160.

    [15]Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 1. Theoretical sulfation model[J].IndustrialEngineeringChemistryResearch, 1990, 29(11): 2192-2201.

    [16]Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents.2. Experimental data and theoretical model predictions[J].IndustrialEngineeringChemistryResearch,1990, 29(11): 2201-2214.

    [17]Mahuli S K, Agnihotri R, Jadhav R, et al. Combined calcination, sintering and Sulfation model for CaCO3SO2reaction[J].AIChEJournal, 1999, 45(2): 367-382.

    [18]Ghosh-Dastidar A, Mahuli S, Agnihotri R, et al. Ultrafast calcination and sintering of Ca(OH)2powder:experimental and modeling[J].ChemicalEngineeringScience, 1995, 50(13): 2029-2040.

    [19]Agnew J, Hampartsoumian E, Jones J M, et al. The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere[J].Fuel, 2000, 79(12): 1515-1523.

    [20]Borgwardt R H. Sintering of nascent calcium oxide[J].ChemicalEngineeringScience, 1989, 44(1): 53-60.

    [21]Lindner B, Simonsson D. Comparison of structural models for gas-solid reactions in porous solids undergoing structural changes[J].ChemicalEngineeringScience, 1981, 36(9):1519-1527.

    [22]Wang Chunbo, Zhang Yue, Jia Lufei, et al. Effect of water vapor on the pore structure and sulfation of CaO[J].Fuel, 2014, 130: 60-65.

    [23]Wang Chunbo, Wang Jinxing, Lei Ming, et al. Investigations on combustion and NO emission characteristics of coal and biomass blends[J].Energy&Fuel, 2013, 27(10): 6185-6190.

    富氧燃燒循環(huán)流化床中石灰石煅燒/硫化反應(yīng)模型

    王春波 劉洪才 陳 亮

    (華北電力大學(xué)能源動(dòng)力與機(jī)械工程學(xué)院,保定071003)

    對(duì)富氧燃燒流化床下石灰石同時(shí)煅燒/硫化特性進(jìn)行了研究,并與CaO硫化特性進(jìn)行了比較.在石灰石煅燒階段,CaO與SO2反應(yīng)生成CaSO4產(chǎn)物層覆蓋在未煅燒CaCO3的外層,降低了煅燒速率.同時(shí)煅燒/硫化過(guò)程中的硫化反應(yīng)速率比CaO的硫化反應(yīng)速率要緩慢,但是經(jīng)過(guò)足夠長(zhǎng)的反應(yīng)時(shí)間后,同時(shí)煅燒/硫化反應(yīng)的鈣轉(zhuǎn)化率比CaO硫化反應(yīng)的鈣轉(zhuǎn)化率要高.建立了一個(gè)包含石灰石同時(shí)煅燒、燒結(jié)和硫化反應(yīng)的晶粒-微晶粒模型用于描述流化床內(nèi)同時(shí)進(jìn)行的石灰石煅燒、燒結(jié)和硫化過(guò)程,實(shí)驗(yàn)證明所建立的模型能夠反映流化床富氧氣氛中石灰石的真實(shí)煅燒/硫化過(guò)程.

    富氧燃燒;石灰石;同時(shí)煅燒/硫化;晶粒-微晶粒模型

    TK16

    Foundation items:The National Natural Science Foundation of China (No.51276064), the Natural Science Foundation of Hebei Province (No.E2013502292).

    :Wang Chunbo, Liu Hongcai, Chen Liang. Model of limestone calcination/sulfation under oxy-fuel fluidized bed combustion[J].Journal of Southeast University (English Edition),2015,31(2):238-243.

    10.3969/j.issn.1003-7985.2015.02.014

    10.3969/j.issn.1003-7985.2015.02.014

    Received 2015-01-07.

    Biography:Wang Chunbo (1973—), male, doctor, professor, hdwchb@126.com.

    猜你喜歡
    富氧石灰石流化床
    昆鋼120t轉(zhuǎn)爐石灰石造渣留渣操作工藝生產(chǎn)實(shí)踐
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    萊鋼400m2燒結(jié)機(jī)提升石灰石配比實(shí)踐
    山東冶金(2019年3期)2019-07-10 00:54:04
    流化床丙烷脫氫反應(yīng)段的模擬及優(yōu)化
    石灰石燒結(jié)法從CFB灰中提取氧化鋁
    關(guān)于循環(huán)流化床鍋爐集控運(yùn)行研究
    關(guān)于高海拔地區(qū)辦公富氧環(huán)境研究
    單沉浸管流化床內(nèi)離散顆粒數(shù)值模擬
    用富氧燃燒技術(shù)減少水泥生產(chǎn)過(guò)程N(yùn)Ox排放的可行性分析
    富氧條件下Co/ZSM-5催化劑對(duì)C3H8選擇還原NOx的性能
    小型石灰石礦地下開(kāi)采采礦方法的改進(jìn)
    金屬礦山(2013年6期)2013-03-11 16:53:53
    精品久久久噜噜| 99久久人妻综合| 日韩三级伦理在线观看| 国产一区二区在线观看日韩| 久久久久免费精品人妻一区二区| 天堂影院成人在线观看| 尤物成人国产欧美一区二区三区| 99久国产av精品| 桃色一区二区三区在线观看| 一区二区三区乱码不卡18| 最后的刺客免费高清国语| 一区二区三区乱码不卡18| 一本久久精品| 亚洲欧美中文字幕日韩二区| 久久精品夜色国产| 国产精品一区www在线观看| 免费观看性生交大片5| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区久久| 黑人高潮一二区| 久久久久久久久大av| 亚洲av男天堂| 亚洲国产欧洲综合997久久,| 久久精品影院6| 日本猛色少妇xxxxx猛交久久| 精品久久久久久久久av| 国产精品三级大全| 日韩强制内射视频| 青春草亚洲视频在线观看| 舔av片在线| 天美传媒精品一区二区| 我要看日韩黄色一级片| 国产精品精品国产色婷婷| 岛国在线免费视频观看| 精品久久久久久久末码| 久久午夜福利片| 男人的好看免费观看在线视频| 99久国产av精品国产电影| 乱系列少妇在线播放| 韩国高清视频一区二区三区| 日韩一区二区三区影片| 美女cb高潮喷水在线观看| 午夜精品在线福利| 精品人妻熟女av久视频| 午夜福利视频1000在线观看| 午夜福利视频1000在线观看| 日本欧美国产在线视频| 大香蕉97超碰在线| 中文乱码字字幕精品一区二区三区 | 免费黄色在线免费观看| 亚洲成人久久爱视频| 国产中年淑女户外野战色| 国产成人aa在线观看| 波野结衣二区三区在线| 国产午夜精品论理片| 伦精品一区二区三区| 观看免费一级毛片| 亚洲在线观看片| 中文字幕久久专区| 国产色婷婷99| 啦啦啦观看免费观看视频高清| 日日摸夜夜添夜夜添av毛片| 日韩欧美国产在线观看| 精品久久久久久久久久久久久| 欧美极品一区二区三区四区| 免费黄网站久久成人精品| 国产在线一区二区三区精 | 久久久久久久久中文| 看黄色毛片网站| 亚洲成av人片在线播放无| 色5月婷婷丁香| 国产成人freesex在线| 日本黄色视频三级网站网址| 欧美不卡视频在线免费观看| 久久韩国三级中文字幕| 国产成人a∨麻豆精品| 99在线视频只有这里精品首页| 午夜老司机福利剧场| 午夜激情福利司机影院| 麻豆av噜噜一区二区三区| 男女国产视频网站| 亚洲美女搞黄在线观看| 久久久久久久国产电影| 欧美另类亚洲清纯唯美| 成年av动漫网址| 国产亚洲av片在线观看秒播厂 | 亚洲真实伦在线观看| 精品久久久久久久久亚洲| 黄片wwwwww| 色综合亚洲欧美另类图片| 亚洲国产欧洲综合997久久,| 国产成人福利小说| 色综合站精品国产| 一个人免费在线观看电影| 欧美xxxx黑人xx丫x性爽| 在线免费十八禁| 久久久久性生活片| 国产乱人偷精品视频| 成人一区二区视频在线观看| 欧美激情国产日韩精品一区| 九九在线视频观看精品| 日本黄色视频三级网站网址| 国产亚洲5aaaaa淫片| 欧美bdsm另类| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久久无色码亚洲精品果冻| 禁无遮挡网站| 日本黄色片子视频| 国产色爽女视频免费观看| 国产免费男女视频| 欧美日韩一区二区视频在线观看视频在线 | 国产v大片淫在线免费观看| 国产色爽女视频免费观看| 搞女人的毛片| 寂寞人妻少妇视频99o| 亚洲欧美精品专区久久| 精品国产三级普通话版| 麻豆国产97在线/欧美| 嫩草影院入口| 观看美女的网站| 久久99热这里只频精品6学生 | 18禁动态无遮挡网站| 免费观看精品视频网站| 日韩,欧美,国产一区二区三区 | 六月丁香七月| 在线免费观看不下载黄p国产| 午夜久久久久精精品| 成人午夜精彩视频在线观看| 国产精品国产高清国产av| 日本免费一区二区三区高清不卡| 色综合亚洲欧美另类图片| 日韩强制内射视频| 日韩欧美精品免费久久| 久久久久性生活片| 午夜精品一区二区三区免费看| 人妻制服诱惑在线中文字幕| 国产成人精品久久久久久| 日本与韩国留学比较| 99在线人妻在线中文字幕| 性插视频无遮挡在线免费观看| 久久99热6这里只有精品| 黄色欧美视频在线观看| 国产精品国产高清国产av| 国产三级在线视频| 中文精品一卡2卡3卡4更新| 91在线精品国自产拍蜜月| 国产精品嫩草影院av在线观看| 午夜精品国产一区二区电影 | 国产午夜精品久久久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 亚洲图色成人| 久久久久久久久中文| 精品国产露脸久久av麻豆 | 少妇熟女aⅴ在线视频| 久久热精品热| 久久99热这里只有精品18| 亚洲最大成人av| 亚洲综合精品二区| 午夜精品国产一区二区电影 | 日本色播在线视频| 国产亚洲91精品色在线| av在线播放精品| 国产成人aa在线观看| 国产精品永久免费网站| 色5月婷婷丁香| 亚洲中文字幕一区二区三区有码在线看| av播播在线观看一区| 日韩三级伦理在线观看| av视频在线观看入口| 欧美色视频一区免费| 一卡2卡三卡四卡精品乱码亚洲| 免费一级毛片在线播放高清视频| 国产白丝娇喘喷水9色精品| 久久久久久九九精品二区国产| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产色片| 别揉我奶头 嗯啊视频| 欧美日本视频| 在线天堂最新版资源| 久久精品国产自在天天线| 精品久久久久久久久av| 亚洲五月天丁香| 男人狂女人下面高潮的视频| 精品久久久久久久人妻蜜臀av| 亚洲成色77777| 国产三级中文精品| 亚州av有码| 毛片一级片免费看久久久久| 干丝袜人妻中文字幕| 一级爰片在线观看| 亚洲色图av天堂| 亚洲精品亚洲一区二区| 五月玫瑰六月丁香| 少妇猛男粗大的猛烈进出视频 | 久久99蜜桃精品久久| 天堂√8在线中文| 欧美成人a在线观看| 国产精品国产三级国产专区5o | 美女黄网站色视频| 日韩av在线大香蕉| 美女高潮的动态| 国产激情偷乱视频一区二区| 少妇高潮的动态图| 91av网一区二区| 精品久久久久久久久av| 能在线免费看毛片的网站| 国产一级毛片在线| 国产成人午夜福利电影在线观看| 天堂中文最新版在线下载 | 搡老妇女老女人老熟妇| 精品欧美国产一区二区三| 女人被狂操c到高潮| 日本一本二区三区精品| 老司机影院毛片| 日本与韩国留学比较| 久久久久久国产a免费观看| 在现免费观看毛片| 乱码一卡2卡4卡精品| 大香蕉久久网| 国产三级在线视频| 免费观看人在逋| 好男人在线观看高清免费视频| 一卡2卡三卡四卡精品乱码亚洲| av在线亚洲专区| 亚洲精品自拍成人| 少妇的逼好多水| 亚洲国产最新在线播放| 国产精品蜜桃在线观看| 国产在线男女| 人妻夜夜爽99麻豆av| 国产精品一及| 国产成人a∨麻豆精品| 蜜桃亚洲精品一区二区三区| 国产欧美日韩精品一区二区| 夫妻性生交免费视频一级片| 亚洲精品成人久久久久久| 国产精品女同一区二区软件| 热99re8久久精品国产| 欧美一级a爱片免费观看看| 亚洲国产高清在线一区二区三| 精华霜和精华液先用哪个| 青春草亚洲视频在线观看| 亚洲国产精品成人久久小说| 在线播放国产精品三级| 久久精品国产亚洲av涩爱| 人人妻人人澡欧美一区二区| 91久久精品国产一区二区三区| 久久久色成人| 亚洲av成人精品一区久久| 寂寞人妻少妇视频99o| 国产欧美另类精品又又久久亚洲欧美| 免费观看的影片在线观看| 精品久久久久久久久久久久久| 日韩,欧美,国产一区二区三区 | 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 精品国产露脸久久av麻豆 | 网址你懂的国产日韩在线| 少妇丰满av| 嫩草影院入口| 国产精品蜜桃在线观看| 搞女人的毛片| 国产精品无大码| 久久综合国产亚洲精品| 最近2019中文字幕mv第一页| 男女那种视频在线观看| 小说图片视频综合网站| 日韩欧美三级三区| 97热精品久久久久久| 久久久久久久久久久丰满| 夫妻性生交免费视频一级片| 亚洲18禁久久av| 亚洲欧美日韩高清专用| 国产日韩欧美在线精品| 免费观看精品视频网站| 免费观看的影片在线观看| 日本-黄色视频高清免费观看| 久久久色成人| 永久免费av网站大全| 久久6这里有精品| 亚洲av福利一区| 午夜福利在线观看吧| 亚洲不卡免费看| 亚洲成人av在线免费| 国产伦精品一区二区三区视频9| 亚洲精品影视一区二区三区av| 亚洲美女搞黄在线观看| 国产老妇女一区| 亚洲av.av天堂| 国产精华一区二区三区| 亚洲人成网站高清观看| 国产av码专区亚洲av| 变态另类丝袜制服| 一级黄片播放器| 国产成人午夜福利电影在线观看| 国产亚洲5aaaaa淫片| 少妇裸体淫交视频免费看高清| 国产精品一二三区在线看| 欧美+日韩+精品| 精华霜和精华液先用哪个| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 色网站视频免费| 久久99热这里只有精品18| 久久国内精品自在自线图片| 一级毛片aaaaaa免费看小| 日韩av不卡免费在线播放| 青春草亚洲视频在线观看| 欧美丝袜亚洲另类| 小蜜桃在线观看免费完整版高清| 国产乱人视频| 深爱激情五月婷婷| 嘟嘟电影网在线观看| 日韩,欧美,国产一区二区三区 | 成人鲁丝片一二三区免费| 不卡视频在线观看欧美| 26uuu在线亚洲综合色| videossex国产| 欧美一级a爱片免费观看看| 婷婷色麻豆天堂久久 | 亚洲精华国产精华液的使用体验| 国产三级在线视频| 毛片一级片免费看久久久久| 中文字幕久久专区| 自拍偷自拍亚洲精品老妇| 超碰av人人做人人爽久久| 国产91av在线免费观看| 波野结衣二区三区在线| 精品午夜福利在线看| 熟女人妻精品中文字幕| 日韩成人伦理影院| 欧美bdsm另类| 一区二区三区乱码不卡18| 大又大粗又爽又黄少妇毛片口| 身体一侧抽搐| 我要搜黄色片| 亚洲久久久久久中文字幕| 大话2 男鬼变身卡| 成人特级av手机在线观看| 国产精品一区www在线观看| 国产伦在线观看视频一区| 欧美日本亚洲视频在线播放| 狠狠狠狠99中文字幕| 亚洲天堂国产精品一区在线| 亚洲激情五月婷婷啪啪| 免费不卡的大黄色大毛片视频在线观看 | 免费观看a级毛片全部| 18禁裸乳无遮挡免费网站照片| 国产伦精品一区二区三区四那| 国产极品天堂在线| 69人妻影院| 乱码一卡2卡4卡精品| 国产爱豆传媒在线观看| 免费观看性生交大片5| 国产在视频线在精品| 成人毛片a级毛片在线播放| 国产高清国产精品国产三级 | av线在线观看网站| 成人毛片60女人毛片免费| 一级毛片久久久久久久久女| 精品99又大又爽又粗少妇毛片| av.在线天堂| 免费看美女性在线毛片视频| 日本三级黄在线观看| 纵有疾风起免费观看全集完整版 | 91aial.com中文字幕在线观看| av国产久精品久网站免费入址| 精品久久久噜噜| 国产精品福利在线免费观看| 亚洲婷婷狠狠爱综合网| 男女那种视频在线观看| 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| 国产在线一区二区三区精 | 欧美bdsm另类| 亚洲精品国产av成人精品| 国产又色又爽无遮挡免| 看非洲黑人一级黄片| 免费观看的影片在线观看| 精品少妇黑人巨大在线播放 | av在线老鸭窝| 久久精品国产自在天天线| 欧美色视频一区免费| 欧美+日韩+精品| 亚洲伊人久久精品综合 | 又爽又黄a免费视频| 中文天堂在线官网| 一区二区三区四区激情视频| 十八禁国产超污无遮挡网站| 国产极品天堂在线| 一本久久精品| 日韩成人伦理影院| 国产精品,欧美在线| 亚洲精品456在线播放app| 国产熟女欧美一区二区| 免费观看人在逋| 免费一级毛片在线播放高清视频| 七月丁香在线播放| 女人被狂操c到高潮| 1000部很黄的大片| 视频中文字幕在线观看| 男女那种视频在线观看| 91aial.com中文字幕在线观看| 国产亚洲精品久久久com| 中文资源天堂在线| 我的女老师完整版在线观看| 青春草国产在线视频| 亚洲中文字幕日韩| 亚洲最大成人av| 精品久久久久久久久久久久久| 国产三级中文精品| 午夜福利影视在线免费观看| 蜜桃在线观看..| 亚洲伊人久久精品综合| 99热全是精品| 久久女婷五月综合色啪小说| 亚洲欧洲精品一区二区精品久久久 | 超碰97精品在线观看| 亚洲欧美精品自产自拍| 看免费av毛片| 两个人免费观看高清视频| 美女国产视频在线观看| 人妻系列 视频| 国产一区二区激情短视频 | 91精品三级在线观看| 国产精品人妻久久久影院| 麻豆精品久久久久久蜜桃| 成年美女黄网站色视频大全免费| 精品第一国产精品| 国产免费又黄又爽又色| 久久久久精品久久久久真实原创| 51国产日韩欧美| 成年美女黄网站色视频大全免费| 亚洲精品av麻豆狂野| 午夜免费男女啪啪视频观看| 99久久中文字幕三级久久日本| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 最近手机中文字幕大全| 91精品三级在线观看| 2018国产大陆天天弄谢| videos熟女内射| 美女主播在线视频| 在线观看www视频免费| 国产免费一级a男人的天堂| 午夜福利视频精品| 另类亚洲欧美激情| 国产极品天堂在线| 热99国产精品久久久久久7| 国产精品.久久久| av天堂久久9| 日韩精品免费视频一区二区三区 | 久久国产亚洲av麻豆专区| 宅男免费午夜| 大码成人一级视频| 亚洲国产精品国产精品| 日本色播在线视频| 又粗又硬又长又爽又黄的视频| 九九爱精品视频在线观看| 日产精品乱码卡一卡2卡三| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 久久久久人妻精品一区果冻| 欧美精品高潮呻吟av久久| 男人操女人黄网站| 三级国产精品片| 人成视频在线观看免费观看| 婷婷色综合www| 久久久久久久久久久免费av| 伦理电影免费视频| 国产一区有黄有色的免费视频| 精品久久久久久电影网| 久久久精品区二区三区| 免费av不卡在线播放| 在线观看国产h片| 久热这里只有精品99| 18禁裸乳无遮挡动漫免费视频| 精品99又大又爽又粗少妇毛片| 91国产中文字幕| 欧美xxxx性猛交bbbb| 国产女主播在线喷水免费视频网站| 日韩欧美精品免费久久| 亚洲精品美女久久久久99蜜臀 | 青青草视频在线视频观看| 精品视频人人做人人爽| 亚洲综合色惰| 亚洲精品456在线播放app| 91午夜精品亚洲一区二区三区| 在现免费观看毛片| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 亚洲精品一区蜜桃| 如日韩欧美国产精品一区二区三区| 国产精品嫩草影院av在线观看| 亚洲成人av在线免费| 日日爽夜夜爽网站| 亚洲成av片中文字幕在线观看 | 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 久久午夜福利片| 国产一区二区激情短视频 | 亚洲一码二码三码区别大吗| 亚洲高清免费不卡视频| 九草在线视频观看| 观看美女的网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产日韩一区二区| 国产综合精华液| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 丝袜喷水一区| 亚洲av.av天堂| 亚洲伊人色综图| 亚洲国产精品专区欧美| 另类精品久久| 国产极品天堂在线| 99热全是精品| 22中文网久久字幕| 午夜激情av网站| 成人毛片60女人毛片免费| 女性被躁到高潮视频| 人体艺术视频欧美日本| 王馨瑶露胸无遮挡在线观看| 日韩,欧美,国产一区二区三区| 国产精品女同一区二区软件| 免费看不卡的av| 国产精品欧美亚洲77777| 亚洲第一av免费看| 各种免费的搞黄视频| 高清毛片免费看| 欧美日韩视频精品一区| 超碰97精品在线观看| 国产精品无大码| 久久精品久久久久久久性| freevideosex欧美| 亚洲精品第二区| 午夜日本视频在线| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 午夜激情av网站| 纵有疾风起免费观看全集完整版| 国产老妇伦熟女老妇高清| 国产成人精品久久久久久| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 国产av国产精品国产| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 国产欧美亚洲国产| 日日爽夜夜爽网站| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 黄色一级大片看看| av在线播放精品| 在线天堂中文资源库| 亚洲,一卡二卡三卡| 国产欧美亚洲国产| 久久97久久精品| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 色5月婷婷丁香| 色视频在线一区二区三区| 亚洲精品美女久久av网站| 免费观看性生交大片5| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 九草在线视频观看| 免费观看无遮挡的男女| 大香蕉久久网| 好男人视频免费观看在线| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 午夜福利网站1000一区二区三区| 国产在视频线精品| 久久99一区二区三区| 国产成人aa在线观看| 国产黄色免费在线视频| 欧美丝袜亚洲另类| 观看av在线不卡| 国产在线一区二区三区精| 日韩制服骚丝袜av| 国产高清三级在线| 国产亚洲午夜精品一区二区久久| 蜜桃在线观看..| 精品少妇久久久久久888优播| 日本黄色日本黄色录像| 91精品伊人久久大香线蕉| 人体艺术视频欧美日本| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 青春草国产在线视频| 精品国产乱码久久久久久小说| 男人舔女人的私密视频| 亚洲av.av天堂| 成人综合一区亚洲| √禁漫天堂资源中文www| 欧美人与善性xxx| 91精品国产国语对白视频| 一级毛片黄色毛片免费观看视频| 国产片特级美女逼逼视频| 亚洲av欧美aⅴ国产| 久久精品夜色国产| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 国产一区亚洲一区在线观看| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 亚洲中文av在线| 欧美日韩国产mv在线观看视频| 午夜福利网站1000一区二区三区| a级毛色黄片|