楊茂霞,林國彪,陳彩虹,王薈,羅麗娟
(海南大學(xué)農(nóng)學(xué)院,海南省熱帶生物資源可持續(xù)利用重點實驗室,海南 ???570228)
?
膠孢炭疽菌侵染柱花草葉片的顯微觀察
楊茂霞,林國彪,陳彩虹,王薈,羅麗娟*
(海南大學(xué)農(nóng)學(xué)院,海南省熱帶生物資源可持續(xù)利用重點實驗室,海南 ???570228)
為了研究膠孢炭疽菌在柱花草葉片上的侵染進(jìn)程和植株接種病原菌后的反應(yīng),用膠孢炭疽菌孢子懸浮液接種生長6周的熱研2號柱花草幼苗,顯微觀察接種后炭疽菌在柱花草葉片上的侵染過程,統(tǒng)計植株病情指數(shù)。結(jié)果表明,接種4 h時孢子開始萌發(fā)、少量形成附著胞;6 h孢子大量萌發(fā),12 h時大量附著胞形成并形成侵染釘;36 h時開始產(chǎn)生菌絲;48 h時菌絲大量產(chǎn)生糾結(jié)成網(wǎng)狀;60 h時開始形成分生孢子梗;72 h時產(chǎn)生新的分生孢子。接種72 h部分病原菌完成了一個侵染循環(huán)。同時柱花草發(fā)病癥狀為:葉片24 h黃化,有侵染點細(xì)胞膜破裂,48 h出現(xiàn)褐色病斑,72 h病斑出現(xiàn)黑褐色壞死線、點狀菌核、絨毛狀菌絲,96 h細(xì)胞崩解死亡,組織液外流。8 d病情指數(shù)為54.52,11 d有55%的接種植株死亡。
柱花草;柱花草炭疽菌;侵染;顯微結(jié)構(gòu);病害癥狀
柱花草(Stylosanthesespp.)是熱帶及亞熱帶地區(qū)最重要的豆科牧草之一,廣泛分布于澳大利亞北部、亞洲東南部、南美和非洲,具有草質(zhì)好、產(chǎn)量高、耐旱、耐酸性貧瘠等特點[1],在我國的南方省區(qū)廣泛種植。炭疽病是危害柱花草生產(chǎn)的主要因素之一,該病造成莖葉枯萎脫落,嚴(yán)重影響產(chǎn)量[2]。柱花草炭疽病主要由刺盤胞屬膠孢炭疽菌(Colletotrichumgloeosporioides)引起,自1975年在南美的哥倫比亞爆發(fā)后迅速蔓延[3]。在我國華南地區(qū),高溫高濕多雨條件下發(fā)病極快,3~5 d連續(xù)高溫多雨天氣柱花草葉片均發(fā)黃,出現(xiàn)不同程度的褐色病斑[4-5]。因此培育優(yōu)良的抗病品種對柱花草的推廣種植至關(guān)重要。
炭疽菌屬(Colletotrichum)真菌在世界范圍內(nèi)危害多種重要經(jīng)濟(jì)作物,引起植物炭疽病。炭疽菌采用不同的致病機(jī)制來瓦解寄主的防御機(jī)制,包括胞內(nèi)半活體侵染,角質(zhì)層下層侵染,胞內(nèi)死體侵染[6]。膠孢炭疽菌是一種半活體營養(yǎng)寄生菌((hemibiotroph),侵染特點包括在侵染初期短暫的活體營養(yǎng)階段和后期的死體營養(yǎng)兩個階段[7]。前人在柱花草膠孢炭疽菌的遺傳多樣性[8-10]、各柱花草品種的抗病性等方面的研究均有大量報道[11-12]。對柱花草炭疽病發(fā)病過程的研究則多集中在侵染中后期的寄主表型,缺乏病原菌侵染植株前期的細(xì)胞學(xué)過程,具體侵染行為、侵染時期、侵染方式等侵染循環(huán)的研究。
本研究通過對膠孢炭疽菌侵染柱花草葉片的動態(tài)顯微觀察及植株的病情統(tǒng)計,明確膠孢炭疽菌對柱花草葉片的侵染過程及寄主對病原菌侵染的反應(yīng),在細(xì)胞學(xué)水平上了解病原菌-寄主植物互作機(jī)制,對抗病育種及病害防治有重要意義。
1.1 實驗材料
供試柱花草品種為熱研2號(S.guianensiscv. Reyan2)。種子來自熱帶農(nóng)業(yè)科學(xué)院儋州牧草中心,2014年5月14日播種,10 cm×10 cm苗盆每盆1粒,盆土為滅菌土∶腐殖土∶蛭石按2∶1∶1混合,置于海南大學(xué)農(nóng)學(xué)院基地大棚內(nèi)生長6周,種植期間大棚溫度為25~35℃,每天或隔天澆水保持土壤適當(dāng)水分。
接種用病原菌為采自儋州牧草種質(zhì)圃的柱花草病葉,單菌落分離的膠孢炭疽菌。將病原菌接種于直徑8 cm的PDA培養(yǎng)皿上,在溫度28℃條件下暗培養(yǎng)7 d,用無菌牙簽對平板劃線,培養(yǎng)3~5 d,直到平板大量產(chǎn)孢,無菌水沖洗孢子,雙層無菌紗布過濾,將洗出的孢子用無菌水配成濃度為1×106個/mL的孢子懸浮液,4℃保存?zhèn)溆?,接種前加入0.2%的Tween-20。
1.2 接種方法
噴霧器均勻噴灑上述孢子懸浮液,直到植株葉片滴水。對照用加有0.2%Tween-20的無菌水噴灑,處理對照各40株,重復(fù)3次。接種植株28℃暗培養(yǎng)12 h,再置于溫度28℃,光照4000 lx,光照時長14 h,濕度大于90%的密閉接種室內(nèi)培養(yǎng),觀察并記錄植株病害癥狀,并于接種后第8天統(tǒng)計各接種植株炭疽病病情級別,據(jù)此計算病情指數(shù),病情分級標(biāo)準(zhǔn)參照Kelemu等[8]的文獻(xiàn)記載。
1.3 材料的制備與顯微觀察
分別于接種后0,4,6,9,12,24,36,48,60,72,96,120 h,取處理、對照柱花草第3和4片完全展開葉。將采集葉片切成直徑5 mm小塊,用于制備不同樣品觀察。
制備觀察孢子形態(tài)及侵染特征的樣品。借鑒方中達(dá)[13]的真菌染色方法加以改進(jìn),將樣品用飽和的水合氯醛抽真空脫色36 h,期間12 h換1次脫色液。然后取出小葉用無菌水洗去殘留溶液,吸水紙吸干,0.5%的水溶苯胺藍(lán)(aniline blue)加熱沸騰后染色3 min,洗去染液,50%甘油保存。鏡檢時用水作浮載劑。顯微鏡觀察(Olympus BX51)接種后各時間點的病原菌形態(tài)發(fā)育特征,并統(tǒng)計孢子萌發(fā),產(chǎn)生附著胞、侵染釘、菌絲、分生孢子梗和新分生孢子的時間點和百分率。孢子萌發(fā),附著胞、侵染釘、菌絲產(chǎn)生每次隨機(jī)統(tǒng)計30個孢子,分生孢子梗產(chǎn)生及產(chǎn)孢每次隨機(jī)統(tǒng)計30個侵染點,3次重復(fù)。
制備觀察細(xì)胞致死及胼胝質(zhì)產(chǎn)生的樣品。采用臺盼藍(lán)染色寄主細(xì)胞,如果膠孢炭疽菌侵入細(xì)胞膜,造成細(xì)胞膜被破壞,臺盼藍(lán)染液進(jìn)入寄主胞質(zhì),寄主細(xì)胞將會被染成藍(lán)色。健康的柱花草細(xì)胞,臺盼藍(lán)不會進(jìn)入胞質(zhì),細(xì)胞不會被染上顏色。參照Stone等[14]的方法,將樣品用乳酚(V酚∶V甘油∶V乳酸∶V水=1∶1∶1∶1)及2倍體積的乙醇脫色(抽真空15~30 min),65℃水浴30~45 min直到葉片透明,然后用乳酚沖洗,之后將樣品置于含2.5 mg/mL的臺盼藍(lán)染色液中(乳酚油配制),沸水浴2 min,冷卻染色1 h,然后在乳酚中脫色1 h。之后置于脫色苯胺藍(lán)染液(150 mmol/L K2HPO4,pH 9.5,0.01% Trypan Blue)中復(fù)染15 min,50%甘油保存。鏡檢用水作浮載劑。
制備電子顯微鏡觀察樣品。將采集葉片于冷凍干燥機(jī)(SCIENTZ-10N)中冷凍干燥9 h,然后平整貼于粘有導(dǎo)電黑膠的圓形銅臺上,送入真空鍍膜機(jī)中噴金,在S-3000N型掃描電鏡下進(jìn)行觀察和拍照。
1.4 數(shù)據(jù)統(tǒng)計與分析
2.1 病害癥狀與病情指數(shù)
接種后的柱花草葉片大多從葉尖開始發(fā)病,病癥逐步向葉基蔓延。后期少數(shù)幼葉從中部發(fā)病,向四周蔓延。接種12 h內(nèi)無明顯癥狀,24 h左右葉尖略微黃化,且病狀擴(kuò)大。接種48 h,葉片開始出現(xiàn)0.5~1.0 mm大小褐色軟腐水漬狀病斑。接種72 h,病斑出現(xiàn)黑褐色壞死線、點狀菌核、絨毛狀菌絲病癥(圖1)。隨著病斑的擴(kuò)大,發(fā)病葉片脫落,發(fā)病莖稈從植株中部靠上的位置折斷,接種后8 d統(tǒng)計病情指數(shù)為54.52,為感病。11 d統(tǒng)計死亡株數(shù),55%的接種植株死亡。
2.2 接種孢子在柱花草葉片上的侵染循環(huán)
接種孢子首先附著于植株表面,接種4 h病菌孢子從端部或近端部萌發(fā)出棒狀芽管,6 h大量孢子萌發(fā)。隨后芽管頂端開始膨大,分化成特異的侵染結(jié)構(gòu)附著胞,12 h超過50%的孢子產(chǎn)生附著胞,附著于寄主葉片表面,附著胞產(chǎn)生侵染釘。隨后分生孢子的端部再出芽產(chǎn)生第2個附著胞,或從芽管上分化出側(cè)枝產(chǎn)生附著胞,這個現(xiàn)象在接種24 h到72 h均觀察到。接種36 h孢子產(chǎn)生有分枝的菌絲,同時伴隨著接種孢子異化成有隔、間距短的粗壯菌絲。接種48 h大量菌絲生成,相互交錯成網(wǎng)狀,集聚在葉片上。接種60 h內(nèi)生菌絲產(chǎn)生短棒狀的分生孢子梗,突破寄主表皮細(xì)胞在葉片表面呈花環(huán)狀排列。接種72 h部分孢子梗上產(chǎn)生新的分生孢子,成串排列,完成一個侵染循環(huán),成熟孢子脫落附著在葉片上準(zhǔn)備下一次侵染循環(huán)。病原菌通過不斷循環(huán)侵染植株,導(dǎo)致病害蔓延,直至整株發(fā)病死亡(圖2)。
以各侵染結(jié)構(gòu)統(tǒng)計比率達(dá)到50%作為閾值,統(tǒng)計各侵染結(jié)構(gòu)形成高峰期,得出柱花草炭疽菌感染寄主的5個關(guān)鍵時期:1)接種4~6 h為孢子萌發(fā)高峰期;2)接種9~12 h為附著胞及形成高峰期;3)接種36~48 h為菌絲形成高峰期;4)接種60~72 h為分生孢子梗形成高峰期;5)接種72~120 h為產(chǎn)孢高峰期。前兩個時期為侵染前期,柱花草葉片無明顯癥狀;第3個時期為病原物的潛育期,植株葉片出現(xiàn)病斑;后兩個時期為侵染后期,為炭疽菌第2次侵染宿主提供病原物,植株病斑擴(kuò)大,有明顯病癥。
2.3 附著胞在寄主葉片上的發(fā)育進(jìn)程及病原菌對寄主侵染結(jié)構(gòu)的超微觀察
附著胞生長發(fā)育過程如下:首先分生孢子芽管頂端開始膨大(圖3A)。膨大部分生長形成有吸附作用的中間凹陷,四周凸起的吸盤狀結(jié)構(gòu),此時的附著胞顏色較淺,胞質(zhì)較稀疏(圖3B)。當(dāng)吸盤結(jié)構(gòu)與柱花草葉片接觸一段時間后,其吸附口緊貼葉片,吸附于葉片表面,呈心形、水滴形及圓形等各種不規(guī)則形態(tài),附著胞在形態(tài)的分化成熟過程中,附著胞胞壁逐漸黑色素化,胞質(zhì)稠密(圖3C)。當(dāng)附著胞附著在寄主葉片表面后,在中間位置形成1個圓形小亮點,即侵染釘,侵染釘穿透寄主角質(zhì)層和細(xì)胞壁,開始第1次侵染(圖3D)。在第1次侵染之后,孢子會從兩端繼續(xù)萌發(fā)出芽管,多數(shù)形成2~3個,少數(shù)形成4~5個附著胞多位點侵染(圖3E、F)。
當(dāng)病原菌識別寄主后,開始產(chǎn)生一系列的侵染結(jié)構(gòu):附著胞、侵染釘、侵染菌絲。除了通過上述的附著胞產(chǎn)生侵染釘侵染寄主(圖3D),電鏡掃描寄主上表皮觀察到接種后24 h病原菌從附著胞處形成侵染菌絲定植于寄主細(xì)胞(圖4A),形成內(nèi)生菌絲在寄主細(xì)胞間蔓延。接種后36 h,寄主表面附著胞、表面菌絲穿透寄主細(xì)胞直接侵染寄主(圖4B)。
圖1 接種后熱研2號柱花草發(fā)病癥狀Fig.1 The symptom of S. guianensis cv. Reyan2 after inoculating
圖2 接種后膠孢炭疽菌在柱花草上的侵染循環(huán)Fig.2 Infecting cycle of C. gloeosporioide after inoculating Stylosanthese A:0 h接種孢子附著在葉片上 Inoculated spores adhere to the leaves at 0 h; B:6 h孢子萌發(fā)長出芽管 Germination of germ tube at 6 h; C:12 h孢子產(chǎn)生附著胞 Formation of appressorium at 12 h; D:24 h孢子產(chǎn)生多個附著胞 Formation of more than one appressoria at 24 h; E:36 h孢子上產(chǎn)生多條菌絲 Formation of multi-hyphea on one spore at 36 h; F:48 h生成大量菌絲且糾結(jié)成網(wǎng)狀 Formation of affluent hyphea at 48 h; G:60 h產(chǎn)生分生孢子梗 Generation of conidiophores at 60 h; H:72 h產(chǎn)生分生孢子 Production of new spores; C:分生孢子Conidium; GT:芽管Germ tube; Ap:附著胞Appressoria; PA:第1個附著胞Primary appressoria; SA:第2個附著胞Second appressoria; H:菌絲Hyphea; Co:分生孢子梗Conidiophores; NC:新產(chǎn)生的分生孢子New spores.
圖3 附著胞在植株上的生長發(fā)育進(jìn)程Fig.3 Developmental progress of the appressoria on the plant A:芽管頂端膨大開始分化附著胞 Enlargement of the top of the germ tube; B:膨大部分形成吸盤狀結(jié)構(gòu)附著胞 The enlargement part turns into appressoria with sucker shape and light color; C:吸盤狀附著胞吸附在寄主表面呈現(xiàn)心形、水滴形和圓形等不規(guī)則形態(tài)且細(xì)胞壁內(nèi)黑色素加深 The appressoria adsorbs on the cuticle with the color become dark and presents irregular shapes such as heart, water-drop and roundness; D:附著胞中間亮點部分為侵染釘 Formation of penetration peg (internal light spot) and penetration; E、F:孢子形成多個附著胞多位點侵染Formation of multi-appressorium and penetration by more than one points; ILS:內(nèi)部亮點Internal light spot; PA:第1個附著胞Primary appressoria; SA:第2個附著胞Second appressoria; TA:第3個附著胞Third appressoria.
圖4 膠孢炭疽菌侵染柱花草葉片掃描電鏡觀察Fig.4 Observation of C. gloeosporioides infecting the leaves of Stylosanthese by SEM A:24 h侵染菌絲侵染柱花草葉片 Penetration hpyhea penetrate host leaves at 24 h; B:36 h附著胞及菌絲均侵染葉片 Plentiful appressorium and hpyhea penetrate host leaves at 36 h. PH:侵染菌絲Penetration hpyhea; SM:葉片表面菌絲Surface mycelium; IH:內(nèi)生菌絲Internal hpyhea; Ap:附著胞Appressoria.
2.4 寄主細(xì)胞對膠孢炭疽菌侵染的反應(yīng)
接種后0~24 h均未觀察到寄主細(xì)胞被臺盼藍(lán)染液染上藍(lán)色,24 h部分膠孢炭疽菌附著胞侵染點細(xì)胞被染色,表明接種后24 h膠胞炭疽菌初次侵入寄主細(xì)胞(圖5A、B),在侵染釘穿透寄主細(xì)胞壁后,形成初生菌絲穿透細(xì)胞膜,使寄主細(xì)胞染色。而部分菌產(chǎn)生多個附著胞、侵染釘多次侵染仍然沒有造成寄主細(xì)胞膜的破裂,侵染點細(xì)胞未著色(圖5C)。接種后96 h寄主細(xì)胞崩解,組織液外流粘附在葉片表面(圖5D、E),此時的病原菌已經(jīng)進(jìn)入了第2次侵染循環(huán)。
由于胼胝質(zhì)與脫色苯胺藍(lán)反應(yīng),產(chǎn)生熒光反應(yīng)。對各時間點采集葉片進(jìn)行脫色苯胺藍(lán)染色、熒光顯微鏡觀察,均未檢測到熒光,說明寄主感病前期無胼胝質(zhì)的形成。
圖5 膠孢炭疽菌侵染致死寄主細(xì)胞及寄主細(xì)胞的崩解Fig.5 The host cells killed by C. gloeosporioides and collapse A、B:接種后24 h附著胞侵入寄主細(xì)胞,臺盼藍(lán)進(jìn)入細(xì)胞,侵染點細(xì)胞被染上藍(lán)色 The blue host cell near the infection point indicated that the appressoria have infected the host after 24 h inoculated; C:接種后48 h孢子產(chǎn)生5個附著胞,5個位點侵染寄主,無任何侵染點著色,未穿透寄主細(xì)胞膜 The colorless cell near the infection point indicated that the spores haven’t infected host after five times inoculated; D、E:96 h寄主細(xì)胞崩解,大量褐色組織液外流,粘附在葉片表面 After 96 h inoculated the host cell collapses, a lot of brown tissue liquid flows out and adheres to the leaf surface.
膠孢炭疽菌與豆炭疽菌(C.lindemuthianum)的侵染模式相同,均屬于胞內(nèi)半活體營養(yǎng)菌(intracellular hemibiotrophy),與寄主建立了兩個營養(yǎng)關(guān)系:活體營養(yǎng)和死體營養(yǎng)[16-17]?;铙w營養(yǎng)階段,寄主細(xì)胞保持活力,病原菌形成一系列特殊的侵染結(jié)構(gòu)。為了侵入寄主的表皮細(xì)胞,病原菌在識別寄主后開始萌發(fā)長出芽管,然后快速分化出高度特異的侵染結(jié)構(gòu)附著胞。附著胞附著在寄主表面后,其內(nèi)的滲透活性復(fù)合物逐漸合成黑色素,黑色素對寄主細(xì)胞壁有選擇滲透性,結(jié)合附著胞的滲透力會產(chǎn)生巨大的膨壓,形成侵染釘侵入寄主,寬的初生菌絲形成。半活體營養(yǎng)菌侵染過程中活體營養(yǎng)階段都較短,一般為一天到幾天[18-19]。之后窄的次生菌絲產(chǎn)生,其為更具有破壞性的死體營養(yǎng)菌,次生菌絲的產(chǎn)生標(biāo)志著侵染進(jìn)入了死體營養(yǎng)階段。死體營養(yǎng)階段,菌絲需穿透寄主細(xì)胞壁,在細(xì)胞間蔓延[20-22]。本實驗僅觀察到侵染釘、侵染菌絲的侵染,及菌絲在細(xì)胞內(nèi)的蔓延;但未能從形態(tài)上直接區(qū)別初生菌絲和次生菌絲,因此不能確定整個侵染過程中活體營養(yǎng)階段和死體營養(yǎng)階段的分界點。最后寄主表面出現(xiàn)分生孢子梗并產(chǎn)孢,完成一個侵染循環(huán),且確定其在接種后72 h就完成。
Ranathunge等[23]用平頭炭疽菌接種辣椒,孢子萌發(fā)始于接種后2 h,12 h大量產(chǎn)生附著胞,12~24 h侵染釘大量產(chǎn)生,72 h菌絲侵染。Vinijsanun等[10]用B型膠孢炭疽菌侵染愛德華柱花草(Endeavour),24 h產(chǎn)生附著胞和侵染釘,72 h內(nèi)生菌絲形成,此時寄主細(xì)胞并未崩解。而本研究用B型菌侵染熱研2號柱花草,發(fā)病提前,接種后72 h病原菌完成侵染循環(huán),96 h寄主細(xì)胞崩解。發(fā)病進(jìn)程的差異與病原菌致病性、寄主抗病性、接種菌量和培養(yǎng)條件等有關(guān)。病原菌的致病性強(qiáng),寄主感病,接種孢子濃度大,培養(yǎng)條件高溫高濕,則植株發(fā)病迅速,反之,植株發(fā)病較慢。本研究通過對接種葉片的侵染形態(tài)觀察,明確了炭疽菌各侵染結(jié)構(gòu)的形成過程及形成的關(guān)鍵時期,并揭示了柱花草的整個發(fā)病過程、壞死及崩解反應(yīng);為柱花草與膠孢炭疽菌的互作,抗病相關(guān)代謝產(chǎn)物及抗病基因的研究提供了依據(jù),同時也為病害防控奠定了基礎(chǔ)。
[1] Irwin J A G, Cameron D F, Lenne J M. The Biology and Agronomy ofStylosanthes[M]. Sydney, Australia: Academic Press, 1984: 73-101.
[2] Sonoda R M. Incidence ofColletotrichumleaf spot and stem canker on introductions and selections ofStylosantheshumilis. Plant Disease Reporter, 1973, 57(9): 747-749.
[3] Baldion R W, Lozano J C, Grof B. Evaluation of resistance ofStylosanthesspp. anthracnose (Colletotvichumgloeospovioides). Fitopathologia, 1975, 10(2): 104-108.[4] Feng S F, Li F E, He C Z. Bionomics and epidemiology go anthracnose onStylosanthesspp..Chinese Journal of Tropical Crops, 1994, 15(1): 87-94.
[5] Yi K X, Zheng J L, Xi J G,etal. Preliminary study of epidemic factors ofColletotrichumgloeosporioidesin stylo. Chinese Journal of Tropical Agriculture, 2014, 34(2): 74-78.
[6] Bailey J A, Jeger M. Colletotrichum: Biology, Pathology and Control[M]. Wallingford: UK CAB International Press, 1992: 88-120.
[7] Mendgen K, Venue M H. Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 2002, 7(8): 352-356.
[8] Kelemu S, Skinner D Z, Badel J L. Genetic diversity in South AmericanColletotrichumgloeosporioidesisolates fromStylosanthesguianensis, a tropical forage legume. European Journal of Plant Pathology, 1999, 105(3): 261-272.
[9] Kelemu S, Badel J L, Moreno C X,etal. Virulence spectrum of South American isolates ofColletotrichumgloeosporioideson selectedStylosanthesguianensisgenotypes. Plant Disease, 1996, 80: 1355-1358.
[10] Vinijsanun T, Irwin J A G, Cameron D F. Host range of three strains ofColletotrichumgloeosporioidesfrom tropical pasture legumes, and comparative histological studies of interactions between type B disease-producing strains andStylosanthesscabra(Non-host) andS.guianensis(Host). Australian Journal of Botany, 1987, 35(6): 655-677.
[11] Zhang W L, Guo Z F. Preliminary identification of the pathogen of stylo anthracnose disease and assessment of resistance ofStylosanthesspp..Guangdong Agricultural Sciences, 2007, 2: 51-54.
[12] Irwin J A G, Cameron D F. Two diseases inStylosanthesspp. caused byColletotrichumgloeosporioidesin Australia, and pathogenic specialization within one of the causal organisms. Crop and Pasture Science, 1978, 29(2): 305-317.
[13] Fang Z D. Research Methods of Plant Desease[M].Third edition. Bengjing: China Agriculture Press, 1998: 104-116.
[14] Stone J M, Heard J E, Asai T,etal. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr)Arabidopsismutants. The Plant Cell, 2000, 12: 1811-1822.
[15] Wang S L, Liang P, Liu W B,etal. Cytological analysis of compatible interactions between rubber tree andOidiumheveae. Plant Protection, 2014, 40(3): 26-36.
[16] Connell R J, Bailey J A, Richmond D V. Cytology andphysiology of infection ofPhaseolusvulgarisbyColletotrichumlindemuthianum. Plant Pathology, 1985, 27: 75-98.
[17] Zhang J Z, Xu T. Cytological characteristics of the infection in different species, varieties and organs of persimmon byColletotrichumgloeosporioides. Mycosystema, 2005, 24(1): 116-122.
[18] Deising H B, Werner S, Wernitz M. The role of fungal appressoria in plant infection. Microbes Infect, 2000, 2(13): 1631-1641.
[19] Mendgen K, Deising H. Infection structures of fungal plant pathogens- a cytological and physiological evaluation. New Phytologist, 1993, 124(2): 193-213.
[20] Muhammed Z, Brlansky R H, Timmer L W. Intection of flower and vegetative tissues of Citrus byColletrichumacutatumandC.gloeosporioides. Mycological Society of America, 1996, 88(1): 121-128.
[21] Binyamini N, Nacel M S. Latent infection in Avocado fruit due toColletotrichumgloeosporioides. Phytopathology, 1971, 62: 592-594.
[22] Coates L M, Muirhead I F, Irwin J AG,etal. Initial infection processes byColletotrichumgloeosporioideson avocado fruit. Mycological Research, 1993, 97(11): 1363-1370.
[23] Ranathunge N P, Mongkolporn O, Ford R,etal.Colletotrichumtruncatumpathosystem onCapsicumspp: infection, colonization and defence mechanisms. Australasian Plant Pathology, 2012, 41(5): 463-473.
參考文獻(xiàn):
[4] 馮淑芬, 李鳳娥, 何朝族. 筆花豆炭疽病菌生物學(xué)特性和流行條件研究. 熱帶作物學(xué)報, 1994, 15(1): 87-94.
[5] 易克賢, 鄭金龍, 習(xí)金根, 等. 柱花草炭疽病流行因子初探. 熱帶農(nóng)業(yè)科學(xué), 2014, 34(2): 74-78.
[11] 張偉麗, 郭振飛. 柱花草炭疽病菌初步鑒定及柱花草抗性分級研究. 廣東農(nóng)業(yè)科學(xué), 2007, 2: 51-54.
[13] 方中達(dá). 植病研究方法[M]. 第三版. 北京: 中國農(nóng)業(yè)出版社, 1998: 104-116.
[15] 萬三連, 梁鵬, 劉文波, 等. 橡膠樹與白粉病菌Oidiumheveae親和互作組織細(xì)胞學(xué)研究. 植物保護(hù)學(xué)報, 2014, 40(3): 26-36.
[17] 張敬澤, 徐同. 柿樹炭疽菌侵染不同柿樹種、品種和部位的細(xì)胞學(xué)特征. 菌物系統(tǒng), 2005, 24(1): 116-122.
Microscopic observation ofStylosantheseinfected byColletotrichumgloeosporioides
YANG Mao-Xia, LIN Guo-Biao, CHEN Cai-Hong, WANG Hui, LUO Li-Juan*
AgronomyofHainanUniversity,HainanProvincialKeyLaboratoryofTropicalBiologicalResourcesSustainableUtilization,Haikou570228,China
In order to study the disease progress of Stylo anthrocnose and the inoculated plants reaction, the 6 weeks old ofStylosantheseguianensiscv. Reyan2 inoculated by the suspension liquid ofColletotrichumgloeosporioidesspores. Microscopic observations of the leaves revealed the infecting process and counting the disease index through plant symptoms. Spores germinated and a few spores formed appressorium at 4 h. Most of spores germinated at 6 h, and a large quantity of geminating spores formed appressorium at 12 h and began to form penetration pegs. The inoculated spores began to produce hyphae at 36 h, a lot of hyphae formed and staggered into a mesh on the surface of the leave at 48 h. The geminating spores began to form conidiophores at 60 h. Numerous of new spores began to produce at 72 h. Parts of inoculated spores have finished disease cycle in 72 h. In the same time, plants appeared disease symptom gradually: leaves color became yellow, the host cell membrane rupture at 24 h, brown necrosis appeared at 48 h, then dead line,sclerotinite,mycelium appeared on the leaves surface at 72 h. The host cell began to collapse at 96 h. Disease index is 54.52 at 8 days, 55% of inoculated plants dead at 11 days.
Stylosanthese; Stylo anthrocnose; infection; microstructure; desease symptom
10.11686/cyxb20150521
http://cyxb.lzu.edu.cn
2015-01-27;改回日期:2015-03-12
國家自然科學(xué)基金(31360575)和國家牧草產(chǎn)業(yè)技術(shù)體系熱帶牧草育種(CARS-35-03)資助。
楊茂霞(1989-),女,四川達(dá)州人,在讀碩士。E-mail:18789231651@163.com *通訊作者Corresponding author. E-mail:luoljd@126.com
楊茂霞, 林國彪, 陳彩虹, 王薈, 羅麗娟. 膠孢炭疽菌侵染柱花草葉片的顯微觀察. 草業(yè)學(xué)報, 2015, 24(5): 175-181.
Yang M X, Lin G B, Chen C H, Wang H, Luo L J. Microscopic observation of Stylo infected byColletotrichumgloeosporioides. Acta Prataculturae Sinica, 2015, 24(5): 175-181.