• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Priority probability deceleration deadline-aware TCP

    2015-04-11 02:35:37JinYeJingLinandJiaweiHuang
    關(guān)鍵詞:環(huán)模模孔所需

    Jin Ye,Jing Lin,and Jiawei Huang

    1.School of Computer and Electronic Information,Guangxi University,Nanning 530004,China;

    2.School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;

    3.School of Information Science and Engineering,Central South University,Changsha 410083,China;

    4.Guangxi Experiment Center of Information,Guilin 541004,China

    Priority probability deceleration deadline-aware TCP

    Jin Ye1,4,Jing Lin2,and Jiawei Huang3,*

    1.School of Computer and Electronic Information,Guangxi University,Nanning 530004,China;

    2.School of Information and Communication,Guilin University of Electronic Technology,Guilin 541004,China;

    3.School of Information Science and Engineering,Central South University,Changsha 410083,China;

    4.Guangxi Experiment Center of Information,Guilin 541004,China

    In modern data centers,because of the deadlineagnostic congestion control in transmission control protocol(TCP), many deadline-sensitiveows can notnish before their deadlines. Therefore,providing a higher deadline meeting ratio becomes a critical challenge in the typical online data intensive(OLDI)applications of data center networks(DCNs).However,a problem named as priority synchronization is found in this paper,which decreases the deadline meeting ratio badly.To solve this problem,we propose a priority probability deceleration(P2D)deadline-aware TCP.By using the novel probabilistic deceleration,P2D prevents the priority synchronization problem.Simulation results show that P2D increases the deadline meeting ratio by 20%compared with D2TCP.

    data center networks(DCNs);deadline;priority synchronization;transport control protocol(TCP).

    1.Introduction

    With the rapid developmentof online applications,such as web services,cloud computing and data storage,data centers have become critical platforms for modern online informationservices[1].To ensure high performanceof data center networks(DCNs),recently researchers have proposed novel network structures and architectures[2–4], scheduling algorithms[5,6]and the software dene network(SDN)concept[7]to reduce transport overhead and improve the quality of services.

    In this paper,we focus on the online data intensive (OLDI)services,which are the typical data center applications,supporting web search,and online retail and advertising[8].To achieve high performance and service reliability,the OLDI applications usually adopt the barriersynchronized partition-aggregate communication pattern, in which the client initiates requests to all servers in.E parallel.When receiving requests,the servers response nearly at the same time.The responses are then collected by aggregator nodes and sent back to the client.

    Recent work reveals that transmission control protocol (TCP)trafc takes up almost 99.91%of the trafc in data centers.Specically,the TCP trafc is a mix of short and longows,including query trafc,delay sensitive short messages and throughput sensitive longows.For most of OLDI applications,the delay sensitiveows are allocated with communication deadlines.The time-sensitive short messageows are large in quantity while the backgroundows make more contributions to the byte[9].Under this kind of trafc pattern,the conventional TCP is unable to satisfytheperformancerequirementsforthefollowingreasons.(i)The default queue scheduling mechanisms,such asrst inrst out(FIFO),increase the tail-end network latencyforshortows.(ii)Thequerytrafcsynchronizesthe responses which may easily overow the queue of switch port connected to the aggregatorand brings about the TCP incastproblem[10].(iii)TheconventionalTCPignorestheow deadlines,while the application requests need be responded in time.Thus,DCNs should provide low latency for delay sensitiveows,high throughput for longows and high tolerance for burst concurrencyows.To achieve such goals,numbers of enhanced transport schemes of DCNs have been proposed in recent years.

    To provide the tolerance for burst concurrencyows, DCTCP utilizes the explicit congestion notication(ECN) feedback mechanism to adjust the sending rate.By keepingasmallqueuelengthofswitchbuffer,DCTCP helpsthe latency-sensitiveows avoid large queuing delay and consequently achieve small latency.However,as a deadlineunaware protocol,DCTCP ignores the different deadline requirementsofshort messageows andbackgroundows [11].ICTCP uses adaptive congestion control at the receiving end to settle the TCP incast problem,but also doesnot consider the deadline requirements[12,13].

    Compared with DCTCP,D3[14]is therst deadlineaware transport control protocol.In order to meet theow deadlines,D3designs a centralized and proactive method to schedule the network resources.In this way,D3significantly enhances the meeting deadline ratio.However,D3allocates the rate toows by their arrived order,meaning that the scheduling discipline of D3is FIFO.As a consequence,some urgentows arriving later may miss their deadlines.

    Based on DCTCP,D2TCP elegantly adjusts the extent of window decreasing according to theow urgent degree and networkcongestionstate.In this way,it helps the shortows with urgent deadlines to meet their deadlines[15].

    On the other hand,the deadline-aware scheduling algorithms on the switches assign high priority to short messageows and try to reduce their transport latencies[14,16,17].As a typical scheduling algorithm,PDQ optimally minimizes the averageow completion time (AFCT)byusingearliest deadlinerst(EDF)fordeadlinesensitiveows and shortest jobrst(SJF)for shortows. L2DCT[18]approximates the least attained service(LAS) scheduling principle at the sender in a distributed way.According to the data size aow has sent,L2DCT distinguishes the long and shortows.Then L2DCT adjusts the sending rates of shortows and longows.Therefore,the value of AFCT is reduced.

    Although the above deadline-aware schemes reduce the deadline missing ratio,they all ignore the problem that, when the bottleneck link is congested,theows with similar priority may miss the deadline for competing.We call it the priority synchronization problem.Our core design ideal is to ensure moreows meeting their deadlines by our priority probability deceleration.

    The remainder of the paper is organizedas follows.The priority synchronization problem is analyzed in detail in Section 2.The protocoldesign of P2D is given in Section 3 and its performanceis evaluated on NS2 in Section 4.Section 5 draws the conclusion and outlines the future work.

    2.Priority synchronization

    Since the OLDI applications of data centers are delay sensitive,aow can make contributions only if itnishes within its deadline.If someows are not able to execute timely,the responses transferred by suchows may be unavailable or useless,wasting both computing and network resource.Under the partition-aggregate pattern,all the responses of an OLDI application have the sameow deadline and size.This means that theows are likely to respond nearly at the same time.

    Here,we take a typical web search application as an example.As shown in Fig.1,a queryow with the search keywordsfrom the client is handedoverto the work nodes, which will respond at the same time.Then the responses are collected by the aggregator to produce a result.Althoughtheremayexisthugenumbersofworknodes,thenite OLDI applications categories limit the numberof trafcclasses.Hence,largenumbersofowswithsimilarow size and deadline coexist.To evaluate the performance of existing datacenter TCP in this scenario,we conduct the following simulation.

    Fig.1 Web search application

    In the evaluation,11 work nodes are connected to a switch with 4 MB buffer via ten 1 Gbps links with 75μs link latency.In the test,10 work nodes transmit DCTCP and D2TCPows to the 11th host,respectively.We setveows sized 50 kB and fourows sized 1 MB,with respective deadlines of 30 ms and 40 ms,and the remaining one sized 10 MB is set as the background without a deadline. Allows burst synchronously at 0.2 s.

    From the observation,we believe that it is a global synchronizationproblemin congestioncontrolwhenows are assigned with similar priority.When congestion occurs, congestion window reduction of the responseows in the same application is similar,and congestion window increment is also identical when there is no congestion.As a result,the completion time of allows is almost the same.That means that multipleows with similar priority may miss their deadlines,which results in bad performances of DCTCP and D2TCP.We call this problem as priority synchronization.

    Fig.2 DCTCP and D2TCP performance

    Actually,whenthedemandforresourceexceedsthenetwork capacity,the deadline requirements for all theows cannot be satised,especially for thoseows assigned with higher priority.Under this consideration,we propose a probability deceleration method based onow priority, which can weaken the impact of the priority synchronizationproblem,andhelps moreows to meettheir deadlines.

    3.P2D protocol

    In this section,we give the protocol design of P2D.As described in Section 2,the design challenge is to solve priority synchronization when congestion happens.Thus, we focus on the strategy of resource allocation and adjustment of theow sending rates when priority synchronization happens.Our design goal includes the following.

    (i)Achieve more bandwidths for delay sensitiveows when mixed with longows without deadlines;

    (ii)Meet the deadlines of most concurrentows with the same priority.

    The basic idea of P2D protocol and its potential benets can be presented by an example.Consider the scenario wheretherearefourowsA,B,C andD throughthesame bottleneck link.For simplicity,we assume that one unit size needs one unit time to transmit.As shown in Table 1, theow sizes of fourows are 1,1,2 and 2,respectively. The corresponding relative deadlines are 2.5,2.5,5.5 and 5.5,respectively.

    Table 1 Concurrent fows

    Fig.3(a)shows the result of fair sharing.Theows fAandfBfromApplication1nish their transmissionat time 4,while fCand fDfrom Application 2 at time 6.We call thenish time as Ts.Obviously,all fourows miss their deadlines.We dene the exceeding time Etas Ts?D.fAand fBexceed 1.5 in time while fCand fDexceed 0.5. Thus we deduce that the bandwidth demand of fAand fBis greater than that of fCand fD.

    When it comes to the deadline-aware protocol,such as D2TCP,the result is shown in Fig.3(b).Although the urgentows fAand fBachieve more bandwidths than fCand fD,fAand fBstill cannotnish before their deadlines.Of course we can assign a higher priority to fAand fBto help them meet their deadlines.For example,we could use the EDF discipline to allocate all bandwidths to fAand fB.However,from beginning to end,the aggressive manner of synchronizedows fAand fBresult in the tardy of fCand fD.In fact,the demand of fCand fDshould not be ignored.

    However,in Fig.3(d),while the deceleratedow comes to fB,there is only one tardyow.In fact,only choosing theows from Application 1 can satisfy requirements of threeows.This gives us the motivation of P2D,that is to decelerate thoseows whose bandwidth demands are much greater than allocation,just like fAor fBin this scene.

    Fig.3 Comparison of resource allocation

    Here,we explainhow to select the deceleratedow.The required window size W′iof the ithow is

    where Bi,Di,RTTiand MSS are the remaining size,ow deadline,round trip time and maximum segment size, respectively.Then,we dene urgent degree prias the required windowover the average window size.We denote the maximum window size as W to achieve the full bandwidth.Then,theaveragewindowsizeis 3W/4.Therefore,prican be approximated as

    Since we can adjust the sending rate by modifying the value of pri,we analyze how the urgent degree prican affect the resource allocation.Let S(W1,W2)denote the numberof packets whichhave been sent out while the congestion windowsize increases from W1to W2in W2?W1RTT.We have

    We assume that W?is the critical window size whenthe switch queue size reaches K,a certain threshold to predict congestion.It takes 1 RTT for the sender to respond to congestion,during which the congestion window size will reach W?+1.Like DCTCP,we maintain α∈[0,1]to measure the extent of congestion.We further assume that the window sizes of allows are synchronized,and their congestion window varying is shown in Fig.4.

    Fig.4 Congestion window varying of P2D

    In P2D,the ECN-based feedback mechanism and priority employed in DCTCP and D2TCP are used with a few modications.The congestion level α can be calculated by

    With(4)and(3),we get:

    Assuming α is small,(5)can be simplied as

    Now we can compute the oscillation amplitude Aiin Fig.4.

    When reaching a steady state,

    where C∈[0,1]is constant,and Wsumis the capacity of the bottleneck.On this basis,we can get the predicted value of windowfor all theows when it reaches the steady state.

    The detail protocol design of P2D is given as follows.

    3.1P2D sender

    The P2D sender maintains the state variables,and flagi.If flagiis set to 1,the ithow will be decelerated by modifying prito an innitesimal value.Moreover,the sender needs to pre-process the trafc according to those state variables whenever any of the following cases happens.

    Case 1Whenand the required resource of the ithow is larger than the capacity of the bottleneck, P2D will choose to decelerate it.

    When sending packets,the sender attaches a packet header,containing the newest state variables above.Whennishing sending,the P2D sender will send an ICMP notice to switch to announce that the transmission of the ithow is completed.

    3.2P2D switch

    TheobjectiveofaP2Dswitch is toadjustthe priorityoftheow when priority synchronization happens.The switch maintains state variables from received packet headers ofow i and calculates W?according to formula(8).The P2D switch will update those variables when receiving a newow.

    The probability piof the ithow can be expressed as

    Fig.5 Deceleration probability of concurrent fows

    The expected value can be calculated as

    From(16),we know that the bandwidth resources saved by deceleratingows can just make the remainingows to complete their transmission within the deadline.

    3.3P2D receiver

    The P2D receiver copies the header fromthe data packet to its corresponding ACK packet.Whenever an ACK packet arrives,the sender updates flagifor the ithow.The whole process can be described as Process 1 which includes Algorithms 1-3.

    Algorithm 1Sender

    圖6中可以看出,當(dāng)泊松比和長徑比較小時(shí),相對壓強(qiáng)保持相對平穩(wěn),僅在較小范圍內(nèi)增大;當(dāng)泊松比和長徑比增大到一定程度后,隨著泊松比和長徑比的增大,相對壓強(qiáng)急劇增大。表明??捉Y(jié)構(gòu)能顯著影響擠壓制粒成型所需的擠出力,進(jìn)而影響制粒能耗和設(shè)備的使用壽命。隨著??组L徑比的增加所需的擠出壓強(qiáng)呈指數(shù)形式增長,長徑比過大將顯著提高制粒能耗,反之長徑比過小又可能導(dǎo)致制粒條件不滿足,顆粒無法成型。因此,根據(jù)物料特性選擇合適的環(huán)模結(jié)構(gòu)尺寸是確保滿足制粒成型條件的同時(shí)有效降低制粒能耗的重要途徑。

    InitializationCalculateand flagi

    else if flagi=1,pri=infinitesimal;

    Attach the header to the packet which containselds W′

    i,priand flagi;

    ifno congestioncwnd=cwnd+1;

    Algorithm 2Switch

    Receive a packet

    Update flagi,W′i,pri;

    N=N+1;

    Deceleration function(N);

    }

    copy flagifrom the switch to the header of packet;

    }

    If receiving ICMP notice from i then

    remove flagi,W?i,W′i,priin the switch;

    N=N?1;

    Deceleration function(N)

    }

    Algorithm 3Deceleration function(X)

    calculate pi;

    set flagi=1 with pi;

    }

    For i=0;i<X;i++

    Update and maintain flagi,W?i,W′i,pri

    4.Simulation evaluation

    In this section,we evaluate the performance of P2D by using the NS2 simulator.Using the trafc patterns in[3], theow trafc includes query trafc(2 kB to 20 kB in size),delay sensitive short message(50 kB to 1 MB),and throughputsensitivelongows(1MBto50MB).Thesimulations parameters are described in Table 2.priis initialized as 0.1 for backgroundows and deceleratingows.

    Table 2 Simulation parameters

    4.1Priority synchronization scenario

    We set up the simulation environment as in Section 2,and all the simulation parameters are the same.Fig.6 shows the performanceof P2D.We cannd that there is only oneow which is obviously decelerated and the otherows meet their deadlines.

    Fig.6 P2D performance

    4.2Mixing traffc

    To evaluate the friendly performance of P2D,we mix the trafc with the deadline and non-deadline trafc inthe data-intensive environment with network topology in Fig.7.

    Fig.7 Network topology of mixing traffc

    The work nodes are set to 20,30,and 40,respectively. The root seeds the queryow cyclical to all the work nodes.Thenafteraxedcomputationtime,theworknodes respond to the query synchronously.The size of replies ranges from 100 kB to 500 kB with a deadline of 5–25ms.Inaddition,we havetwo worknodesthatsendlonglivedows of 10 MB to the root,once every 80 ms.The experiment lasts for the duration of about sending 1 000 times queryows.For D2TCP,the value of d is capped within the range(0.5,2).

    In Fig.8,the percentage of missed deadlines of TCP is the highest in all the cases,so does the deadline-unaware DCTCP.By contract,D2TCP andP2D performwell.Fig.9 gives the throughputs of the backgroundow.TCPows obtain the least throughput.Compared with DCTCP and D2TCP,the throughput of P2D is 10%and 7%lower.This is because the scheme ensures the higher priorityows’transmission by sacricing a small mount of throughput.

    Fig.8 Missed deadlines

    Fig.9 Throughput of long fows

    4.3OLDI performance

    The DCNs typically consist of two tiers of switches in the multi-hop topology.As shown in Fig.10,there are 25 racks and each rack can have up to 40 work nodes.Each worknodeis connectedto the top-of-rack(ToR)switch via 1 Gbps links,and each ToR is connected to a fabric switch which has large buffers via a single link with a line rate equal to 1*number-of-work-nodes-in-a-rack Gbps with 20μs link latency.There are a set ofve synthetic OLDI applications,and each application is allocated withve OLDI trees.Each tree has one parent and N child nodes. N in the OLDI tree varies from 10 to 40.We setve OLDI application’sow data sizes to 100 kB,200 kB,400 kB, 600 kB,and 800 kB with deadlines to 5 ms,10 ms,15 ms, 20 ms,and 25 ms,respectively.The network utilization is 10%–20%and the deadlines have 10%and 50%uniformrandom variance which is close to the realistic scene.

    Fig.10 Simulated network of OLDI

    Fig.11 shows the missed deadline fraction for four kinds of protocols.Wend that P2D performs better than other three.Compared with high variance(50%),the priority synchronization problem is much outstanding with low variance(10%),when P2D’s improvement for missed deadline fraction is much obvious.The missed deadline fraction of P2D is 25%lower than D2TCP at fan-in degree of40with highvariance.Whenandonlywhenthe rangeof d falls into 0.5–2,D2TCP can prioritizes theows.However,in this experiment,the urgent degree d reaches its upper limit.Thus,D2TCP has little difference in performances compared with DCTCP.

    Fig.11 OLDI performance

    5.Conclusions

    We design P2D,a deadline-aware protocol,which targets reducing the missed deadline fraction when the priority synchronization problem happens in DCNs.P2D is able to estimate the maximum delay sensitiveows that bottleneck capacity can satisfy.And it takes into account the strategy of resource allocation and adjusts the sending rate of work nodes with higher priority.By using the simulation,we show this method can ensure moreows to meet their deadlines.Future work includes the improvement of the rate control protocol for maximizing the number ofows that meet their deadlines.

    [1]Y.Zhang,N.Ansari,Y.Zhang,et al.On Architecture design, congestion notication,TCP incast and power consumption in data centers.IEEE Communications Surveys&Tutorials, 2013,15(1):1–26.

    [2]Y.J.Wang,W.D.Sun,S.Zhou,et al.Key technologies of distributed storage for cloud computing.Journal of Software, 2012,23(4):962–986.

    [3]X.Q.Liu,S.B.Yang,L.M.Guo,et al.Snowake:a new-type network structure of data center.Chinese Journal of Computers,2011,34(1):76–86.(in Chinese)

    [4]X.L.Wei,M.Chen,J.H.Fan,et al.Architecture of the data center network.Journal of Software,2013,24(2):295–316. (in Chinese)

    [5]Y.Y.Li,H.B.Wang,P.Zhang,et al.Multi-attribute aware scheduling for inter-datacenter bulktransfers.Journal onCommunications,2012,33(9):121–131.

    [6]C.L.Cheng,Y.Pan,D.Y.Zhang.Energy saving resource scheduling algorithmincloudenvironment.Journal ofSystems Engineering and Electronics,2013,35(11):2416–2423.

    [7]D.Crisan,R.Birke,G.Cressier,et al.Got loss?get zOVN! Proc.of the ACM SIGCOMM,2013:423–434.

    [8]P.Zheng,L.Z.Cui,H.Y.Wang,et al.A data placement strategy for data-intensive applications in cloud.Chinese Journal of Computers,2010,33(8):1472–1480.(in Chinese)

    [9]M.Alizadeh,A.Greenberg,D.A.Maltz,et al.Data center TCP.Proc.of the ACM SIGCOMM.2010:63–74.

    [10]Y.M.Ren,Y.Zhao,P.Liu,et al.A survey on TCP Incast in data center networks.International Journal of Communication Systems,2012,27(8):1160–1172.

    [11]M.Alizadeh,A.Javanmard,B.Prabhakar.Analysis of DCTCP:stability,convergence,and fairness.Proc.of the ACM SIGMETRICS,2011:73–84.

    [12]H.T.Wu,Z.Q.Feng,C.X.Guo,et al.ICTCP:incast congestion control for TCP in data center networks.Proc.of the 6th ACM CoNEXT,2010.

    [13]V.Vasudevan,A.Phanishayee,H.Shah,et al.Safe and effectivene-grained TCP retransmissions for datacenter communication.SIGCOMM Computer Communication Review,2009, 39(4):303–314.

    [14]C.Wilson,H.Ballani,T.Karagiannis,et al.Better never than late:meeting deadlines in datacenter networks.Proc.of the ACM SIGCOMM,2011:50–61.

    [15]B.Vamanan,J.Hasan,T.N.Vijaykumar.Deadline-aware datacenter TCP.Proc.of the ACM SIGCOMM,2012:115–126.

    [16]C.Y.Hong,M.Caesar,P.Godfrey.Finishingows quickly with preemptive scheduling.Proc.of the ACM SIGCOMM, 2012:127–138.

    [17]M.Alizadeh,S.Yang,M.Sharif,et al.pFabric:minimal nearoptimal datacenter transport.Proc.of the ACM SIGCOMM, 2013:435–446.

    [18]A.Munir,I.A.Qazi,Z.A.Uzmi,et al.Minimizingow completion times in data centers.Proc.of the IEEE INFOCOM, 2013.

    Biographies

    Jin Ye received her Ph.D.degree from the School of Information Science and Engineering at Central South University in2008 andher B.S.and M.S.degrees in communication engineering from Guilin University of Electronic Technology.She is now a professor in Guangxi University,as well as a member of the Key Laboratory of Cognitive Radio and Information Processing.Her research interests include performance analysis,congestion control,and cross-layer design in wireless networks.

    E-mail:Yejin@gxu.edu.cn

    Jing Lin received her B.S.degree in communication engineering from Nanchang University in 2009.She is now a M.S.candidate in electrical and computer engineering in Guilin University of Electronic Technology.Herresearch interests include the mathematical analysis and protocol design of emerging wireless networks.

    E-mail:linjin@guet.edu.cn

    Jiawei Huang obtained his Ph.D.and M.S.degrees from the School of Information Science and Engineering at Central South University in 2008 and 2004,respectively.Healso received hisBachelor degree from the School of Computer Science at Hunan University in 1999.He is now an associate professor in the School of Information Science and Engineering at Central South University,China.Hisresearch interests include performance modeling,analysis,and optimization for wireless networks and data center networks.

    E-mail:jiaweihuang@csu.edu.cn

    10.1109/JSEE.2015.00067

    Manuscript received January 07,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61163060;61103204;61462007).

    猜你喜歡
    環(huán)模模孔所需
    環(huán)模智能定孔疏通裝置設(shè)計(jì)研究
    生物質(zhì)固化成型機(jī)不同孔形受力分析*
    生物質(zhì)顆粒機(jī)環(huán)模固定螺栓斷裂分析及改進(jìn)
    Editors
    苜蓿草粉對9KWH-250顆粒壓制機(jī)環(huán)模的磨損試驗(yàn)分析
    基于ANSYS的制粒機(jī)??讌?shù)分析及優(yōu)化
    復(fù)習(xí)鋪墊 因『需』而設(shè)
    黑河教育(2014年12期)2014-12-18 18:52:37
    環(huán)模模孔錐角及進(jìn)料腔長度對??讖?qiáng)度影響研究
    環(huán)模制粒機(jī)環(huán)模磨損計(jì)算及分析
    八十九團(tuán)讓農(nóng)民買到放心農(nóng)資
    亚洲国产精品国产精品| 中文字幕精品免费在线观看视频 | 精品少妇内射三级| www.熟女人妻精品国产 | 日本91视频免费播放| 性高湖久久久久久久久免费观看| 久久精品国产亚洲av天美| 女的被弄到高潮叫床怎么办| 精品国产一区二区三区四区第35| 热re99久久精品国产66热6| 亚洲精品第二区| 看非洲黑人一级黄片| 亚洲国产av新网站| 成人黄色视频免费在线看| 人人妻人人澡人人爽人人夜夜| 免费少妇av软件| 亚洲精品美女久久久久99蜜臀 | 亚洲精品视频女| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠久久av| 久久免费观看电影| 国产熟女午夜一区二区三区| 欧美精品国产亚洲| 夜夜骑夜夜射夜夜干| 亚洲国产成人一精品久久久| 一本久久精品| 精品人妻一区二区三区麻豆| 插逼视频在线观看| 亚洲综合色网址| 大香蕉97超碰在线| 日韩欧美一区视频在线观看| 2022亚洲国产成人精品| 日本av手机在线免费观看| 国产老妇伦熟女老妇高清| 欧美精品高潮呻吟av久久| 国产av精品麻豆| 国产极品粉嫩免费观看在线| 观看美女的网站| av国产久精品久网站免费入址| 9色porny在线观看| 亚洲经典国产精华液单| 十八禁网站网址无遮挡| 看免费成人av毛片| 久久99一区二区三区| 亚洲熟女精品中文字幕| 精品午夜福利在线看| 观看美女的网站| 中文字幕最新亚洲高清| 国产成人精品无人区| 观看av在线不卡| 一边亲一边摸免费视频| 国产精品一区二区在线不卡| 午夜福利视频精品| 丰满迷人的少妇在线观看| 午夜福利视频精品| 人妻人人澡人人爽人人| 好男人视频免费观看在线| 99九九在线精品视频| 青春草亚洲视频在线观看| 国产精品久久久久久久电影| 日本与韩国留学比较| av又黄又爽大尺度在线免费看| 国产成人免费无遮挡视频| 亚洲人与动物交配视频| 精品99又大又爽又粗少妇毛片| 巨乳人妻的诱惑在线观看| 久久亚洲国产成人精品v| 99国产综合亚洲精品| 一级片免费观看大全| 欧美日韩视频精品一区| 国产精品免费大片| 卡戴珊不雅视频在线播放| 水蜜桃什么品种好| 亚洲国产欧美日韩在线播放| 91成人精品电影| 成人午夜精彩视频在线观看| 免费看光身美女| 国产av精品麻豆| 久久久久久久久久久久大奶| av福利片在线| 五月玫瑰六月丁香| 国产精品一区二区在线不卡| 国产精品99久久99久久久不卡 | 亚洲欧美中文字幕日韩二区| 在线观看免费高清a一片| 亚洲欧洲精品一区二区精品久久久 | 一本久久精品| 亚洲av综合色区一区| 国产高清三级在线| 赤兔流量卡办理| 国产精品一二三区在线看| 男人舔女人的私密视频| 一级爰片在线观看| 国产毛片在线视频| 亚洲第一区二区三区不卡| 日本av免费视频播放| 男人操女人黄网站| 黑人高潮一二区| 亚洲成人手机| 亚洲人与动物交配视频| 丰满饥渴人妻一区二区三| 午夜影院在线不卡| 免费看光身美女| 欧美人与善性xxx| 天天躁夜夜躁狠狠久久av| 免费人妻精品一区二区三区视频| 国产亚洲最大av| 大香蕉97超碰在线| 久久精品国产a三级三级三级| av视频免费观看在线观看| 捣出白浆h1v1| 中国美白少妇内射xxxbb| 男女下面插进去视频免费观看 | 国产在线一区二区三区精| 午夜福利视频在线观看免费| 国产探花极品一区二区| 午夜福利在线观看免费完整高清在| 日本黄色日本黄色录像| av免费观看日本| 伦理电影免费视频| 国产老妇伦熟女老妇高清| 天堂俺去俺来也www色官网| 国产色婷婷99| 亚洲久久久国产精品| 日本-黄色视频高清免费观看| 精品一区二区三区四区五区乱码 | 这个男人来自地球电影免费观看 | 看免费成人av毛片| 这个男人来自地球电影免费观看 | 建设人人有责人人尽责人人享有的| 国产一级毛片在线| 国产精品久久久av美女十八| 精品人妻熟女毛片av久久网站| 午夜福利网站1000一区二区三区| 亚洲精品乱码久久久久久按摩| 两性夫妻黄色片 | 国产精品久久久久成人av| 久久久久久久大尺度免费视频| 十八禁网站网址无遮挡| 亚洲一码二码三码区别大吗| 久久久久久伊人网av| 国产精品女同一区二区软件| 人妻系列 视频| 免费人成在线观看视频色| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 国产综合精华液| 超碰97精品在线观看| 午夜福利乱码中文字幕| 精品人妻在线不人妻| 全区人妻精品视频| 22中文网久久字幕| 最近最新中文字幕免费大全7| 91精品国产国语对白视频| 如何舔出高潮| 黄色 视频免费看| 丁香六月天网| 欧美人与善性xxx| 久久99一区二区三区| 亚洲成国产人片在线观看| 毛片一级片免费看久久久久| 欧美3d第一页| 激情视频va一区二区三区| 亚洲av在线观看美女高潮| 亚洲成av片中文字幕在线观看 | 99国产精品免费福利视频| 亚洲第一区二区三区不卡| 成人国产麻豆网| 黄色怎么调成土黄色| 欧美成人午夜精品| 蜜桃在线观看..| 亚洲av国产av综合av卡| 九色成人免费人妻av| 卡戴珊不雅视频在线播放| 丰满饥渴人妻一区二区三| 午夜福利,免费看| 亚洲精品,欧美精品| 9色porny在线观看| 韩国精品一区二区三区 | av一本久久久久| 免费黄色在线免费观看| 午夜免费观看性视频| 国产免费一级a男人的天堂| av一本久久久久| 欧美精品亚洲一区二区| 尾随美女入室| 亚洲欧洲国产日韩| 咕卡用的链子| 中文字幕制服av| 亚洲经典国产精华液单| 最近最新中文字幕免费大全7| 下体分泌物呈黄色| 亚洲精华国产精华液的使用体验| 最近最新中文字幕大全免费视频 | 纯流量卡能插随身wifi吗| 国产白丝娇喘喷水9色精品| 日产精品乱码卡一卡2卡三| 精品久久蜜臀av无| 秋霞在线观看毛片| 久久狼人影院| 中文欧美无线码| 久久 成人 亚洲| 18禁观看日本| 国产免费一级a男人的天堂| 看十八女毛片水多多多| 看非洲黑人一级黄片| 日日爽夜夜爽网站| 国产欧美日韩一区二区三区在线| 欧美最新免费一区二区三区| 一本—道久久a久久精品蜜桃钙片| 人妻人人澡人人爽人人| 女的被弄到高潮叫床怎么办| 久久久精品免费免费高清| 2022亚洲国产成人精品| 天美传媒精品一区二区| 999精品在线视频| 岛国毛片在线播放| 国产黄频视频在线观看| 一级a做视频免费观看| 久久久久网色| 少妇的逼水好多| 日韩人妻精品一区2区三区| 久久热在线av| 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 午夜激情久久久久久久| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 国产黄色免费在线视频| 亚洲情色 制服丝袜| 在线亚洲精品国产二区图片欧美| 久久久久国产网址| 欧美日韩精品成人综合77777| 日本爱情动作片www.在线观看| 在线观看www视频免费| 18+在线观看网站| 街头女战士在线观看网站| 亚洲伊人久久精品综合| av不卡在线播放| 九九爱精品视频在线观看| 亚洲国产看品久久| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站| 男人爽女人下面视频在线观看| 免费看不卡的av| 边亲边吃奶的免费视频| 日本猛色少妇xxxxx猛交久久| 久久久久精品性色| 国产精品久久久av美女十八| 日韩av不卡免费在线播放| 一级片'在线观看视频| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频 | 国产色婷婷99| 蜜臀久久99精品久久宅男| 亚洲情色 制服丝袜| 欧美成人精品欧美一级黄| 蜜桃在线观看..| 免费在线观看黄色视频的| 好男人视频免费观看在线| 精品国产一区二区三区四区第35| 久久免费观看电影| 国产综合精华液| 国产精品久久久久久精品古装| 成年人免费黄色播放视频| av在线观看视频网站免费| 亚洲 欧美一区二区三区| 春色校园在线视频观看| 国产爽快片一区二区三区| 国产日韩欧美在线精品| 九草在线视频观看| 日韩三级伦理在线观看| 色婷婷久久久亚洲欧美| 日韩成人伦理影院| 中国美白少妇内射xxxbb| 在线看a的网站| www.熟女人妻精品国产 | 一级毛片黄色毛片免费观看视频| 大码成人一级视频| 少妇 在线观看| 日韩,欧美,国产一区二区三区| 亚洲av男天堂| 久久热在线av| 热re99久久精品国产66热6| 精品国产一区二区三区四区第35| 亚洲精品,欧美精品| 丝袜美足系列| 考比视频在线观看| 99热国产这里只有精品6| 男男h啪啪无遮挡| 丝袜喷水一区| 伊人亚洲综合成人网| 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 在线亚洲精品国产二区图片欧美| 老司机影院毛片| 18禁裸乳无遮挡动漫免费视频| 日韩欧美精品免费久久| 久久狼人影院| 国产精品 国内视频| 中文字幕最新亚洲高清| 建设人人有责人人尽责人人享有的| 成年女人在线观看亚洲视频| 视频在线观看一区二区三区| 亚洲,一卡二卡三卡| videos熟女内射| 伊人亚洲综合成人网| 成人影院久久| 欧美3d第一页| 夫妻性生交免费视频一级片| 2018国产大陆天天弄谢| 婷婷成人精品国产| 亚洲人成77777在线视频| 爱豆传媒免费全集在线观看| 日韩一区二区三区影片| 九草在线视频观看| 成人国语在线视频| 国产精品99久久99久久久不卡 | 人妻少妇偷人精品九色| 十八禁网站网址无遮挡| 一级a做视频免费观看| 国产精品久久久久久久久免| 男女啪啪激烈高潮av片| 亚洲欧美清纯卡通| 欧美+日韩+精品| 女人精品久久久久毛片| 在线观看免费高清a一片| 国产精品久久久av美女十八| 午夜日本视频在线| 亚洲第一av免费看| 女人久久www免费人成看片| 国产亚洲欧美精品永久| 蜜桃国产av成人99| 男女下面插进去视频免费观看 | 色94色欧美一区二区| 青春草亚洲视频在线观看| 国产精品久久久av美女十八| 国产黄频视频在线观看| 综合色丁香网| 天天躁夜夜躁狠狠躁躁| 亚洲av欧美aⅴ国产| 免费大片18禁| 久久久精品区二区三区| 免费高清在线观看日韩| 免费av中文字幕在线| 国产精品久久久久久精品古装| 90打野战视频偷拍视频| 久久久国产一区二区| 内地一区二区视频在线| 中文字幕人妻丝袜制服| 国产精品女同一区二区软件| 亚洲丝袜综合中文字幕| 精品久久久久久电影网| 国产精品一区www在线观看| 国产探花极品一区二区| 国产一区二区在线观看日韩| 亚洲四区av| 久久久久精品人妻al黑| 日韩av免费高清视频| 如何舔出高潮| 插逼视频在线观看| 国国产精品蜜臀av免费| 国产老妇伦熟女老妇高清| 99国产精品免费福利视频| 色哟哟·www| 亚洲精品一区蜜桃| 全区人妻精品视频| 久久久精品94久久精品| 婷婷成人精品国产| 成人毛片a级毛片在线播放| 亚洲婷婷狠狠爱综合网| 亚洲国产精品999| 一区二区av电影网| 欧美日韩国产mv在线观看视频| 日韩精品免费视频一区二区三区 | 亚洲av电影在线观看一区二区三区| 少妇精品久久久久久久| 婷婷色综合大香蕉| 国产成人aa在线观看| 久久久久久久久久人人人人人人| 亚洲欧洲日产国产| 亚洲精品国产av成人精品| 国产精品.久久久| 亚洲欧洲精品一区二区精品久久久 | 秋霞在线观看毛片| 日本黄色日本黄色录像| 国产精品国产三级国产av玫瑰| 天堂俺去俺来也www色官网| 亚洲成色77777| 国产精品三级大全| 日日啪夜夜爽| 亚洲色图 男人天堂 中文字幕 | 在线观看免费视频网站a站| 插逼视频在线观看| 久久久久久久精品精品| 国产高清三级在线| 如日韩欧美国产精品一区二区三区| 美女内射精品一级片tv| 久久毛片免费看一区二区三区| 中国三级夫妇交换| 亚洲精品国产av蜜桃| 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 国产又爽黄色视频| 午夜av观看不卡| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| xxxhd国产人妻xxx| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 久久精品国产鲁丝片午夜精品| 两性夫妻黄色片 | 久久精品国产亚洲av天美| 人人妻人人爽人人添夜夜欢视频| √禁漫天堂资源中文www| 新久久久久国产一级毛片| 国产精品 国内视频| 中文字幕精品免费在线观看视频 | 亚洲欧洲精品一区二区精品久久久 | 国产又爽黄色视频| 超色免费av| 国产精品99久久99久久久不卡 | 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久国产电影| 免费人妻精品一区二区三区视频| 久久久久网色| 亚洲国产精品一区二区三区在线| 男女高潮啪啪啪动态图| 午夜福利乱码中文字幕| 大码成人一级视频| 国产色爽女视频免费观看| 久久久久久伊人网av| 狠狠精品人妻久久久久久综合| 婷婷色麻豆天堂久久| 我要看黄色一级片免费的| 在线天堂中文资源库| 国产国拍精品亚洲av在线观看| a级毛片黄视频| 性高湖久久久久久久久免费观看| 亚洲 欧美一区二区三区| 91精品三级在线观看| 青春草亚洲视频在线观看| 蜜桃在线观看..| 夫妻午夜视频| 久久国产精品男人的天堂亚洲 | 亚洲精品456在线播放app| 最新的欧美精品一区二区| 人妻人人澡人人爽人人| 亚洲成人av在线免费| 丰满乱子伦码专区| 亚洲av免费高清在线观看| 精品一区二区三卡| 精品久久蜜臀av无| 国产乱来视频区| 日本-黄色视频高清免费观看| 久久 成人 亚洲| 色5月婷婷丁香| 国产精品一区二区在线不卡| 久久久精品免费免费高清| 夫妻午夜视频| 成年动漫av网址| 日韩三级伦理在线观看| av在线app专区| 日韩不卡一区二区三区视频在线| 性色av一级| 22中文网久久字幕| www日本在线高清视频| 插逼视频在线观看| 99久久精品国产国产毛片| 天堂中文最新版在线下载| 夜夜骑夜夜射夜夜干| 国产有黄有色有爽视频| 91精品伊人久久大香线蕉| 大香蕉久久网| 91在线精品国自产拍蜜月| 深夜精品福利| 日本av手机在线免费观看| 欧美+日韩+精品| 综合色丁香网| 亚洲成av片中文字幕在线观看 | 久久精品久久久久久噜噜老黄| 免费看av在线观看网站| 中文欧美无线码| 久久国内精品自在自线图片| 成人亚洲欧美一区二区av| 18禁在线无遮挡免费观看视频| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| 女人久久www免费人成看片| 9色porny在线观看| 国产在线视频一区二区| 久久综合国产亚洲精品| 亚洲精品久久成人aⅴ小说| 在线观看三级黄色| 99久久人妻综合| 美女主播在线视频| 久久久久久人妻| 免费在线观看黄色视频的| 如何舔出高潮| av播播在线观看一区| 国产亚洲一区二区精品| 亚洲色图 男人天堂 中文字幕 | 日韩成人伦理影院| 久久ye,这里只有精品| 欧美97在线视频| √禁漫天堂资源中文www| 精品视频人人做人人爽| 午夜久久久在线观看| 80岁老熟妇乱子伦牲交| 免费av中文字幕在线| 欧美变态另类bdsm刘玥| 国产精品一区二区在线不卡| kizo精华| 黑人欧美特级aaaaaa片| 久久久久久久久久成人| 亚洲情色 制服丝袜| 99re6热这里在线精品视频| 人人澡人人妻人| 亚洲精品一二三| 丰满乱子伦码专区| 亚洲精品美女久久久久99蜜臀 | 午夜91福利影院| 色94色欧美一区二区| 99久久精品国产国产毛片| 男女啪啪激烈高潮av片| 女性被躁到高潮视频| 在线看a的网站| 久久久久网色| 亚洲av中文av极速乱| 欧美亚洲日本最大视频资源| 最新中文字幕久久久久| 一级爰片在线观看| 免费观看在线日韩| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| 欧美精品人与动牲交sv欧美| 建设人人有责人人尽责人人享有的| 日本色播在线视频| 免费黄网站久久成人精品| 日本wwww免费看| 午夜影院在线不卡| 国国产精品蜜臀av免费| 国产精品不卡视频一区二区| 国产视频首页在线观看| www.av在线官网国产| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| 国产1区2区3区精品| 国产免费现黄频在线看| 色婷婷久久久亚洲欧美| 熟女电影av网| 在线 av 中文字幕| 国产福利在线免费观看视频| 久久久久精品性色| 街头女战士在线观看网站| 妹子高潮喷水视频| 看非洲黑人一级黄片| 黑人巨大精品欧美一区二区蜜桃 | 久久精品国产亚洲av天美| 精品一区二区免费观看| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 亚洲色图综合在线观看| 女性生殖器流出的白浆| 精品久久久精品久久久| 日本黄大片高清| 国产 精品1| 亚洲熟女精品中文字幕| 国产日韩欧美亚洲二区| 精品久久蜜臀av无| 另类亚洲欧美激情| 黄色怎么调成土黄色| 成人免费观看视频高清| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 欧美成人午夜精品| 亚洲熟女精品中文字幕| 亚洲伊人色综图| 自拍欧美九色日韩亚洲蝌蚪91| 日韩电影二区| 精品第一国产精品| 波野结衣二区三区在线| 国产 精品1| 69精品国产乱码久久久| 日本91视频免费播放| 成人影院久久| 国产免费现黄频在线看| 下体分泌物呈黄色| 99热国产这里只有精品6| 国产色婷婷99| 精品少妇久久久久久888优播| 九九在线视频观看精品| 人妻系列 视频| 搡女人真爽免费视频火全软件| 成人综合一区亚洲| 天美传媒精品一区二区| 肉色欧美久久久久久久蜜桃| 水蜜桃什么品种好| 久久精品国产自在天天线| 亚洲国产毛片av蜜桃av| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 人妻人人澡人人爽人人| 亚洲精品日韩在线中文字幕|