• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quintic spline smooth semi-supervised support vector classication machine

    2015-04-11 02:35:51XiaodanZhangJinggaiMaAihuaLiandAngLi

    Xiaodan Zhang,Jinggai Ma,Aihua Li,and Ang Li

    1.School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;

    2.Department of Mathematical Sciences,Montclair State University,New Jersey 07043,USA

    Quintic spline smooth semi-supervised support vector classication machine

    Xiaodan Zhang1,*,Jinggai Ma1,Aihua Li2,and Ang Li1

    1.School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China;

    2.Department of Mathematical Sciences,Montclair State University,New Jersey 07043,USA

    A semi-supervised vector machine is a relatively new learning method using both labeled and unlabeled data in classication.Since the objective function of the model for an unstrained semi-supervised vector machine is not smooth,many fast optimization algorithms cannot be applied to solve the model.In order to overcome the difculty of dealing with non-smooth objective functions,new methods that can solve the semi-supervised vector machine with desired classication accuracy are in great demand. A quintic spline function with three-times differentiability at the origin is constructed by a general three-moment method,which can be used to approximate the symmetric hinge loss function.The approximate accuracy of the quintic spline function is estimated. Moreover,a quintic spline smooth semi-support vector machine is obtained and the convergence accuracy of the smooth model to the non-smooth one is analyzed.Three experiments are performed to test the efciency of the model.The experimental results show that the new model outperforms other smooth models,in terms of classication performance.Furthermore,the new model is not sensitive to the increasing number of the labeled samples,which means that the new model is more efcient.

    semi-supervised,support vector classication machine,smooth,quintic spline function,convergence.

    1.Introduction

    Using the support vector machine(SVM)[1]to obtain an accurate classier requires a large number of labeled samples.In many applications[2],labeled samples are scarce. Manual labeling for the purposes of training SVM is often a slow,expensive,and error prone process.By contrast,unlabeled samples can be cheaply and automatically collected.Therefore,in machine learning it is important to utilize unlabeled data sufciently.The design of semisupervisedsupportvectormachine(S3VM)[3–7]is based on applying the margin maximization principle to both labeled and unlabeled data.Because of the practicality of S3VM,the semi-supervised classication problem has attracted wide attention of many researchers[8].

    Since the objective function of the unconstrained optimization problem of S3VM is not smooth,most existing fast algorithms[9,10]cannot be used for solving the S3VM problem.With this regard,smoothing methods are developedand applied to solve the unconstrainedproblem. Chapelle et al.[11]established a smooth semi-supervised vector machine model.They replaced the symmetric hinge loss function by the Gaussian function.Liu et al.[12]constructed a smooth semi-supervised vector machine model based onthe polynomialfunctions.Yang et al.[13]applied anewsmoothingstrategytoaclass ofS3VMsandobtained a class of smooth S3VMs.

    In this paper,a quintic spline function with three-times differentiability at the origin is constructed by a general three-moment method,which plays an important role in approximating the symmetric hinge loss function.Corresponding numerical calculations show that the quintic spline function has a better approximation precision than that of both the Gaussian function and the cubic spline function.Additionally,aconvergencetheoremis proposed, which proves that the solution of the new smooth S3VM (SS3VM)converges to the solution of the original nonsmooth one.Finally,three experiments are performed to test the efciencyof the model.The classication accuracy of the new model is compared with that of other smooth modelsmentionedin this paper.The sensitivityto the parametric variation of the new model is analyzed.The results indicate that the new model has a better classication performance.

    2.S3VM model

    We considertheproblemofclassifying[14–17]m labeled samples and l unlabeled samples in the n-dimensional real space Rn,represented by an m×n matrix A and an l×n matrix B,respectively.Let Aibe the ith row of A,treatedas a point in Rn.The membership of each point Aiin the classes 1 or–1 is determined by a given m×m diagonal matrix D with 1 or–1 along its diagonal.Precisely,a S3VM model is given by the following quadratic program:

    where ω is the normal to the boundingplanes:xTω+b= ±1,with x,ω∈Rn,and b∈R.Note that each ei(i= 1,2)is a columnvectorwith all 1 entries,where e1∈Rm, e2∈Rl.Also,c and c?are positive weights and ξ1and ξ2are slack vectors with ξ1∈Rm,ξ2∈Rl.We further set

    where Λ(t)=max(0,1?t)is called the hinge loss function and Λ(|t|)=max(0,1?|t|)is called the symmetric hinge loss function[18].If x∈Rn,Λ(x)=(Λ(x1), Λ(x2),...,Λ(xn))T.By substituting ξi(i=1,2)dened by(2)into(1),the S3VM model(1)can be converted into an unconstrained optimization model as

    However,the objective function in(3)is not differentiable, which precludes the use of many fast optimization methods.To improve non-differentiability,we modify(3)as

    where f(x)is an arbitrary smooth function at the origin and is used to approximate the symmetric hinge loss function Λ(|t|).Although this amendment has little effect on the original problem,it avoids the non-differentiability of the original model(3).Below we study the SS3VM based on the quintic spline function.

    3.Construction and analysis of the spline symmetric hinge smooth function

    3.1Construction of the quintic spline function

    Defnition 1For k>1,m,n∈Z+,let x0=?1/k, x1=0,x2=1/k be a set of nodes and s(x,k)be a piece-

    wise function in the following form:

    The s(x,k)is called an n-spline with m times differentiability at the origin for Λ(|x|)if it satises following conditions:

    (i)Both s0(x,k)and s1(x,k)are polynomials in x of degree n;

    (ii)s(d)(x0,k)=0,d=2,3,...,m,s′(x0,k)=1,and s(x0,k)=1?1/k;

    (iii)s(d)(x2,k)=0,d=2,3,...,m,s′(x2,k)=?1, and s(x2,k)=1?1/k;

    Next we will give the quintic spline function.

    Theorem 1Let k> 1 and x0= ?1/k,x1=0, x2=1/k be a set of nodes.Then there exists a unique quintic spline s(x,k)with the third derivative at the origin approximating Λ(|x|).The function must have the following expression:

    ProofWe prove this conclusion by the general threemoment method[19].

    Let s(x,k)be a quintic spline with the third derivative at the origin,which satises the conditions in Denition 1. We derive the equation for s(x,k)on[?1/k,1/k].Set s(4)(xi,k)=Mi(i=0,1,2).For each x∈[?1/k,0], we have s(x,k)=s0(x,k).Since s0(x,k)is a polynomial of degreeve on[?1/k,0],s(4)0(x,k)is a linearfunction satisfyingTherefore,

    Let the aboveequation be integratedfour times,then we can obtain that

    where a1,a2,a3,and a4are integration constants.According to the condition(ii)in Denition 1,we can determine

    By successive integration,we get

    where b1,b2,b3,and b4are integrationconstants.Based on the condition(iii)in Denition 1,it follows

    In this way,we show that s(x,k)is a piecewise dened polynomial of degreene with parameters M0,M1,and M2on[?1/k,1/k].Now we apply the condition(iv)in Denition 1:

    then the following matrix equation is obtained:

    Finally,the unique quintic spline s(x,k)with the third derivative at the origin approximating Λ(|x|)is constructed.On the interval[?1/k,1/k],it can be expressed as(5). □

    Similarly,a cubic spline with the second differentiability at the origin approximating Λ(|x|)is shown as

    In order to show the differences between different smooth functions more clearly,we present the following smooth performance comparison diagram.

    As shown in Fig.1,the quintic spline function with a greater k value is getting closer to the symmetric hinge loss function than that one with a smaller k.In Section 5, we will discuss further dependence of classication accuracy on the parameter k.

    Fig.1 Effect images of the quintic spline function approximating Λ(|x|)when k=10 and k=20

    As shown in Fig.2,the quintic spline function is closer to the symmetric hinge loss function than the other functions.Especially,in terms of keeping the parameter k unchanged,the quintic spline function is closer to the symmetric hinge loss function than the general cubic spline function.

    Fig.2 Effect images of the different smooth functions approximating Λ(|x|)

    3.2Approximate precision of quintic spline functionIn this section,we prove two important properties of s(x,k),which will be applied in the next section to provide the convergenceanalysis of the model.

    Theorem 2Let Λ(|x|)be the symmetric hinge loss function.Then,for x∈R and k>1,

    (i)0≤s(x,k)≤Λ(|x|);

    ProofObviously,if x>1/k or x≤1/k,both inequalities(i)and(ii)are true,since s(x,k)=Λ(|x|).Itremains to show that the inequalities are true on the interval(?1/k,1/k).

    Therefore,λ(x,k)is also an increasing function on(?1/k,0).The minimum is obtained at x =?1/k,λ(?1/k,k)=0.Thus 0≤s(x,k)≤Λ(|x|),when x∈(?1/k,0).

    Furthermore,s(x,k)is a decreasing function on (0,1/k).Similar to therst part,the inequality(i)also holds on(0,1/k).

    Similarly,if x∈(0,1/k),the above equation is true as well.Therefore,for every x∈R,the(ii)holds. □

    4.Convergence analysis of the model

    In this section,the convergence theorem of the SS3VM model(4)is presented.We prove that the solution of the SS3VM can closely approximate that of the non-smooth S3VM model.

    Defnition 2Let A∈Rm×n,B∈Rl×n,x∈Rn, η∈Rn,μ∈Rn,c,c?∈R,and k>1.

    Theorem 3Two real functions h(x)and g(x,k)are dened as above.Then

    (i)There exists a solutionˉx of minh(x)and a solutionof ming(x,k)such that

    (ii)Let Uhbe the set of the solutions of minh(x),then there exists convergent subsequence{ˉxkn}of{ˉxk}satisfying

    In addition,for arbitrary x∈Rn,by inequality(ii)in Theorem 2,we can have

    5.Algorithm for the SS3VM model

    The Broyden-Fletcher-Goldfarb-Shanno(BFGS)algorithm[20]is suitable for unconstrained optimization problems whenthe objectivefunctionand its gradientvaluecan easily be obtained.The BFGS method is the most widely used one among various quasi-Newton methods.

    Step 1Initialization(ω0,b0)=p0∈Rn+1,H0=I, set max=500,i=0,and eps=10?5.

    Step 2If i≤max,calculate vi=??(pi).

    Step 4Perform linear search along direction dito get a step length αi>0.

    Let

    Calculate

    Step 5Update Hito get Hi+1:

    Step 6Let i=i+1,go to Step 2.

    In the BFGS algorithm,?(x)is dened in model(4),αiis determined by the following equations:

    where 0<ρ<1/2.

    6.Numerical experiments

    Experiments are performedon datasets with various scales obtained from the UCI Machine Learning Library.The generalization ability of the classier is applied as a test indicator in order to compare the performance of different SS3VM.Correct rates of unlabeled training samples are used to measure the generalization ability of the classier.

    The experimental model is dened by(4)where the function f(x)is taken as the Gaussian function,the cubic spline function,the polynomial function,and the quintic spline function given in(6)respectively.For the ease of notation,when f(x)is taken as the Gaussian function,the SS3VM model is named as GSS3VM.Correspondingly, when f(x)is taken as an n-spline function,the SS3VM model is specied as nSS3VM.For example,the SS3VM based on a quintic spline is expressed as 5SS3VM.When f(x)is taken as a polynomial function,the SS3VM model is expressed as PSS3VM.

    6.1Experiment to test the wine quality

    The considered dataset is made of 1 599 samples.All samplesarelabeledandseparatedintotwoparts:labeledorunlabeled.The labeled part consists of therst 200 samples of the dataset and the rest samples are processed as unlabeled.Each sample contains 11 physicochemicalproperties andone sensoryattribute.The physicochemicaltesting information includes thexed acidity,volatile acidity,citric acid,residual sugar,chlorides,free sulfur dioxide,total sulfur dioxide,density,pH,sulphates,and the alcohol respectively.The sensory data represent the quality which is graded by experts between 0(very bad)and 10(very excellent).The wine quality is divided into two categories: excellent or poor.If the quality score is greater thanve, the wine quality is considered as excellent.Otherwise,the wine quality is poor.

    Table 1 Training accuracy of the different smooth S3VM

    Table 1 shows that 5SS3VM achieves a higher correct rate under the same conditions.The value of c and c?have some effect on the correct rate of SS3VM.Choosing the value of c and c?properly may improve the correct rate of SS3VM effectually.At the end of this experiment,we study the effect of the parameter k on the classication accuracy of 5SS3VM.Here,the values of both c and c?are selected to be three in the 5SS3VM model.

    As can be seen from Fig.3,the parameter k has an inuence on the classication accuracy.The accuracy of 5SS3VM is increasing as the value of k is increasing,unless k reaches a certain level.When the value of k is big enough,the accuracy will keep unchanged.Thus,we should select suitable values of k for different datasets.

    Fig.3 Effect of the parameter k on the classifcation accuracy of 5SS3VM

    6.2Experiment on the wilt dataset

    Thewilt dataset involvesdetectingdiseasedtrees inQuickbird imagery.The dataset is made of 4 339 samples.All samples are labeled.Theve properties of the testing information are GLCM Pan,Mean G,Mean R,Mean NIR, and SD Pan respectively.The wilt dataset is divided into two categories:diseased trees class and other land cover. In this experiment,we also study the effect of proportion of labeled samples on the classication accuracy.Here,we select 20%,30%,and 50%samples to be labeled respectively.And the rest are processed as unlabeled.The classication performances are shown in Table 2.In this experiment,performances of the four SS3VM models are very similar,but overall,5SS3VM is still the best.However,Table 2 shows that the proportion of labeled samples has an inuenceon the correctrate of SS3VM,but not signicant. When the number of labeled samples is large,the classication accuracy cannot be improvedgreatly.It implies that wecan useonlya smallamountoflabeledsamples toguarantee the classication accuracy.

    Table 2 Training accuracy of the different SS3VMs(wilt dataset)

    6.3Experiment on banknote authentication

    The banknote authentication dataset is made of 1372 samples.Data are extracted from images taken for the evaluation of an authentication procedure for banknotes.Wavelet transform tools are used to extract features from images. The four statistical features of the wavelet transformed image are variance,skewness,curtosis,and entropy of images,respectively.The banknote-like specimens are dividedintotwo categories:genuineorforged.Similar tothe wilt dataset,this dataset is labeled too.In the experiment, the effect of proportion of labeled samples and the values of c and c?on the classication accuracy is tested.The classication performances are shown in Table 3.It shows that when dealing with different proportions of the labeled samplesandvariousvaluesofcandc?,the5SS3VMmodel outperforms 3SS3VM and GSS3VM.When dealing with the greater values of c and c?(c=c?=12,c=c?=20), 5SS3VM has a training advantage than PSS3VM.The above results demonstrate that the 5SS3VM model is feasible and effective,and has good features compared with other SS3VM models.

    Table 3 Training accuracy of different SS3VMs(banknote authentication dataset)

    7.Conclusions

    In this paper,a quintic spline symmetric hinge approximation functionwith three-times differentiabilityat the origin is constructed by a general three-moment method.The approximation accuracy of the quintic spline function to the symmetrichingeloss functionis analyzed.A quinticspline smooth semi-support vector machine is obtained.The convergence of the smooth model to the non-smooth one is proved.In three experiments,the classication accuracy and sensitivity to the parametric variation of 5SS3VM are analyzed.The numerical experiments show that the new model has a better classication performance.It is signicant to propose the 5SS3VM model because it adds a new choice when applying SS3VM.

    [1]N.Y.Deng,Y.J.Tian.New method in data mining:support vector machine.Beijing:Science Press,2004.(in Chinese)

    [2]M.Mozer,M.I.Jordan,T.Petsche,et al.Advances in neural information processing systems.Cambridge:MIT Press,1997.

    [3]G.Fung,O.L.Mangasarian.Semi-supervised support vector machines for unlabeled data classifcation.Optimization Methods and Software,2001,15(1):29–44.

    [4]J.Long,Y.Li,Z.Yu.A semi-supervised support vector machine approach for parameter setting in motor imagery-based brain computer interfaces.Cognitive Neurodynamics,2010, 4(3):207–216.

    [5]S.Reddy,S.Shevade,M.N.Murty.A fast quasi-Newton method for semi-supervised SVM.Pattern Recognition Letters,2011,44(10):2305–2313.

    [6]L.Angelini,D.Marinazzo,M.Pellicoro,et al.Semisupervised learning by search of optimal target vector.Pattern Recognition Letters,2008,29(1):34–39.

    [7]M.Kalakech,P.Biela,L.Macaire,et al.Constraint scores for semi-supervised feature selection:a comparative study.Pattern Recognition Letters,2011,32(5):656–665.

    [8]Y.Q.Liu,S.Y.Liu,M.T.Gu.Polynomial smooth classication algorithm of semi-supervised support vector machines. Computer Science,2009,36(7):179–181.(in Chinese)

    [9]A.Astorino,A.Fuduli.Nonsmooth optimization techniques for semi-supervised classication.IEEE Trans.on Pattern Analysis and Machine Intelligence,2007,29(12):2135–2142.

    [10]D.P.Liao,B.Jiang,X.Z.Wei,et al.Fast learning algorithm with progressive transductive support vector machine.Systems Engineering and Electronics,2007,29(1):87–91.(in Chinese)

    [11]O.Chaplle,A.Zien.Semi-supervised classication by low density separation.Proc.of the 10th International Workshop on Artifcial Intelligence and Statistics,2005.

    [12]Y.Q.Liu,S.Y.Liu,M.T.Gu.Polynomial smooth semisupervised support vector machine.Systems Engineering—Theory and Practice,2009,29(7):113–118.(in Chinese)

    [13]L.M.Yang,L.S.Wang.A class of smooth semi-supervised SVM by difference of convex functions programming and algorithm.Knowledge Based Systems,2013,41(2):1–7.

    [14]Y.J.Lee,O.L.Mangasarian.SSVM:a smooth support vector machine for classication.Computational Optimization and Applications,2001,22(1):5–22.

    [15]Y.B.Yuan,J.Yan,C.X.Xu.Polynomial smooth support vector machine.Chinese Journal of Computers,2005,28(1):9–17.(in Chinese)

    [16]D.R.Musicant,A.Feinberg.Active set support vector regression.IEEE Trans.on Neural Networks,2004,15(2):268–275. [17]S.Park,B.Zhang.Co-trained support vector machines for large scale unstructured document classication using unlabeled data and syntactic information.Information Processing &Management,2004,40(3):421–439.

    [18]J.Wu.Support vector machines learning algorithm research based on optimization theory.Xi’an:Xidian University,2009. (in Chinese)

    [19]X.D.Zhang,S.Shao,Q.S.Liu.Smooth support vecter machine model based on spline function.Jornal of University of Science and Tecnology Beijing,2012,34(6):718–725.(in Chinese)

    [20]J.Z.Xiong,H.Q.Yuan,H.Peng.A general formulation of polynomial smooth support vector machines.Journal of Computer Research and Development,2008,45(8):1346–1353.

    Biographies

    Xiaodan Zhang was born in 1959.She is a professor of mathematics in School of Mathematics and Physics,University of Science and Technology Beijing.In 2009,she was a visiting professor at DIMACS,Rutgers University,USA.Her research interests include data mining and dynamical systems.

    E-mail:bkdzxd@163.com

    Jinggai Ma was born in 1987.She received her B.S. degree from the Hebei Normal University ofScience and Technology in 2011,and M.S.degree in mathematics from the University of Science and Technology Beijing in 2014.

    E-mail:abcdef 7110@126.com

    Aihua Li was born in 1956.She is a professor at Montclair State University located in New Jersey, USA.She received her Ph.D.degree in mathematics from the University of Nebraska-Lincoln in 1994. Her research interests include commutative algebra, graph theory,discrete dynamical systems,and computational mathematics.

    E-mail:lia@mail.montclair.edu

    Ang Li was born in 1991.He received his B.S.degree from the University of Science and Technology Beijing in 2013,and pursues his graduate study in mathematics at the same university since then.

    E-mail:siwang744@gmail.com

    10.1109/JSEE.2015.00070

    Manuscript received April 17,2014.

    *Corresponding author.

    This work was supported by the Fundamental Research Funds for University of Science and Technology Beijing(FRF-BR-12-021).

    久久精品久久久久久久性| 欧美乱码精品一区二区三区| 久久人人爽av亚洲精品天堂| 伦理电影免费视频| xxx大片免费视频| 成人影院久久| 欧美久久黑人一区二区| 免费在线观看黄色视频的| 精品国产乱码久久久久久男人| 少妇被粗大的猛进出69影院| 日韩制服丝袜自拍偷拍| 三上悠亚av全集在线观看| 人人妻,人人澡人人爽秒播 | 亚洲视频免费观看视频| 国产一级毛片在线| 啦啦啦啦在线视频资源| 国产av一区二区精品久久| 久久人人爽人人片av| 熟女av电影| 国产无遮挡羞羞视频在线观看| 91精品伊人久久大香线蕉| 亚洲色图综合在线观看| 欧美精品av麻豆av| 国产伦理片在线播放av一区| 成人亚洲欧美一区二区av| 岛国毛片在线播放| 午夜免费观看性视频| 国产精品久久久久成人av| 青青草视频在线视频观看| xxx大片免费视频| 国产精品人妻久久久影院| 国产成人影院久久av| 青春草亚洲视频在线观看| 十八禁人妻一区二区| 亚洲欧美精品自产自拍| av又黄又爽大尺度在线免费看| 丝袜美足系列| 亚洲专区中文字幕在线| 日韩熟女老妇一区二区性免费视频| 丝袜人妻中文字幕| 两个人看的免费小视频| 手机成人av网站| 国产深夜福利视频在线观看| 人人妻人人澡人人爽人人夜夜| 丝袜人妻中文字幕| 精品第一国产精品| 国产一级毛片在线| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频 | 男女床上黄色一级片免费看| 久9热在线精品视频| 成人18禁高潮啪啪吃奶动态图| 97人妻天天添夜夜摸| av在线老鸭窝| 亚洲av日韩在线播放| 国产精品亚洲av一区麻豆| 亚洲成人手机| 亚洲成人免费av在线播放| 亚洲成色77777| 18禁黄网站禁片午夜丰满| 91老司机精品| 午夜视频精品福利| 90打野战视频偷拍视频| 欧美黄色淫秽网站| 9热在线视频观看99| 亚洲国产看品久久| 亚洲精品自拍成人| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区 | 国产一级毛片在线| 十八禁网站网址无遮挡| 99香蕉大伊视频| 高清av免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 极品人妻少妇av视频| 国产黄色免费在线视频| 一级片'在线观看视频| 免费日韩欧美在线观看| 午夜免费男女啪啪视频观看| 91国产中文字幕| 成人影院久久| 黄网站色视频无遮挡免费观看| 欧美日韩黄片免| 女人精品久久久久毛片| 99热网站在线观看| 国产精品亚洲av一区麻豆| 国产一区亚洲一区在线观看| 精品国产一区二区三区久久久樱花| 亚洲国产中文字幕在线视频| 精品国产一区二区三区久久久樱花| 纵有疾风起免费观看全集完整版| 亚洲av国产av综合av卡| 男女下面插进去视频免费观看| 18禁国产床啪视频网站| 亚洲国产欧美在线一区| 操出白浆在线播放| 久9热在线精品视频| 国精品久久久久久国模美| 午夜视频精品福利| 国产亚洲精品久久久久5区| 最新在线观看一区二区三区 | 亚洲图色成人| 男女下面插进去视频免费观看| 国产男女内射视频| 建设人人有责人人尽责人人享有的| 国产精品国产av在线观看| 丝袜人妻中文字幕| 亚洲中文日韩欧美视频| 亚洲国产看品久久| 国产精品一国产av| av国产久精品久网站免费入址| 久久久久久免费高清国产稀缺| 国产精品久久久久久精品古装| 超碰97精品在线观看| 无限看片的www在线观看| 精品亚洲乱码少妇综合久久| av网站免费在线观看视频| 日韩av免费高清视频| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 日韩制服骚丝袜av| 男人爽女人下面视频在线观看| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 国产成人a∨麻豆精品| 日本五十路高清| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 国产精品久久久久成人av| 妹子高潮喷水视频| 国产免费现黄频在线看| 中国美女看黄片| 美女扒开内裤让男人捅视频| 性色av一级| 乱人伦中国视频| 高清不卡的av网站| 黄色一级大片看看| 国产无遮挡羞羞视频在线观看| 国产老妇伦熟女老妇高清| 免费在线观看日本一区| 日日摸夜夜添夜夜爱| 久久人人97超碰香蕉20202| 欧美日韩综合久久久久久| 大码成人一级视频| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 一级毛片电影观看| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 青春草亚洲视频在线观看| 建设人人有责人人尽责人人享有的| 丝袜在线中文字幕| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产毛片av蜜桃av| 午夜福利视频在线观看免费| 宅男免费午夜| 这个男人来自地球电影免费观看| 狠狠婷婷综合久久久久久88av| 欧美亚洲日本最大视频资源| 成年av动漫网址| 精品一区二区三卡| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 欧美激情 高清一区二区三区| 国产成人一区二区三区免费视频网站 | 国产欧美日韩综合在线一区二区| 亚洲自偷自拍图片 自拍| 99热全是精品| 日韩一卡2卡3卡4卡2021年| 99久久精品国产亚洲精品| 精品欧美一区二区三区在线| 大片电影免费在线观看免费| 美女扒开内裤让男人捅视频| 9色porny在线观看| 精品高清国产在线一区| 另类亚洲欧美激情| 亚洲免费av在线视频| 国产精品一国产av| 女人爽到高潮嗷嗷叫在线视频| av欧美777| 99香蕉大伊视频| 一本久久精品| 久久精品国产亚洲av涩爱| 女人精品久久久久毛片| 国产一级毛片在线| 久久精品成人免费网站| 国产在视频线精品| 捣出白浆h1v1| 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| av网站免费在线观看视频| 国精品久久久久久国模美| 欧美97在线视频| 国产色视频综合| 又黄又粗又硬又大视频| 看免费成人av毛片| 亚洲国产精品一区三区| 国产精品久久久av美女十八| 日本午夜av视频| 中文字幕精品免费在线观看视频| 人人妻人人爽人人添夜夜欢视频| 超色免费av| 精品福利永久在线观看| 精品人妻在线不人妻| 久久鲁丝午夜福利片| 国产av精品麻豆| 大香蕉久久成人网| 国产精品 欧美亚洲| 一级毛片我不卡| 伊人久久大香线蕉亚洲五| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 悠悠久久av| 中文字幕人妻丝袜制服| 国产av国产精品国产| 男女无遮挡免费网站观看| 国产色视频综合| 午夜福利影视在线免费观看| 成人免费观看视频高清| 欧美中文综合在线视频| 国产野战对白在线观看| 别揉我奶头~嗯~啊~动态视频 | 午夜两性在线视频| 天天添夜夜摸| av网站在线播放免费| 亚洲成人免费电影在线观看 | 在线av久久热| 天天躁日日躁夜夜躁夜夜| 另类亚洲欧美激情| av网站在线播放免费| 女人被躁到高潮嗷嗷叫费观| 国产免费福利视频在线观看| 亚洲综合色网址| 精品国产乱码久久久久久男人| 欧美xxⅹ黑人| 久久久精品国产亚洲av高清涩受| 国产亚洲午夜精品一区二区久久| 制服人妻中文乱码| 69精品国产乱码久久久| av片东京热男人的天堂| 久久综合国产亚洲精品| 国产亚洲精品第一综合不卡| 精品国产乱码久久久久久小说| 国产精品一区二区精品视频观看| 成年美女黄网站色视频大全免费| 黄色毛片三级朝国网站| 国产深夜福利视频在线观看| 精品久久久久久久毛片微露脸 | 欧美日韩视频高清一区二区三区二| 男人爽女人下面视频在线观看| 成人午夜精彩视频在线观看| 久久久亚洲精品成人影院| 久久热在线av| 亚洲国产欧美日韩在线播放| 久久久精品免费免费高清| 日本av免费视频播放| 中国国产av一级| 一边摸一边做爽爽视频免费| 青春草视频在线免费观看| 国产伦人伦偷精品视频| 国产麻豆69| 2021少妇久久久久久久久久久| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区91| 免费久久久久久久精品成人欧美视频| av电影中文网址| 亚洲成人免费av在线播放| 中文字幕另类日韩欧美亚洲嫩草| 国产成人啪精品午夜网站| 久久久精品区二区三区| 久久精品国产亚洲av涩爱| e午夜精品久久久久久久| 热99国产精品久久久久久7| 国产伦理片在线播放av一区| 国产麻豆69| 国产精品99久久99久久久不卡| 欧美97在线视频| 丝袜人妻中文字幕| 黄色毛片三级朝国网站| 国产日韩欧美在线精品| a级毛片在线看网站| 校园人妻丝袜中文字幕| 久久人人97超碰香蕉20202| 国产成人精品久久久久久| 男女国产视频网站| 晚上一个人看的免费电影| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 久久精品久久久久久久性| 国产精品一区二区在线观看99| 中文字幕色久视频| 亚洲欧美中文字幕日韩二区| 美女午夜性视频免费| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 国产在线观看jvid| 男女边摸边吃奶| 搡老乐熟女国产| 国产高清视频在线播放一区 | 免费观看人在逋| 久久影院123| 男女午夜视频在线观看| 男女下面插进去视频免费观看| 高潮久久久久久久久久久不卡| 亚洲伊人色综图| 国产成人精品久久久久久| 国产成人av激情在线播放| 国产日韩欧美在线精品| 免费人妻精品一区二区三区视频| 天天躁日日躁夜夜躁夜夜| 两个人免费观看高清视频| 最黄视频免费看| 曰老女人黄片| 午夜福利视频在线观看免费| av欧美777| 亚洲人成电影观看| 国产免费视频播放在线视频| 亚洲少妇的诱惑av| 老鸭窝网址在线观看| 亚洲欧美日韩高清在线视频 | 男女国产视频网站| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 婷婷色综合大香蕉| 免费日韩欧美在线观看| 国产一卡二卡三卡精品| 国产欧美日韩综合在线一区二区| 又黄又粗又硬又大视频| 黄片小视频在线播放| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美软件| a级片在线免费高清观看视频| 一区在线观看完整版| 亚洲一区中文字幕在线| 国产免费现黄频在线看| 亚洲欧洲日产国产| 亚洲国产欧美日韩在线播放| cao死你这个sao货| 亚洲,一卡二卡三卡| 少妇精品久久久久久久| 亚洲天堂av无毛| 婷婷色综合www| 另类亚洲欧美激情| 老司机午夜十八禁免费视频| 一边摸一边抽搐一进一出视频| 高清视频免费观看一区二区| 一本色道久久久久久精品综合| 一区二区三区激情视频| 国产熟女欧美一区二区| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| 成年人黄色毛片网站| netflix在线观看网站| 80岁老熟妇乱子伦牲交| 丝袜人妻中文字幕| 啦啦啦中文免费视频观看日本| 亚洲成人免费av在线播放| 免费观看a级毛片全部| 国产精品久久久久久精品电影小说| 精品少妇黑人巨大在线播放| xxx大片免费视频| 妹子高潮喷水视频| 国产女主播在线喷水免费视频网站| 国产精品一区二区在线不卡| 亚洲av在线观看美女高潮| 交换朋友夫妻互换小说| 高潮久久久久久久久久久不卡| 成年动漫av网址| 欧美日韩一级在线毛片| 中文字幕精品免费在线观看视频| 1024香蕉在线观看| 日本wwww免费看| 国产亚洲av高清不卡| 亚洲九九香蕉| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| 久久这里只有精品19| 国产精品99久久99久久久不卡| 香蕉丝袜av| 在线观看免费高清a一片| 日韩电影二区| 一区二区av电影网| 国产精品免费视频内射| 啦啦啦 在线观看视频| 18禁裸乳无遮挡动漫免费视频| 超碰97精品在线观看| 免费观看人在逋| 亚洲精品国产色婷婷电影| 啦啦啦啦在线视频资源| 精品国产一区二区三区久久久樱花| 男女高潮啪啪啪动态图| 99久久人妻综合| 丝袜人妻中文字幕| 色播在线永久视频| 考比视频在线观看| 18禁黄网站禁片午夜丰满| 国产日韩欧美视频二区| 精品国产一区二区三区久久久樱花| 精品一区在线观看国产| 新久久久久国产一级毛片| 精品国产一区二区三区久久久樱花| 自拍欧美九色日韩亚洲蝌蚪91| 在线亚洲精品国产二区图片欧美| 成年人免费黄色播放视频| 欧美黄色淫秽网站| 欧美 日韩 精品 国产| 日韩人妻精品一区2区三区| 一本久久精品| 国产在线视频一区二区| 桃花免费在线播放| 国产精品一区二区精品视频观看| 国产亚洲欧美在线一区二区| 91麻豆av在线| 国产亚洲一区二区精品| 亚洲九九香蕉| 高潮久久久久久久久久久不卡| 免费黄频网站在线观看国产| 欧美日韩福利视频一区二区| 亚洲欧美一区二区三区国产| 国产精品.久久久| 久久人人爽av亚洲精品天堂| 老熟女久久久| 香蕉国产在线看| 五月天丁香电影| 国产精品一区二区在线观看99| 久久ye,这里只有精品| 欧美av亚洲av综合av国产av| 麻豆国产av国片精品| a 毛片基地| 夫妻性生交免费视频一级片| 精品一区在线观看国产| 国产一区有黄有色的免费视频| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 黄频高清免费视频| 咕卡用的链子| 美女高潮到喷水免费观看| 精品福利观看| 欧美日本中文国产一区发布| 两个人看的免费小视频| 久久精品熟女亚洲av麻豆精品| 视频区图区小说| 国产成人欧美| 亚洲国产欧美一区二区综合| 亚洲欧美清纯卡通| 看免费成人av毛片| 91老司机精品| 考比视频在线观看| 午夜激情久久久久久久| 日本五十路高清| 日韩制服骚丝袜av| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费日韩欧美大片| 一边摸一边抽搐一进一出视频| 精品国产一区二区三区久久久樱花| 男男h啪啪无遮挡| 欧美黄色片欧美黄色片| 男女边吃奶边做爰视频| 国产日韩欧美亚洲二区| 精品熟女少妇八av免费久了| 一区二区三区激情视频| 在线看a的网站| 黄色怎么调成土黄色| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 久久综合国产亚洲精品| 熟女av电影| 国产精品一区二区在线不卡| 国产av一区二区精品久久| 色综合欧美亚洲国产小说| 精品亚洲成a人片在线观看| 女警被强在线播放| 婷婷成人精品国产| 一级,二级,三级黄色视频| 欧美精品啪啪一区二区三区 | 国产真人三级小视频在线观看| 精品国产乱码久久久久久小说| 国产亚洲一区二区精品| 日韩人妻精品一区2区三区| 国产精品久久久久久精品古装| 国产成人91sexporn| 男女无遮挡免费网站观看| 精品一区二区三区av网在线观看 | 99久久综合免费| 波野结衣二区三区在线| 欧美日韩视频精品一区| 日韩免费高清中文字幕av| 性色av乱码一区二区三区2| 国语对白做爰xxxⅹ性视频网站| 免费高清在线观看日韩| 无限看片的www在线观看| 一级毛片黄色毛片免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 男女午夜视频在线观看| 各种免费的搞黄视频| 国产免费又黄又爽又色| 国产精品 欧美亚洲| 国产av一区二区精品久久| av天堂久久9| 熟女av电影| 黄色怎么调成土黄色| 岛国毛片在线播放| 91精品伊人久久大香线蕉| 人人妻人人澡人人爽人人夜夜| 精品卡一卡二卡四卡免费| 天天添夜夜摸| 久久精品国产综合久久久| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 啦啦啦 在线观看视频| 国精品久久久久久国模美| 美女高潮到喷水免费观看| 少妇猛男粗大的猛烈进出视频| 午夜福利免费观看在线| 一本久久精品| 成人手机av| tube8黄色片| 91老司机精品| 亚洲欧美一区二区三区黑人| 国产一级毛片在线| 久久久国产一区二区| 男女床上黄色一级片免费看| 亚洲色图综合在线观看| 91精品三级在线观看| 国产成人欧美在线观看 | 亚洲,一卡二卡三卡| 人人妻人人爽人人添夜夜欢视频| 我的亚洲天堂| 亚洲精品美女久久av网站| 啦啦啦在线免费观看视频4| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 欧美变态另类bdsm刘玥| 免费久久久久久久精品成人欧美视频| 久久久精品免费免费高清| 久久ye,这里只有精品| 人妻一区二区av| 亚洲精品久久午夜乱码| 性高湖久久久久久久久免费观看| 99久久99久久久精品蜜桃| 成年美女黄网站色视频大全免费| 亚洲五月色婷婷综合| 久9热在线精品视频| 日韩制服丝袜自拍偷拍| 可以免费在线观看a视频的电影网站| 亚洲,欧美,日韩| 99九九在线精品视频| 国产亚洲精品久久久久5区| 亚洲午夜精品一区,二区,三区| 国产视频一区二区在线看| 视频在线观看一区二区三区| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 麻豆乱淫一区二区| 男女边摸边吃奶| 日韩一区二区三区影片| 伊人亚洲综合成人网| 欧美日韩精品网址| 欧美精品一区二区大全| 亚洲精品日本国产第一区| 久久久亚洲精品成人影院| 女人被躁到高潮嗷嗷叫费观| 18禁裸乳无遮挡动漫免费视频| 欧美变态另类bdsm刘玥| 亚洲精品av麻豆狂野| 51午夜福利影视在线观看| 麻豆乱淫一区二区| 永久免费av网站大全| 日韩 亚洲 欧美在线| 欧美人与性动交α欧美精品济南到| 精品人妻1区二区| 高清av免费在线| 亚洲精品一二三| 啦啦啦中文免费视频观看日本| 丝袜美腿诱惑在线| 欧美 亚洲 国产 日韩一| 九草在线视频观看| 一区二区三区四区激情视频| 日本a在线网址| 妹子高潮喷水视频| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播 | 天堂8中文在线网| 久久久久精品人妻al黑| 亚洲欧美清纯卡通| 母亲3免费完整高清在线观看| 秋霞在线观看毛片| 午夜老司机福利片| 久久精品熟女亚洲av麻豆精品| 亚洲欧美日韩高清在线视频 | 女人高潮潮喷娇喘18禁视频| 国产成人啪精品午夜网站| 大香蕉久久网| 手机成人av网站| 国产精品一国产av| 男女午夜视频在线观看| 亚洲欧洲日产国产| 深夜精品福利| 午夜福利影视在线免费观看| 欧美日韩成人在线一区二区| 精品亚洲成a人片在线观看| 精品一区在线观看国产| 捣出白浆h1v1| 老司机影院成人| 18在线观看网站| 涩涩av久久男人的天堂|