• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Articial bee colony algorithm with comprehensive search mechanism for numerical optimization

    2015-04-11 02:35:42MudongLiHuiZhaoXingweiWengandHanqiaoHuang

    Mudong Li,Hui Zhao,Xingwei Weng,and Hanqiao Huang

    Department of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China

    Mudong Li*,Hui Zhao,Xingwei Weng,and Hanqiao Huang

    Department of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xi’an 710038,China

    The articial bee colony(ABC)algorithm is a simple and effective global optimization algorithm which has been successfully applied in practical optimization problems of variouselds.However,the algorithm is still insufcient in balancing exploration and exploitation.To solve this problem,we put forward an improved algorithm with a comprehensive search mechanism. The search mechanism contains three main strategies.Firstly,the heuristic Gaussian search strategy composed of three different search equations is proposed for the employed bees,which fully utilizes and balances the exploration and exploitation of the three different search equations by introducing the selectivity probability Ps.Secondly,in order to improve the search accuracy,we propose the Gbest-guided neighborhood search strategy for onlooker bees to improve the exploitation performance of ABC.Thirdly,the selfadaptive population perturbation strategy for the current colony is used by random perturbation or Gaussian perturbation to enhance the diversity of the population.In addition,to improve the quality of the initial population,we introduce the chaotic oppositionbased learning method for initialization.The experimental results and Wilcoxon signed ranks test based on 27 benchmark functions show that the proposed algorithm,especially for solving high dimensional and complex function optimization problems,has a higher convergence speed and search precision than ABC and three other current ABC-based algorithms.

    articial bee colony(ABC),function optimization, search strategy,population initialization,Wilcoxon signed ranks test.

    1.Introduction

    However,thereisstill muchinsufciencyoftheABCalgorithm about its solution search mechanism which brings a premature convergence and low search accuracy when solving complex multimodal problems and a poor convergence for handling unimodal problems[12].As we know, the search strategy of ABC performs better in exploration but weaker in exploitation[13].The‘exploration’and‘exploitation’[14]play the decisive role in the swarm intelligence optimization algorithm in terms of efciency and accuracy.Here,exploration means the ability of exploring different regions in the search space tond a better solution,while exploitation is the capacity of searching in a specic area in order to pick up a candidate solution.

    Consequently,how can we keep a better exploration and improve exploitation of the search strategy for ABC becomes a key issue for current research.Scholars have put forward many strategies to improve the performance of the ABC algorithm for the problem.Rosenbrock’s rotational direction method was used in the exploitation phase of ABC in order to promise its convergence speed[15]. The Gbest-guidedsearch strategy was proposedas the new solution search equation of ABC to balance the ability to a certain extent in Gbest-guided ABC(GABC)[12].The neighborhoodsearch equation inspired by the behaviors of onlooker bees was put forward to improve the local search ability of the quick ABC(qABC)algorithm[16].Combining the differential evolution algorithm,namely differ-ential evolution(DE)[17]and ABC algorithm,the modied ABC(MABC)introduced the selective probability P to balance the exploration and exploitation of the solution equation[18].The above improved algorithms have enhanced different aspects of the performance for the ABC algorithm.However,it is difcult to make a better balance between both.

    To solve this problem,we propose a comprehensive search mechanism for the ABC algorithm(CSABC).The search mechanism includes three strategies for different processes of ABC.Firstly,for the employed bees process, we introduce a selectivity probability Psto choose one of the three equations including the Gbest-guided search equation,optimal guidance equation and standard search equation of ABC,namely the heuristic Gaussian search strategy.This strategy is used to achieve the purpose of balancing the performance of the three different equations so as to utilize the exploration capability as well as improving the exploitation capability of ABC.Secondly,for the onlooker bees process,inspired by the neighborhood search method,we put forward the global optimal guided neighborhoodsearch equation so as to further improve the exploitation of the algorithm.This strategy uses the current best solution to control the search direction of onlooker bees in its neighborhood.Thereafter,for the current colony,the self-adaptive perturbation strategy which contains random perturbation and Gaussian perturbation is used to adjust the location around the colony slightly in order to avoid precocious phenomena appearing in the process of convergence.In addition,the chaos oppositionbased learning method is used for initialization to enhance the quality of the initial colony.

    The rest of this paper is organized as follows.In Section 2,the ABC method is briey introduced.Section 3 describes the improvedABC algorithm in detail.Section 4 presents and discusses the experimental results based on 27 benchmark functions.Finally,Section 5 is devoted to conclusions and future work.

    2.A brief introduction to ABC

    In the ABC algorithm,the bee colony consists of three parts,namely employed bees,on looker bees and scout bees[1].The number of employed bees,which is half of the colony,is equal to that of onlooker bees.Each employed bee is associated with one food source,and the amount of food sources corresponds to the quality(tness) of the associated solution.The following is a list of major phases of the ABC algorithm.

    At the beginning,the initial colony of solutions is generated by SN randomly generated D-dimensional realvalued vectors,namely food sources.Let Xm= {xm,1,xm,2,...,xm,D}represent the mth food source in the colony,and each food source is generated by theowing equation:

    where m=1,2,...,SN,i=1,2,...,D.Liand Uiare the lower and upper bounds for the search space.Then evaluate and calculate thetness of each solution by(2), meanwhile record the global optimal value.

    where fmis the target function of Xm.

    Thereafter,each employed bee Xmgenerates a new food source Vmby(3)which we call standard food source search equation as follows:

    where m,k∈{1,2,...,SN},k is a randomly chosen index meanwhile k/=m and i∈{1,2,...,D}.?m,iis a randomnumbergeneratedfromthe range[?1,1].Through calculating thetness values,better solutions are chosen by using a greedy selection mechanism.

    Then each onlookerbee selects a foodsource Xmby its probability value pmas the following equation,and generates the modication on Xmby using(3).

    where fitmis thetness value of solution m.

    Finally,forthescoutphase,ifasolutiondoesnotchange over a certain number(limit)of generations,the food source is to be abandoned and the associated employed bee becomes a scout.Then the scout bee produces a food source randomly by(1).

    3.ABC with comprehensive search mechanism

    3.1Initialization method

    As an intelligent search algorithm based on the swarm optimization,ABC uses the method that randomly generates a food source to initialize the populationin the search range.The study found that the dispersion degree of the population initialization position in the search space has greateffectsontheperformanceofaswarmintelligencealgorithm in population diversity[19].The experience from different algorithms shows that the dispersion degree of this method needs to be further improved[20,21].Therefore,thechaossystem combinedwiththeopposition-based learning method was used for initialization in[18].In thispaper,we introduce the logistic mapping for producingthe chaos factor and apply it to the population initialization phase so as to improve the population quality.The algorithm for the initialization is described in Algorithm 1.

    Algorithm 1Chaotic opposition-based learning method of initialization

    01:Set the population size SN and chaotic iteration number M

    //Logistic chaos phase//

    02:form=1 to SNdo

    03:fori=1 to Ddo

    04: Randomly generate the initial chaos factor

    ζj=1,i∈(0,1)

    05:forj=1 to Mdo

    06: ζj+1,i=4ζj,i(1?ζj,i)ζj,i

    07:end for

    08: xm,i=Li+ζj+1,i(Ui?Li)

    09:end for

    10:end for

    //Opposition-based learning method//

    11:form=1 to SNdo

    12:fori=1 to Ddo

    13: Oxm,i=Li+Ui?xm,i

    14:end for

    15:end for

    3.2Heuristic Gaussian search strategy for employed bees

    According to the standard search equation of ABC,the algorithm has strong ability of exploration because of random selection of the search equation,where the better or worse individuals have the same probabilityto be selected. However,the poor exploitation of ABC is also due to the search equation,leading to the problems of slow convergence speed and low search precision.Aiming at the insufciency,inspired by the search equation of PSO,the Gbest-guided search equation(5)was proposed in[13]:

    where m,k∈{1,2,...,SN}and k is a randomly chosen index and k/=m,and i∈{1,2,...,D}.ψm,iis a uniform random number in[0,1.5].vgbest,iis the ith element of the global best solution.This equation,which takes advantageof the informationfor global best solution to guide the search direction of new candidate solutions,improves the exploitation of ABC to some extent.

    Based on the method in[13]and inspired by the Gaussian perturbation factor used for improving ant colony optimization(ACO)[22],we propose the heuristic Gaussian search strategy as follows,which is to make full use of the threesearchequationstobalancethecapabilityofexploitation and exploration:

    wherem,j andk are mutuallydifferentrandomintegerindices selected from{1,2,...,SN}and i∈{1,2,...,D}. pm,iis a random Gaussian factor from a Gaussian distribution where σ is a control parameter to balance the equations S2and S1,S3.S1is a standard ABC search equation which uses the random search method.This equation in the algorithm has a good performance for exploration. S2is a Gbest-guided equation which controls the search direction by(xj,i?xk,j)and(vgbest,i?xm,i).This equation improves the exploitation of ABC but at the cost of the exploring ability.S3is a global best guidance equation aiming at a local search around the best solutions.So,it has a better capability of exploitation.In this paper,we introduce a parameter Psto control the selection of the three different search equations so as to make full use of them.

    Psis a constant.If σ takes a bigger value from(0,1), S1and S3will be chosen with a high probability.While σ takes a smaller value,S1will be chosen with a high probability.Depending on the experimental results,CSABC can achieve a better optimization performance when σ is 0.6.

    Through the above search strategy,employed bees can choose three different search equations in probability, which can enhance the exploration performance as well as improvingthe exploitation of candidate solution search. Obviously,the search selection probabilityPsplays an important role in balancing the exploration and exploitation in the strategy.Note that when Psis equal to 0,S2in(6) does not work.When Pstakes 1,S2plays a major role in the strategy.As a result,the value of Psshould be selected in order to make full use of the proposed strategy and the experimentis used to investigate the inuence of this parameter Psin Section 4.The brief description for the search strategy of employed bee colony is shown in Algorithm 2.

    Algorithm 2Heuristic Gaussian searching strategy

    01:Set the search selection probability Ps

    02:form=1 to SNdo

    03: Produce the Gaussian factor pm,iusing(7)

    04:ifpm,i≤?Psthen

    05: vm,i=xm,i+φm,i(xm,i?xk,i)

    06:if?Ps<pm,i≤Psthen

    10:end if

    11:end if

    12:end if

    13: Apply a greedy selection process between Vmand Xm

    14:ifsolution Xmdoes not improve,trialm= trialm+1

    15:elsetrialm=0

    16:end if

    17:end for

    3.3Gbest-guided neighborhood search strategy for onlooker bees

    In the real world,an onlooker bee chooses a food source region,while the employed bee exploits the food source that she visited before,and tries to make a furtherexploitation tond a rich food source.In other words,the way of conducting the food source is different between employed bees and onlooker bees.The employed bees pay more attention to exploringmore food sources,while the onlooker bees focus on the exploitation of the food source that the employedbees foundbefore.However,employedbees and onlooker bees in the standard ABC algorithm have the same search equation to determine the new sources.Obviously,the search strategy contradicts the behavior of onlooker bees.Hence,Karaboga proposed a neighborhood search equation[16]as follows:

    where d(m,j)is the Euclidean distance between Xmand Xj.Xjis the neighbor of Xmwhen d(m,j)is less than rmdm.r is the neighborhood radius and equal to 1 generally.IfthereareS solutionsin NmwhichincludesXm, the best food source in Nmcan be calculated as follows:

    where δm,iis a random number from a Gaussian distribution N(0,1).ψm,iis a uniform random number in[0,1.5]. vgbest,iis the ith element of the global best solution.In (11),the current best solution is used to control the search direction so as to make a deep search around the bees’neighborhood.It not only enhances the local search accuracy,but also improves the convergence speed.The main procedure-codeis introduced in Algorithm 3.

    Algorithm 3Gbest-guided neighborhood searching strategy

    01:Set t=0 and i=1

    02:Calculate the pmvalue by(4)

    03:whilet<SNdo

    04:ifrandom<pmthen

    05: t=t+1

    06: Calculate the mean distance by(9)

    07: Determinetheneighborhoodsearchingfoodby (10)

    09: Greedy selection is used betweenand

    10:ifsolutiondoes not improve

    11:thentriali=triali+1

    12:elsetriali=0

    13:end if

    14:end if

    15:i=i+1

    16:end while

    3.4Self-adaptiveperturbation strategyforbee colonyIt is the last and necessary strategy in the comprehensive mechanism of CSABC for improving the performance of ABC.It is used to prevent the algorithm from falling into the local optimum and enhance the diversity of population by Gaussian perturbation or random perturbation for the beecolonyat theendofeachiteration.Themainmethodof the strategy is to disturb the location of the current colony slightly.Firstly,calculate the average global optimal solution as follows:where m refers to the mth food source and SN is the food number.ObjValmis the best objective value of Xmin the ith cycle.Then,chose the appropriate strategy by comparing ObjValmwith ObjVali,mean.If the current optimal solutionis worse thanObjVali,mean,the followingoperation, i.e.Gaussian perturbation for the population in a larger area,will be applied to improve its search precision and exploitation.

    where Xmis the mth food source in the bee colony.Experimental results show that the improved algorithm can getbetteroptimizationperformancewhenτ takes0.5.Otherwise,the following random disturbance is to be used to disturb the location of Xmslightly in a smaller area.

    where ?mis a randomnumber in[?1,1].The perturbation strategy for the bee colony is shown in Algorithm 4.

    Algorithm 4Self-adaptive colony perturbation strategy

    01:Calculate the ObjVali,meanby(12)

    02:form=1 to SNdo

    03:ifObjVali,mean>ObjValmthen

    04: Apply the Gaussian perturbation by(13)

    05:else

    06: Apply random perturbation by(14)

    07:end if

    08:end for

    3.5Main steps of CSABC

    Based on the aboveexplanationof improvedstrategies,the main steps of CSABC are given in Algorithm 5.

    Algorithm 5The CSABC algorithm

    01:Set the parameterSN,MaxCycle,Limit and ErrGoal

    02:Perform Algorithm 1 to create the initial bee colony

    04:whilethe halting criterion is not satiseddo

    05:form=1 to SNdo

    06: Generate a new food source Vmby Algorithm 2

    07: Evaluate the food source Vm

    08:end for

    09: Perform Algorithm 3 for onlooker bees phase

    10: Memorize the best food souse

    11: Generate the scout bee by(1)

    12: Apply self-adaptive perturbation strategy

    13:end while

    4.Experiments

    In order to validate the performance of the CSABC algorithm on function optimization,27 benchmark functions described in Table 1[6,18]are used,where‘Min’is the minimum value of the functions and‘R’is the search range.f1?f7are continuous unimodal functions.f8is a discontinuous step function and f9is a noisy quartic function.f10?f15are low-dimensional functions which have onlyafew localminimums.f16?f27arehigh-dimensional multimodal functions.The numbers of local minimums for f16?f27increase exponentially with the dimensions [24].Theabovedifferentbenchmarkfunctions,whichhave good test performance,are difcult and complex unconstrained optimization problems.They can effectively validate the performance of CSABC in terms of convergence rate,global convergence accuracy and multimodal optimization.

    Table 1 The 27 benchmark functions used in the experiments

    Continued

    In addition,in order to analyze the difference between the CSABC and other compared ABC algorithms,a popularstatistical methodnamelyWilcoxonsignedranks test [25]is usedintheexperiments.TheWilcoxonsignedranks test is a pairwise test that aims to detect signicant difference between two algorithms.The global best values of K independent runs are used as the samples for Wilcoxon signed ranks test.The signicance level of the test is set as 0.05.

    In this section,we have carried out six different experiments and the usage of CSABC in the experiments is according to Section 3.5,namely main steps of CSABC. Meanwhile the parameters’settings of the experiments are stated at the beginning of each experiment in subsequent chapters.All the algorithms are implemented in Matlab and the experiments are done on an Intel Core i5-23102.9 and 2.89 GHz machine with 3.34 GB RAM under the WIN-XP platform.

    4.1Parameters analysis of CSABC algorithm

    4.1.1 Impact of selection probability Pson the performance of CSABC

    According to the explanation of the selective probability Psin the employed bees process of CSABC,we note that it plays an important role for the performance of CSABC. In order to select a suitable Psof the CSABC for a better balance between exploitation and exploration,ve different kinds of 30 dimensional benchmark functions are used to investigate the inuence of the parameter.The functions are Sphere(f1),Rosenbrock(f18),Rastrigin(f20), Griewank(f22)and Ackley(f24)[13].We set the population size SN=80,limit=500,maximum number of function evaluations MaxCycle=5 000,objective search accuracy ErrGoal=e-50(values of function error less than 1e-50 are reported as 0).

    The results of mean and standard deviation values are summarized in Table 2 through 30 independent runs of each function.From Table 2,wend that Pscan inuence the results.When Psis around 0.5,CSABC has a faster convergencespeed and better results on Rosenbrock and Ackley functions.For the other three functions,it can achieve the optimal solution whatever Psis.In order to illustrate the inuence of Psfor the algorithm more evidently,convergence curves of CSABC for the rest three functions are shown in Fig.1.It can be observed that CSABC has less generation to reach the better results and faster convergence speed when Psis 0.5 in the evaluation process of the three functions.As a result,Psis set to 0.5 for all other experiments so as to get the best performance for CSABC.

    Table 2 Infuence of different values of Pson the performance of CSABC

    Fig.1 Convergence curves of CSABC with different Pson functions Sphere,Griewank,and Rastrigin

    In this experiment,we discuss the inuence of different population sizes SN on the performance of CSABC.The results are summarized in Table 3 in terms of the best, worst,mean,standard deviation of the solutions and mean time of the solutions for each test functions obtained inthe 50 independent runs.We set limit=100,MaxCycle= 500,ErrGoal=1e-50,Ps=0.5 and D=30.The convergence curves of CSABC with different population sizes are presented in Fig.2.As can be seen from Table 3,the convergence speed,stability and robustness of the CSABC algorithm are all increasing along with the increase of the population size,but the time consumption also dramatically increases.In Fig.2,we cannd that the convergence curves of the algorithm are similar when SN is larger than 100.For the algorism’s performance and operation efciency concern,we set SN=100 so as to get more ideal optimization performance.

    Fig.2 Convergence curves of CSABC with different SNs on functions f9,f19and f27

    Table 3 Infuence of different numbers of population on the performance of CSABC with f9,f19and f27

    4.2Comparison with standard ABC algorithm

    In

    this experiment,the performance of CSABC is comparedwith that of ABC.We set SN=100,MaxCycle=5000, ErrGoal=1e-50,limit=100 and Ps=0.5.

    The statistical and Wilxcon singed ranks test results are summarized in Table 4 obtained by 50 independent runs. In addition,if p-value in Table 4 is less than 0.05(5%signicance level),it is a strong evidence against the null hypothesis,indicating that the compared two algorithms are statisticallydifferentandhavenotoccurredbychance[25].‘R+’represents the sum ranks for the problems in which CSABC outperform the compared algorithm while‘R–’indicates the sum of ranks for the opposite.‘Win’represents the winner algorithm in the pairwise comparison.‘+’indicates the winner algorithm is CSABC,‘–’represents the winner algorithm is the compared algorithm and‘=’illustrates that there has no signicant difference between the two algorithms.

    Table 4 Comparison between ABC and CSABC based on 27 test benchmark functions(α=0.05)

    Continued

    The statistical results from Table 4 suggest that the convergence precision and speed of CSABC are better than ABC.Particularly,CSABC can nearlynd the global optimal solutions on all functions expected for f24,f25and f26,while the results in terms of the best,median,worst, mean,and standard of CSABC are obviously better than those of ABC on the three test functions.Meanwhile,the mean runningtime of CSABC is less than that of ABC.On the other hand,when the(+/=/–)values are examined from Table4,itcanbesaidthatCSABC isstatistically moresuccessful than ABC in solving the 27 benchmark functions.

    Furthermore,in order to illustrate the different performances of ABC and CSABC,four representative graphs presenting the comparison on convergence characteristics of the evolutionary process are shown in Fig.3.It can be seen that the convergence speed of CSABC is faster than that of ABC as Fig.3 indicates.In short,the superiority in terms of search accuracy and efciency of CSABC should be attributed to a better balance between exploitation and exploration.

    Fig.3 Convergence curves of CSABC and ABC on the four test functions with D=30

    4.3Comparison with ABC-based algorithms

    In order to further illustrate the superiority of CSABC, the performanceof CSABC is compared with GABC[13], qABC[16]andMABC[18].Thevetestfunctionswith30 and 60 dimensions respectively are selected from Table 1 as[13]indicated.And the statistical results are summarized in Table 5 and Fig.4.All the parameter settings are the same as those of GABC in[13],i.e.SN=80,Max-Cycle=5 000,ErrGoal=1e-20 and 30 runs.It can be seen from Table 5 that the standard statistical results including best,median,worst,mean and standard of CSABC show obvious superiority compared with qABC,GABC and MABC,especially for the optimization of functions Sphere,Griewank and Schaffer.Meanwhile,the mean running time of CSABC is less than the compared algorithms except the Rosenbrock function.When the(+/=/–)values for Table 5 are examined,it can be conrmed that CSABC has provided statistically better solutions than the compared algorithms.As can be seen from Fig.4,CSABC has a signicantly faster convergence speed than the other three ABCs algorithms.In a word,CSABC works better in all cases and has a superior optimization ability than qABC,GABC and MABC from Table 5 and Fig.4 on the basis of above parameters settings.

    Table 5 Comparison with qABC,GABC,MABC and CSABC on fve test functions(α=0.05 and NA indicates CSABC vs.CSABC)

    Continued

    Fig.4 Convergence curves of different ABC-based algorithms on the three test functions

    4.4Comparison for high dimensional functions

    In this experiment,we compare the optimization quality of the CSABC with qABC,GABC and MABC in different high dimensions with low population sizes.We set the SN=50 and other parameter settings are invariant as described in Section 4.3.The mean results of 30 independent runs and Wilxcon singed ranks test are summarized in Table6(NAindicatesCSABC vs.CSABC).Furthermore,we present two representative cases of the convergencecurves for MABC and CSABC with 2 000 dimension benchmark functions for function f3and f19,which are shown in Fig.5.

    Table 6 Comparison between different ABC algorithms on f3,f17and f19with high dimensions(α=0.05)

    Continued

    Fig.5 Convergence curves of MABC and CSABC for benchmark functions with 2 000 dimensions on f3and f19

    As seen from Table 6,the advantages in terms of best, median,worst,mean,standard and mean time of CSABC are very outstanding among the four ABCs.Especially for f3,f17and f19with 2 000 dimensions,the mean of CSABC gets the theoretical optimal value.Meanwhile, CSABC can solve the three problems of different high dimensions in all 30 runs while the other three improved ABC algorithms cannot.Moreover,CSABC requires less mean Max.FE than the other three ABC-based algorithms in f3and f19.When examining the value of(+/=/–)from Table 6,it can be illustrated that the CSABS has statistically better solutions that the compared ABC-based algorithms.In Fig.5,it can be observed that CSABC has a better performance on the convergence speed within less generationthan MABC.In a word,the results fromTable 6 and Fig.5 illustrate that the CSABC algorithm is superiorto other three kinds of improved ABC in the aspects of convergence accuracy,speed and stability for optimizing the high dimensional functions.

    4.5Comparison for the multimodal functions

    In order to analyze the optimization performance for multimode functions,CSABC is compared with qABC and MABC basedon the fourmultimodalfunctions.Thestatistical results and Wilxcon singed ranks test are summarized in Table 7,where ratio refers to the percentage of searching all the global optimal solutions for the functions.In the experiment,we set the parameters as those in Section 4.2.

    Table 7 Comparison with qABC,MABC and CSABC for multimodal functions(α=0.05)

    From Table 7,we see that the CSABC can get all the theoretical optimal values for the multimodal functions with low time consumption compared with other two algorithms.Moreover,CSABC gives smaller standard deviations of function values.It means that the solution quality of CSABC is more stable than qABC and MABC.In addition,in the three functions,CSABC requires less mean Max.FE.When the values of(+/=/–)are examined,it can be indicated that the CSABC is statistically better than the compared algorithms for optimization of the four multimodal functions.

    4.6Analysis of the population diversity

    The populationdiversityis directly related to the optimization performance of ABCs[26]and it can be calculated as follows:

    where diameter(S(t))is the diameter of the bee colony, namely the Euclidean distance between the most remote individuals,ˉxj(t)is the mean jth location of X and t is the current cycle number.

    Inthis experiment,weset theErrGoal=1e-100andother parameters settings are the same as those in Section 4.2. The mean diversity curves of CSABC and MABC with 30 independent runs for f1and f24are shown in Fig.6.

    Fig.6 Comparison on the diversity performance

    It can be observed that the MABC algorithm keeps better population diversity at the beginning of the evolution, but it turns weak with the increasing number of generation.However,the CSABC algorithm keeps a better performance in the process of evolution,thus it is able tond the global optimal value at a large probability.

    5.Conclusions

    In this paper,we propose an efcient optimization algorithm named CSABC through explaining the heuristic Gaussian search strategy for employed bees,the global best-guided neighborhood search equation of onlooker bees,and the self-adaptive perturbation method for bee colony and introducing the chaos opposition-based learning method for population initialization.By these means, CSABC achieves a better balance between explorationand exploitation.The experimental results and Wilxcon signed ranks test based on 27 benchmark functions show that the performanceof the CSABC algorithmis superior to that of ABC,qABC,GABC andMABCalgorithms,especiallyfor the high-dimensional complex functions and multimode optimization problems.

    [1]D.Karaboga.An idea based on honey bee swarm for numerical optimization.Kayseri:Erciyes University,2005.

    [2]J.Kennedy,R.Eberhart.Particle swarm optimization.Proc.of the IEEE International Conference on Neural Networks,1995: 1942–1949.

    [3]K.S.Tang,K.F.Man,S.Kwong,et al.Genetic algorithms and their applications.IEEE Signal Processing Magazine,1996, 13(6):22–37.

    [4]M.Dorigo,T.Stutzle.Ant colony optimization.Cambrige: MA MIT,2004.

    [5]D.Karaboga,B.Basturk.A powerful and efcient algorithm for numerical function optimization:articial bee colony (ABC)algorithm.Journal of Global Optimization,2007, 39(3):459–471.

    [7]D.Karaboga,C.Ozturk.Anovel clustering approach:articial bee colony(ABC)algorithm.Applied Soft Computing,2011, 11(1):652–657.

    [8]K.Chandrasekaran,S.P.Simon.Multi-objective unit commitment problem with reliability function using fuzzied binary real coded articial bee colony algorithm.IET Generation, Transmission&Distribution,2012,6(10):1060–1073.

    [10]Y.M.Huang,J.C.Lin.A new bee colony optimization algorithm with idle-time-basedltering scheme for open shopscheduling problems.Expert Systems with Applications,2011, 38(5):5438–5447.

    [11]T.J.Hsieh,H.F.Hsiao.Forecasting stock markets using wavelet transforms and recurrent neural networks:an integrated system based on articial bee colony algorithm.Applied Soft Computing,2010,11(2):2510–2525.

    [12]D.Karaboga,B.Akay.A comparative study of articial bee colony algorithm.Applied Mathematics and Computation, 2009,214(1):108–132.

    [13]G.P.Zhu,S.Kwong.Gbest-guided articial bee colony algorithm for numerical function optimization.Applied Mathematics and Computation,2010,217(7):3166–3173.

    [14]J.F.Schutte,A.A.Groenwold.Sizing design of truss structures using particle swarms.Structural and Multidisciplinary Optimization,2003,25(4):261–269.

    [15]F.Kang,J.J.Li,Z.Y.Ma.Rosenbrock articial bee colony algorithm for accurate global optimization of numerical functions.Information Sciences,2011,181(6):3508–3531.

    [16]D.Karaboga,B.Gorkemli.A quick articial bee colony (qABC)algorithm and its performance on optimization problems.Applied Soft Computing,2014,23:227–238.

    [17]R.Storn,K.Price.Differential evolution-a simple and efcient heuristic for global optimization over continuous spaces.Journal of Global Optimization,1997,11(4):341–359.

    [19]D.Gehlhaar,D.Fogel.Tuning evolutionary programming for conformationallyexible molecular docking.Proc.of the FifthAnnual Conference on Evolutionary Programming,1996: 419–429.

    [20]B.Liu,L.Wang,Y.H.Jin,et al.Improved particle swarm optimization combined with chaos.Chaos,Solutions&Fractals, 2005,25(5):1261–1271.

    [21]Z.H.Zhan,J.Zhang,Y.Li,et al.Adaptive particle swarm optimization.IEEE Trans.on Systems,Man,and Cybernetics-Part B:Cybernetics,2009,39(6):1362–1381.

    [22]P.Korosec,J.Silc.The differential ant-stigmergy algorithm applied to dynamic optimization problems.Proc.of the IEEE Congress on Evolutionary Computation,2009:407–410.

    [23]W.Y.Gong,Z.H.Cai,L.X.Jiang.Enhancing theperformance of differential evolution using orthogonal design method.Applied Mathematics and Computation,2008,206(1):56–69.

    [24]Y.W.Leung,Y.Wang.An orthogonal genetic algorithm with quantization for global numerical optimization.IEEE Trans. on Evolutionary Computation,2001,5(1):41–53.

    [25]J.Derrac,S.Garcia,D.Molina,et al.A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolution Computation,2011(1):3–18.

    [26]J.Riget,J.S.Vesterstrom.A diversity-guided particle swarm optimizer-the ARPSO.Aarhus:Unversity of Aarhus,2002.

    Biographies

    Mudong Li was born in 1987.He received his M.S.degree in circuits and system from Air Force Engineering University in 2010.He is now studying in Air Force Engineering University to pursue his Ph.Ddegree ofweapon science andtechnology. His research interests are articial intelligence optimization algorithms and optimal control.

    E-mail:modern lee@163.com

    Hui Zhao was born in 1973.He received his Ph.D. degree in weapon science and technology from Air Force Engineering University,in 2011.He is currently a professor in Department of Aeronautics and Astronautics Engineering,Air Force Engineering University.He has been engaged in teaching and researching on weapon systems and application engineering and optimal control.

    E-mail:zhaohui kgy@163.com

    Xingwei Weng was born in 1978.He received his Ph.D.degree in weapon science and technology from Air Force Engineering University in 2009.He is currently an instructor and working in Department of Aeronautics and Astronautics Engineering,Air Force Engineering University.His research interests are weapon systems and application engineering and optimal control.

    E-mail:weng kgy@163.com

    Hanqiao Huang was born in 1982.He received his Ph.D.degree in Navigation,guidance and control from Northwestern Polytechnical University in 2010.He is currently an instructor and working in Department of Aeronautics and Astronautics Engineering,Air Force Engineering University.His research interests are optimal control and control science and engineering.

    E-mail:cnxahhq@126.com

    10.1109/JSEE.2015.00068

    Manuscript received May 23,2014.

    *Corresponding author.

    This work is supported by the Aviation Science Foundation of China(20105196016)and the Postdoctoral Science Foundation of China (2012M521807).

    亚洲人成电影观看| 大香蕉久久网| 久久人人97超碰香蕉20202| 777久久人妻少妇嫩草av网站| 免费黄色在线免费观看| 黄色 视频免费看| 久久久国产欧美日韩av| 亚洲国产看品久久| 亚洲欧美成人精品一区二区| 在线天堂中文资源库| 最近中文字幕2019免费版| 成人免费观看视频高清| 一级毛片黄色毛片免费观看视频| 一级毛片黄色毛片免费观看视频| 久久99一区二区三区| 午夜福利网站1000一区二区三区| 老司机深夜福利视频在线观看 | 别揉我奶头~嗯~啊~动态视频 | 中文字幕人妻丝袜一区二区 | 亚洲,欧美,日韩| 婷婷色av中文字幕| 一本久久精品| 熟女少妇亚洲综合色aaa.| 美女视频免费永久观看网站| 欧美另类一区| 黄片无遮挡物在线观看| 欧美成人午夜精品| 黄色视频在线播放观看不卡| 国产99久久九九免费精品| 国产精品av久久久久免费| 久久精品国产综合久久久| 欧美久久黑人一区二区| videos熟女内射| 久久人人爽av亚洲精品天堂| 午夜日本视频在线| 亚洲一区二区三区欧美精品| 老司机影院毛片| 亚洲久久久国产精品| 考比视频在线观看| 日韩制服丝袜自拍偷拍| 久久精品久久精品一区二区三区| 中文精品一卡2卡3卡4更新| 国产免费福利视频在线观看| 亚洲av电影在线进入| 尾随美女入室| 亚洲国产成人一精品久久久| a 毛片基地| 99久国产av精品国产电影| 亚洲欧美一区二区三区久久| 久久久久国产精品人妻一区二区| 国产免费又黄又爽又色| 90打野战视频偷拍视频| bbb黄色大片| 丰满乱子伦码专区| 国产片特级美女逼逼视频| 纯流量卡能插随身wifi吗| 精品人妻在线不人妻| 欧美日韩一区二区视频在线观看视频在线| 99精国产麻豆久久婷婷| 日韩av不卡免费在线播放| 亚洲一区二区三区欧美精品| 国产成人免费观看mmmm| 丁香六月欧美| 国产精品久久久久久久久免| 欧美黄色片欧美黄色片| 精品福利永久在线观看| 可以免费在线观看a视频的电影网站 | 亚洲熟女精品中文字幕| 综合色丁香网| 国产精品一区二区精品视频观看| 亚洲第一av免费看| 中文字幕人妻丝袜一区二区 | 久久 成人 亚洲| 亚洲一区中文字幕在线| 亚洲专区中文字幕在线 | 狂野欧美激情性xxxx| 两个人看的免费小视频| 建设人人有责人人尽责人人享有的| 午夜福利视频在线观看免费| 亚洲人成77777在线视频| 国产精品成人在线| 青春草视频在线免费观看| 人人妻人人爽人人添夜夜欢视频| 亚洲精品,欧美精品| 极品人妻少妇av视频| 校园人妻丝袜中文字幕| 超碰97精品在线观看| 女人高潮潮喷娇喘18禁视频| 国产精品久久久av美女十八| 久久99热这里只频精品6学生| 婷婷色综合大香蕉| 国产国语露脸激情在线看| 这个男人来自地球电影免费观看 | 国产在线视频一区二区| 91成人精品电影| 蜜桃国产av成人99| 99久国产av精品国产电影| 99久国产av精品国产电影| 咕卡用的链子| 女人爽到高潮嗷嗷叫在线视频| 一区二区三区乱码不卡18| 精品国产超薄肉色丝袜足j| h视频一区二区三区| 国产有黄有色有爽视频| 日韩精品有码人妻一区| 午夜日韩欧美国产| 十八禁高潮呻吟视频| 亚洲中文av在线| 亚洲人成电影观看| 人人妻人人添人人爽欧美一区卜| 纯流量卡能插随身wifi吗| 深夜精品福利| 亚洲熟女精品中文字幕| 久久国产亚洲av麻豆专区| 青春草国产在线视频| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费| xxx大片免费视频| 国产在视频线精品| 欧美av亚洲av综合av国产av | 国产精品国产av在线观看| 啦啦啦视频在线资源免费观看| 亚洲 欧美一区二区三区| 啦啦啦中文免费视频观看日本| 日本爱情动作片www.在线观看| 亚洲,一卡二卡三卡| 又黄又粗又硬又大视频| 一边摸一边做爽爽视频免费| 亚洲国产精品成人久久小说| 麻豆精品久久久久久蜜桃| 国产精品熟女久久久久浪| 国产在视频线精品| 欧美乱码精品一区二区三区| 少妇 在线观看| 精品国产超薄肉色丝袜足j| 三上悠亚av全集在线观看| 91成人精品电影| 在线观看一区二区三区激情| 精品国产一区二区三区四区第35| 搡老岳熟女国产| 国产精品香港三级国产av潘金莲 | 美女国产高潮福利片在线看| 水蜜桃什么品种好| 亚洲熟女毛片儿| 蜜桃国产av成人99| 嫩草影视91久久| 久久久国产欧美日韩av| 国产一卡二卡三卡精品 | 九九爱精品视频在线观看| 晚上一个人看的免费电影| 中文字幕亚洲精品专区| av在线app专区| 在线亚洲精品国产二区图片欧美| 男人添女人高潮全过程视频| 久久av网站| 日韩,欧美,国产一区二区三区| 男女之事视频高清在线观看 | 一二三四在线观看免费中文在| 99热全是精品| 国产一区有黄有色的免费视频| 午夜福利乱码中文字幕| 日本黄色日本黄色录像| 精品少妇黑人巨大在线播放| 成年人免费黄色播放视频| 丝袜美腿诱惑在线| 国产有黄有色有爽视频| 美女脱内裤让男人舔精品视频| 亚洲人成77777在线视频| 纵有疾风起免费观看全集完整版| 婷婷色综合大香蕉| 亚洲精品国产一区二区精华液| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| 老汉色∧v一级毛片| 国产日韩欧美亚洲二区| 精品人妻在线不人妻| tube8黄色片| 国产av一区二区精品久久| 熟女av电影| 欧美激情极品国产一区二区三区| 美女脱内裤让男人舔精品视频| 欧美 日韩 精品 国产| 久久久久久人妻| 男人舔女人的私密视频| 一级a爱视频在线免费观看| 少妇人妻精品综合一区二区| 韩国av在线不卡| 亚洲av成人不卡在线观看播放网 | 热99久久久久精品小说推荐| 香蕉丝袜av| 哪个播放器可以免费观看大片| 99久久精品国产亚洲精品| 丝袜美足系列| 欧美日韩一级在线毛片| 十分钟在线观看高清视频www| 国产精品女同一区二区软件| 女人爽到高潮嗷嗷叫在线视频| 婷婷色综合www| 一边摸一边做爽爽视频免费| 女人高潮潮喷娇喘18禁视频| 人人妻人人爽人人添夜夜欢视频| 欧美97在线视频| 黄色视频不卡| 母亲3免费完整高清在线观看| 国产 一区精品| 成年女人毛片免费观看观看9 | 美女视频免费永久观看网站| 亚洲男人天堂网一区| 成人手机av| 两个人看的免费小视频| 精品国产超薄肉色丝袜足j| 80岁老熟妇乱子伦牲交| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩福利视频一区二区| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 免费看不卡的av| 亚洲av欧美aⅴ国产| bbb黄色大片| 久久午夜综合久久蜜桃| 水蜜桃什么品种好| 亚洲精品一二三| 男女边摸边吃奶| 国产一区二区三区av在线| 一本—道久久a久久精品蜜桃钙片| 91老司机精品| 国产在视频线精品| 韩国av在线不卡| 日日啪夜夜爽| 午夜福利一区二区在线看| 亚洲第一青青草原| 久久人妻熟女aⅴ| 国产熟女午夜一区二区三区| 日本wwww免费看| 国产亚洲午夜精品一区二区久久| 天美传媒精品一区二区| 黄片播放在线免费| 热99国产精品久久久久久7| 婷婷色av中文字幕| 免费少妇av软件| 国产精品香港三级国产av潘金莲 | 日韩一区二区三区影片| 亚洲国产精品成人久久小说| 久久久久久人妻| 日韩欧美一区视频在线观看| 欧美最新免费一区二区三区| 天堂中文最新版在线下载| 一级,二级,三级黄色视频| 国产成人91sexporn| 男女边吃奶边做爰视频| 91精品国产国语对白视频| 一级a爱视频在线免费观看| 国产在线一区二区三区精| 国产一卡二卡三卡精品 | 免费观看av网站的网址| av.在线天堂| 91aial.com中文字幕在线观看| 亚洲一区二区三区欧美精品| 亚洲免费av在线视频| 国产一区亚洲一区在线观看| 国产精品女同一区二区软件| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品电影小说| 蜜桃国产av成人99| 麻豆乱淫一区二区| 久久人人爽人人片av| 纯流量卡能插随身wifi吗| 欧美在线黄色| 亚洲,欧美精品.| 国产男女超爽视频在线观看| 国产精品国产三级专区第一集| 一区在线观看完整版| www.精华液| 亚洲色图综合在线观看| 欧美日韩视频高清一区二区三区二| av电影中文网址| 老汉色∧v一级毛片| 人妻 亚洲 视频| 国产在线视频一区二区| 一级片免费观看大全| 精品一区二区三区四区五区乱码 | 免费看不卡的av| 日韩熟女老妇一区二区性免费视频| 日本av免费视频播放| 激情五月婷婷亚洲| av电影中文网址| 精品国产超薄肉色丝袜足j| 精品一品国产午夜福利视频| 丝袜美腿诱惑在线| 亚洲色图 男人天堂 中文字幕| www.精华液| 我要看黄色一级片免费的| 高清在线视频一区二区三区| www.av在线官网国产| 各种免费的搞黄视频| 日韩 亚洲 欧美在线| 成年人免费黄色播放视频| 少妇的丰满在线观看| 丰满饥渴人妻一区二区三| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 十八禁高潮呻吟视频| 一级片免费观看大全| 一二三四中文在线观看免费高清| 亚洲精品国产av蜜桃| 国产一区二区激情短视频 | 亚洲精品国产一区二区精华液| 一边摸一边做爽爽视频免费| 久久天堂一区二区三区四区| e午夜精品久久久久久久| 久久人人爽人人片av| 亚洲人成77777在线视频| 丰满乱子伦码专区| 午夜福利视频在线观看免费| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 国产毛片在线视频| 色吧在线观看| 欧美成人精品欧美一级黄| 满18在线观看网站| 久久97久久精品| 亚洲少妇的诱惑av| av免费观看日本| 9热在线视频观看99| 美女高潮到喷水免费观看| 国产亚洲欧美精品永久| 亚洲av在线观看美女高潮| 亚洲av中文av极速乱| 精品卡一卡二卡四卡免费| h视频一区二区三区| 国产极品粉嫩免费观看在线| 国产 精品1| 成年人免费黄色播放视频| 久久精品亚洲av国产电影网| 国产精品欧美亚洲77777| 9191精品国产免费久久| 久久久久久久国产电影| 欧美老熟妇乱子伦牲交| 男女下面插进去视频免费观看| 亚洲成国产人片在线观看| 女人爽到高潮嗷嗷叫在线视频| 丝袜喷水一区| 欧美日韩一区二区视频在线观看视频在线| 午夜福利网站1000一区二区三区| 欧美中文综合在线视频| 曰老女人黄片| 女人被躁到高潮嗷嗷叫费观| 免费在线观看完整版高清| 只有这里有精品99| 亚洲欧美清纯卡通| 黄片小视频在线播放| 99九九在线精品视频| 两个人免费观看高清视频| 日韩av在线免费看完整版不卡| 国产一区二区 视频在线| 十八禁高潮呻吟视频| 在线观看免费日韩欧美大片| 午夜日韩欧美国产| 日韩一区二区视频免费看| 国产精品一国产av| 亚洲欧美一区二区三区国产| 不卡视频在线观看欧美| 国产男女内射视频| 日本91视频免费播放| 操出白浆在线播放| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 亚洲精品,欧美精品| 国产成人a∨麻豆精品| 精品国产一区二区三区四区第35| 免费在线观看黄色视频的| 秋霞在线观看毛片| 黄色一级大片看看| 国产男人的电影天堂91| 一边摸一边做爽爽视频免费| 日韩,欧美,国产一区二区三区| 桃花免费在线播放| 黄色视频在线播放观看不卡| 亚洲男人天堂网一区| 久久久久精品久久久久真实原创| 人妻人人澡人人爽人人| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 午夜福利影视在线免费观看| 亚洲,欧美,日韩| 亚洲国产欧美在线一区| 97精品久久久久久久久久精品| 欧美人与善性xxx| 亚洲美女视频黄频| 丝袜脚勾引网站| 国产精品av久久久久免费| 国产精品一区二区在线不卡| 伊人久久大香线蕉亚洲五| 在线天堂最新版资源| 久久久久精品国产欧美久久久 | 赤兔流量卡办理| 99热国产这里只有精品6| av不卡在线播放| 国产在线视频一区二区| 丝袜美腿诱惑在线| 一级毛片 在线播放| 五月天丁香电影| 黄色视频不卡| 免费久久久久久久精品成人欧美视频| 99久久人妻综合| 最新的欧美精品一区二区| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 日韩伦理黄色片| 国产黄色视频一区二区在线观看| 久久久久久久久久久免费av| 日韩av免费高清视频| 亚洲国产精品国产精品| 国产黄色免费在线视频| 亚洲综合精品二区| 91精品三级在线观看| 日韩大片免费观看网站| 日韩中文字幕欧美一区二区 | 久久鲁丝午夜福利片| 久久久国产一区二区| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 久久av网站| 日韩av免费高清视频| 九九爱精品视频在线观看| 久久免费观看电影| 亚洲欧美一区二区三区久久| 久久亚洲国产成人精品v| e午夜精品久久久久久久| 青春草国产在线视频| 免费观看av网站的网址| 亚洲av电影在线观看一区二区三区| 亚洲美女搞黄在线观看| 亚洲一码二码三码区别大吗| 在线观看免费高清a一片| 日韩视频在线欧美| 最黄视频免费看| 丝袜脚勾引网站| 国产欧美亚洲国产| 成人漫画全彩无遮挡| 一区二区日韩欧美中文字幕| 亚洲伊人久久精品综合| 亚洲五月色婷婷综合| 国产高清不卡午夜福利| 一级毛片电影观看| 91成人精品电影| 哪个播放器可以免费观看大片| 国语对白做爰xxxⅹ性视频网站| 美女中出高潮动态图| 久久久久精品久久久久真实原创| 亚洲精华国产精华液的使用体验| 90打野战视频偷拍视频| 天美传媒精品一区二区| 午夜福利乱码中文字幕| 色吧在线观看| 乱人伦中国视频| 91aial.com中文字幕在线观看| 天堂俺去俺来也www色官网| 日韩大码丰满熟妇| 欧美精品亚洲一区二区| 天天操日日干夜夜撸| 又黄又粗又硬又大视频| 国产精品一区二区在线观看99| 91精品国产国语对白视频| 亚洲国产日韩一区二区| 色视频在线一区二区三区| 一区福利在线观看| 欧美少妇被猛烈插入视频| 欧美变态另类bdsm刘玥| 免费av中文字幕在线| 亚洲人成网站在线观看播放| 久久久久精品国产欧美久久久 | 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 这个男人来自地球电影免费观看 | 国产黄色免费在线视频| 青春草国产在线视频| 欧美日韩成人在线一区二区| 性色av一级| 男人操女人黄网站| 欧美 日韩 精品 国产| 日本午夜av视频| 18禁动态无遮挡网站| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 国产精品秋霞免费鲁丝片| 婷婷色av中文字幕| 国产极品天堂在线| 国产精品久久久久久精品电影小说| 老鸭窝网址在线观看| 欧美精品亚洲一区二区| a级毛片在线看网站| 国产精品免费视频内射| 亚洲激情五月婷婷啪啪| 国产亚洲av高清不卡| 久久精品亚洲av国产电影网| 超碰97精品在线观看| 观看av在线不卡| 国产无遮挡羞羞视频在线观看| av在线观看视频网站免费| 老司机亚洲免费影院| 香蕉丝袜av| 国精品久久久久久国模美| 欧美黑人精品巨大| 久久久国产一区二区| 美女午夜性视频免费| 亚洲av福利一区| 日韩一区二区视频免费看| 亚洲国产欧美在线一区| 久久狼人影院| 国产片内射在线| 日韩欧美一区视频在线观看| 丰满乱子伦码专区| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 久久av网站| av天堂久久9| 国产伦理片在线播放av一区| 久久热在线av| 18禁国产床啪视频网站| 丰满迷人的少妇在线观看| 宅男免费午夜| www.精华液| 精品人妻在线不人妻| 精品第一国产精品| 80岁老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 亚洲国产精品国产精品| 日韩制服骚丝袜av| 国产乱人偷精品视频| bbb黄色大片| 天天躁夜夜躁狠狠躁躁| 久久这里只有精品19| 亚洲成人免费av在线播放| 各种免费的搞黄视频| 男人添女人高潮全过程视频| 大片电影免费在线观看免费| tube8黄色片| 极品人妻少妇av视频| 999久久久国产精品视频| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 日韩一区二区三区影片| 亚洲人成电影观看| 国产亚洲午夜精品一区二区久久| 久久久久久人妻| 人人妻人人澡人人看| 久久久久久久国产电影| bbb黄色大片| 九九爱精品视频在线观看| 欧美人与性动交α欧美精品济南到| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 嫩草影视91久久| 一级毛片 在线播放| 自线自在国产av| 色婷婷av一区二区三区视频| 无遮挡黄片免费观看| 久久久久国产一级毛片高清牌| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av免费高清视频| 热99久久久久精品小说推荐| 久久影院123| 黄片小视频在线播放| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 午夜激情久久久久久久| 久久婷婷青草| www.精华液| 国产精品久久久av美女十八| 18禁裸乳无遮挡动漫免费视频| 日韩 欧美 亚洲 中文字幕| 免费久久久久久久精品成人欧美视频| 久久婷婷青草| av一本久久久久| 国产伦理片在线播放av一区| 一二三四中文在线观看免费高清| 亚洲成av片中文字幕在线观看| 亚洲av电影在线观看一区二区三区| 久久亚洲国产成人精品v| 成人漫画全彩无遮挡| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 精品人妻熟女毛片av久久网站| 精品第一国产精品| 亚洲在久久综合| av在线播放精品| 久久精品人人爽人人爽视色| 亚洲四区av| 亚洲一区二区三区欧美精品| 妹子高潮喷水视频| 亚洲国产av影院在线观看| 欧美av亚洲av综合av国产av | 国产精品一区二区精品视频观看| 如日韩欧美国产精品一区二区三区| 亚洲精品国产av蜜桃| 99久久精品国产亚洲精品| 日韩欧美一区视频在线观看| 啦啦啦中文免费视频观看日本| 久久女婷五月综合色啪小说| 午夜福利影视在线免费观看| 亚洲国产精品一区二区三区在线| 精品少妇一区二区三区视频日本电影 | av在线老鸭窝| 爱豆传媒免费全集在线观看| 少妇被粗大的猛进出69影院| 久久久久人妻精品一区果冻| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| kizo精华| 国产成人a∨麻豆精品| 母亲3免费完整高清在线观看|