• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Planning failure-censored constant-stress partially accelerated life test

    2015-11-14 06:52:32AliIsmailandAbdulhakimAlBabtain

    Ali A.Ismailand Abdulhakim A.Al-Babtain

    1.Department of Statistics and Operations Research,College of Science,King Saud University,Riyadh 11451,Saudi Arabia;

    2.Department of Statistics,Faculty of Economics & Political Science,Cairo University,Giza 12613,Egypt

    1.Introduction

    For highly reliable materials or products,it is more difficult to acquire failure information quickly for products tested under the normal(use)condition.In order to reduce the testing period,all or some of the test units may be subjected to more severe conditions than normal ones.Such an accelerated life test(ALT)or partially accelerated life test(PALT)results in shorter life than that would be observed under normal operating conditions.In ALT,test items are run only at accelerated conditions,while in PALT they are run under both use and accelerated conditions.

    The main assumption in ALT is that the model or the relationship between life and stress must be known or can be assumed to obtain estimates of lifetime at the designed stress.If such a relationship is unknown or cannot be assumed,one cannot apply the ALT approach.In this case,the PALT comes to be an alternative approach to study and analyze the reliability.

    According to Nelson[1],the stress can be applied in various ways,and commonly used methods are step-stress and constant-stress.Under step-stress PALT,a test item is first run at the use condition and,if it does not fail for a specified time,then it is run at an accelerated condition until failure occurs or the observation is censored,while the constant-stress PALT runs each item at either use or accelerated condition only,i.e.each unit is run at a constantstress level until the test is terminated.Accelerated test stresses involve temperature,voltage,pressure,load,humidity etc.,which are higher than a usual level,or some combinations of them.The objective of a PALT is to collect more failure data in a limited time without necessarily using high stress in all test units.

    For an overview of constant-stress PALT,there are some studies on the estimation and optimally designing of constant-stress PALT[2–7].In this paper,the problems of both estimation and optimal design of constant-stress PALT are considered under Pareto distribution of the second kind using Type-II censoring.

    As indicated by Nelson[1],the constant-stress testing has several advantages.(i)It is easier to maintain a constant-stress level in most tests.(ii)Accelerated test models for constant-stress are better developed for some materials and products.(iii)Data analysis for reliability estimation is well developed.Also,as Yang[8]indicated,constant-stress accelerated life tests are widely used to save time and money.

    This article is organized as follows.In Section 2 the model and the test method are described.The maximum likelihood(ML)estimators,the average confidence interval length(IL)and the associated coverage probability(CP)are obtained in Section 3.In Section 4 the statistically optimum plans for the constant-stress PALT are established.Monte Carlo simulation studies are given in Section 5 and also an example based real data set is introduced in Section 6 to illustrate the theoretical results.Section 7 is dedicated to the final clarifications and ideas for further studies.

    2.Model and test method

    2.1 Pareto distribution as a lifetime model

    The lifetimes of the test items are assumed to follow a two-parameter Pareto distribution of the second kind.The Pareto distribution was introduced by Pareto[9]as a model for the distribution of income.In recent years,its models in several different forms have been studied by many authors[10–12].The Pareto distribution of the second kind is also known as Lomax or Pearson’s Type VI distribution[13].It has been found to provide a good model in biomedical problems,such as survival time following a heart transplant[14].Using the Pareto distribution,Dyer[15]studied the annual wage data of production line workers in a large industrial firm.Lomax[16]used this distribution in the analysis of business failure data.The length of wire between flaws also follows a Pareto distribution[14].Since the Pareto distribution has a decreasing hazard or failure rate,it has often been used to model incomes and survival times[17].

    The probability density function of the Pareto distribution of the second kind,fort>0(θ,α>0),is given by

    The survival function takes the form

    and the corresponding failure rate function is

    As indicated by McCune et al.[18],the Pareto distribution has classically been used in economic studies of incomes and sizes of cities and firms,service time in queuing systems and so on.Also,it has been used in connection with reliability theory and survival analysis[10].

    2.2 Constant-stress PALT

    The test procedure of the constant-stress PALT and its assumptions are described as follows.

    2.2.1 Test procedure

    In a constant-stress PALT,the total sample sizenof the test units is divided into two parts as follows:

    (i)nπitems randomly chosen amongntest items sampled are allocated to the accelerated condition and the remaining are allocated to the use condition.

    (ii)Each test item is run until a censoring timey(r)and the test condition is not changed.

    2.2.2 Assumptions

    (i)The lifetimesTi(i=1,...,n(1?π))of items allocated to the use condition are i.i.d.random variables.

    (ii)The lifetimesXj(j=1,...,nπ)of items allocated to the accelerated condition are i.i.d random variables.

    (iii)Suppose that the lifetime of an item at the accelerated condition is denoted byX,then the lifetime of this item at the use conditionTis given by the relation:T=βX.

    3.Estimation process

    3.1 Maximum likelihood estimates

    The maximum likelihood estimators(MLEs)of the parameters are considered,since they are asymptotically normally distributed and asymptotically efficient in many cases[12].Also,Bugaighis[19]indicated that the ML procedure generally yields efficient estimators.However,these estimators do not always exist in a closed form,so numerical techniques are used to compute them.

    In a simple constant-stress PALT,the test item is run at either the use condition or the accelerated condition.

    Since the lifetimes of the test items follow Pareto distribution of the second kind,the probability density function of an item tested at the use condition is given by as in(1).While for an item tested at the accelerated condition,the probability density function,x≥0,is given by

    whereX=β?1T.

    The likelihood for(ti,δui),the likelihood for(xj,δaj)and the total likelihood for(t1;δu1,...,tn(1?π);δun(1?π),x1;δa1,...,xnπ;δanπ)are respectively as follows:

    whereδuiandδajare indicator functions such that:

    It is usually easier to maximize the natural logarithm of the likelihood function rather than the likelihood function itself.The first derivatives of the natural logarithm of the total likelihood function in(7)with respect toβ,θandαare given by

    The ML estimates of the parameters are the values ofβ,θandαwhich solve the equations obtained by letting each of them be zero.So,from the last equation,the ML estimate ofαis given by

    where

    By substitutingαinto(8)and(9),and equating each of them to zero,the system equations are reduced into the following two non-linear equations:

    Obviously,it is very difficult to obtain a closed-form solution for the two non-linear equations(12)and(13).So,iterative procedures must be used to solve these equations numerically.The Newton-Raphson method is used to determine the ML estimates ofβandθ.Thus,once the values ofβandθare determined,an estimate ofαis easily obtained from(11).

    In relation to the asymptotic variance-covariance matrix of the ML estimators of the parameters,it can be approximated by numerically inverting the Fisher-information matrixF.It is composed of the negative second derivatives of the natural logarithm of the likelihood function evaluated at the ML estimates.Therefore,the asymptotic Fisherinformation matrix estimated at(?β,?θ,?α)can be written as follows:

    The elements of the above matrixFcan be expressed by the following equations:

    Consequently,the maximum likelihood estimators ofβ,θandαhave an asymptotic variance-covariance matrix defined by inverting the Fisher information matrixFas indicated before.

    3.2 Confidence intervals

    As indicated by Vander Wiel and Meeker[20],the most common method to set confidence bounds for the parameters is to use the large-sample(asymptotic)normal distribution of the ML estimators.

    To construct a confidence interval for a population parameterλ,assume thatLλ=Lλ(y1,...,yn)andUλ=Uλ(y1,...,yn)are functions of the sample datay1,...,yn,such that

    where the interval[Lλ,Uλ]is called a two-sidedγ100%confidence interval forλ.LλandUλare the lower and upper confidence limits forλ,respectively.The random limitsLλandUλencloseλwith probabilityγ.

    Asymptotically,the maximum likelihood estimators are consistent and normally distributed.Therefore,the twosided approximateγ100%confidence limits for a population parameterλcan be constructed such that

    wherezis the[100(1?γ/2)]th standard normal percentile.Therefore,the two-sided approximateγ100%confidence limits forβ,θandαare given respectively as

    4.Optimum test plans

    In Section 3,we use the ML method which yields more efficient and more robust estimators to estimate the model parameters.These ML estimators are needed to obtain the optimum test plans.Most of the test plans are equallyspaced test stresses,i.e.the same number of test units are allocated to each stress.Such test plans are usually inefficient for estimating the mean life at the designed stress[8].In this section,the statistically optimum test plans are developed to decide the optimal sample-proportion allocated to each stress.Therefore,to determine the optimal sample-proportionπ?allocated to the accelerated condition,πis chosen such that the generalized asymptotic variance(GAV)of the ML estimators of the model parameters is minimized.The GAV of the ML estimators of the model parameters as an optimality criterion is commonly used and defined below as the reciprocal of the determinant of the Fisher-information matrixF[21].That is,

    This optimality criterion takes into account the overall parameter space.Therefore,it is a more accurate and more efficient criterion.There exist other optimality criteria which can take only into account of a subset from the parameter space.Therefore,the used optimality criterion is comprehensive and then better because it helps the experimenter to obtain more accurate estimates for all parameters of the model and hence to improve the quality of the statistical inference.

    To determine the optimal value of the sample-proportion allocated to the accelerated condition which minimizes the GAV as defined before,the Newton-Raphson method is applied.Therefore,the corresponding expected optimal numbers of items failing at the use and the accelerated conditions can be obtained,respectively,as follows

    where

    5.Monte Carlo simulation

    For illustrating the theoretical results of both estimation and optimal design problems,a numerical investigation has been made as given by the next two subsections.

    5.1 ML estimation

    In order to assess the performance of estimators of the model parameters,a Monte Carlo simulation study is implemented using different sample sizes.Several data sets are generated from Pareto distribution for different combinations of the true parameter values ofβ,θandαand using sample sizes 25,30,50,75 and 100 with 1 000 replications for each sample size.The true parameter values used in this simulation study are(3,6,0.6)and(5,8,1.4).The derived nonlinear logarithmic likelihood equations(13)and(14)are solved iteratively using the Newton-Raphson method.Once the values ofβandθare determined,an estimate of the shape parameterαis straightforwardly obtained from(12).For different sample sizes and true values of the parameters,the ML estimates,mean square error(MSE),average confidence IL and the associated CP are obtained with results reported in Tables 1 and 2.

    Table 1 Average values of MLE,MSE,95%IL and 95%CP of the parameters(β,θ,α)set at(3,6,0.6),respectively,givenπ = 0.50 andr=0.70n for different sized samples under Type-II censoring in constant-stress PALT

    Table 2 Average values of MLE,MSE,95%IL and 95%CP of the parameters(β,θ,α)set at(5,8,1.4),respectively,givenπ =0.50 andr=0.70n for different sized samples under Type-II censoring in constant-stress PALT

    Results of simulation studies offer perception into the sampling behavior of the estimators.The numerical results indicate that the ML estimates are close to the true values of the parameters as the sample sizenincreases.The equations in(24)are used to construct the approximate confidence limits for the three parametersβ,θandαbased on 95%confidence degree.It is shown from the numerical results that the IL decreases as the sample sizenincreases.Moreover,it is observed that the CP for each parameter is close to the nominal confidence level 1?α.That is,the procedure is working very well.

    5.2 Optimum test plans

    In this subsection,optimum test plans are obtained numerically.That is,the optimum proportion of sample units allocated to the accelerated condition is obtained such that optimal GAV of the ML estimators of the model parameters is minimized.The results of optimal design are reported in Tables 3 and 4.In these tables,the optimal sampleproportionπ?allocated to the accelerated condition,the expected optimal numbers of items failing at use and accelerated conditions and the optimal GAV of the ML estimators of the model parameters are presented.

    Table 3 Results of optimal design of the life test for different sized samples under Type-II censoring in constant-stress PALT based on the information included in Table 1

    Table 4 Results of optimal design of the life test for different sized samples under Type-II censoring in constant-stress PALT based on the information included in Table 2

    It can be observed,viaπ?presented in Tables 3 and 4,that the optimum test plans do not allocate the same number of test units to each stress.In practice,the optimum test plans are important for improving precision in parameter estimation and thus improving the quality of the statistical inference.Then,these optimum test plans are more useful and more efficient for estimating the life distribution at the designed stress.Also,Tables 3 and 4 include the expected optimal numbers of items failing at use and accelerated conditions represented byn?uandn?a,respectively,for each sample size.The expected optimal numbers of items failing at the use and accelerated conditions are computed to study the appropriateness and effectiveness of the PALT model.As shown by the numerical results reported in Tables 3 and 4,one can observe that when the sample sizenincreases,the fraction of test units allocated to the accelerated condition also increases.Thus,the experimenter can obtain more failure-time data in a limited time.That is,the PALT model saves time and cost because it allows us to collect the failure-time data via the two stages.Finally,Tables 3 and 4 also present the optimal GAV of the ML estimators of the model parameters which is obtained numerically withπ?in place ofπfor different sized samples.As indicated from the results,the optimal GAV decreases as the sample sizenincreases.

    6.Illustrative example

    In this section a numerical example using real data sets is presented to illustrate the methods of inference and optimal design developed in this paper.Nelson[22]presented some data on the time to breakdown of a type of electrical insulting fluid subject to various constant voltage stresses.The purpose of the experiment is to estimate the distribution of the time to breakdown at 20 kV.For the purpose of illustrating the methods discussed in this paper,the methods are applied to these data(n=76).Assuming Pareto distribution with Type-II censoring,we usen=76,α=2,θ=2.5,β=3 andπ=0.50.The number of failures observed at the use and accelerated conditions arenu=8 andna=49,respectively,with censored itemsnc=19.The MLEs of the model parametersα,θandβare respectively 2.05,2.56 and 3.08.The MSEs associated with the MLEs of the parametersα,θandβare 0.000 6,0.020 3 and 0.019 4,respectively.The 95%IL of the model parametersα,θandβare 0.062 5,0.335 1 and 0.126 4,respectively.The associated CP are 0.951 4,0.951 8 and 0.952 3,respectively.The optimum proportion of sample units allocated to the accelerated conditionπ?is 0.832 1 with expected optimal numbers of items failing at the use and accelerated conditions are respectivelyn?u=13 andn?a=59.The associated optimal GAV of the ML estimators of the model parameters is 0.000 4.

    7.Conclusions

    In this paper the failure-censored constant-stress partially accelerated life test plans have been addressed assuming Pareto distribution of the second kind as a lifetime model.The maximum likelihood method has been applied to estimate the distribution parameters and the acceleration factor.The Newton-Raphson method as an iterative procedure has been used to obtain the estimates.The performance of the estimators has been assessed for different parameter values and different sample sizes.In addition,the average confidence IL and the associated CP have been obtained.It is observed that the CPs of the confidence intervals are close to the nominal confidence level 1?α.That is,the procedure is working very well.Moreover,statistically optimum constant-stress partially accelerated life test plans have been developed.That is,the optimal sampleproportionπ?allocated to the accelerated condition has been determined to minimize the GAV of the ML estimators of the model parameters.In general,the common test plans for the constant-stress PALT are usually standard plans which use equally-spaced test stresses,each with the same number of test units.Here,the optimal design problem is to optimally determine the numbers of test units that should be allocated to each stress level to estimate the life distribution accurately.The optimum test plan provides the most accurate estimate of the model parameters for a given test time and number of test units.That is,the optimal design of the life tests can be considered as a technique to improve the quality of the statistical inference.As shown from the results,viaπ?,the optimum test plans are not standard plans because the value ofπ?is different from 50%whether the value of the shape parameter is less or greater than one.These results coincide with the note of Yang[8]concerning the standard plans.

    [1]W.Nelson.Accelerated life testing:statistical models,data analysis and test plans.New York:Wiley,1990.

    [2]D.S.Bai,S.W.Chung.Optimal design of partially accelerated life tests for the exponential distribution under Type-I censoring.IEEE Trans.on Reliability,1992,41(3):400–406.

    [3]D.S.Bai,S.W.Chung,Y.R.Chun.Optimal design of partially accelerated life tests for the lognormal distribution under Type-I censoring.Reliability Engineering and System Safety,1993,40(1):85–92.

    [4]A.A.Ismail.The test design and parameter estimation of Pareto lifetime distribution under partially accelerated life tests.Giza,Egypt:Cairo University,2004.

    [5]A.A.Ismail,A.A.Abdel-Ghaly,E.El-Khodary.Optimum constant-stress life test plans for Pareto distribution under Type-I censoring.Journal of Statistical Computation and Simulation,2011,81(12):1835–1845.

    [6]A.A.Ismail.On designing constant-stress partially accelerated life tests under time-censoring.Strength of Materials,2014,46(1):132–139.

    [7]A.A.Ismail.Estimating the generalized exponential distribution parameters and the acceleration factor under constantstress partially accelerated life testing with Type-II censoring.Strength of Materials,2013,45(6):693–702.

    [8]G.B.Yang.Optimum constant-stress accelerated life-test plans.IEEE Trans.on Reliability,1994,43(4):575–581.

    [9]V.Pareto.Cours d’Economie politique.Paris:Rouge et Cie,1897.

    [10]H.T.Davis,M.L.Feldstein.The generalized Pareto law as a model for progressively censored survival data.Biometrika,1979,66(2):299–306.

    [11]A.C.Cohen,B.J.Whitten.Parameter estimation in reliability and life span models.New York:Marcel Dekker,Inc.,1988.

    [12]S.W.Grimshaw.Computing maximum likelihood estimates for the generalized pareto distribution.Technometrics,1993,35(2):185–191.

    [13]N.L.Johnson,S.Kotz,Continuous univariate distributions.2nd ed.New York:Wiley-Interscience Publication,1994.

    [14]L.J.Bain,M.Engelhardt.Introduction to probability and mathematical statistics.2nd ed.Boston,Mossachusett:PWSKENT Publishing Company,1992.

    [15]D.Dyer.The structural probability for the strong Pareto law.Candian Journal of Statistics,1981,9(1):71–77.

    [16]K.S.Lomax.Business failures:another example of the analysis of failure data.Journal of American Statistical Association,1954,49(268):847–852.

    [17]H.A.Howlader,A.M.Hossain.Bayesian survival estimation of Pareto distribution of the second kind based on failurecensored data.Computational Statistics and Data Analysis,2002,38(3):301–314.

    [18]E.D.McCune,S.L.McCune.Estimation of the Pareto shape parameter.Communication in Statistics-Simulation and Computation,2000,29(4):1317–1324.

    [19]M.M.Bugaighis.A note on convergence problems in numerical techniques for accelerated life testing analysis.IEEE Trans.on Reliability,1988,37(3):348–349.

    [20]S.A.Vander Wiel,W.Q.Meeker.Accuracy of approximate confidence bounds using censored Weibull regression data from accelerated life tests.IEEE Trans.on Reliability,1990,39(3):346–351.

    [21]D.S.Bai,J.G.Kim,Y.R.Chun.Design of failure-censored accelerated life-test sampling plans for lognormal and Weibull distributions.Engineering Optimality,1993,21(2):197–212.

    [22]W.Nelson.Analysis of accelerated life test data-least squares methods for the inverse power law model.IEEE Trans.on Reliability,1975,24(2):103–107.

    色网站视频免费| 三上悠亚av全集在线观看| 久久久久久久久久人人人人人人| 欧美日韩亚洲高清精品| 高清欧美精品videossex| 欧美精品一区二区大全| 少妇精品久久久久久久| 97在线视频观看| 欧美三级亚洲精品| 狂野欧美激情性bbbbbb| 人体艺术视频欧美日本| 亚洲人成网站在线播| 欧美日韩在线观看h| 伊人久久精品亚洲午夜| 如何舔出高潮| 精品国产国语对白av| 99热网站在线观看| 熟妇人妻不卡中文字幕| 亚洲情色 制服丝袜| 久久精品国产亚洲av天美| 国产国语露脸激情在线看| 亚洲第一区二区三区不卡| 91精品国产国语对白视频| 日韩大片免费观看网站| 日本91视频免费播放| 狂野欧美激情性bbbbbb| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久人人人人人人| 99久久中文字幕三级久久日本| 大陆偷拍与自拍| 午夜免费鲁丝| 欧美日韩精品成人综合77777| 国产精品不卡视频一区二区| 男女边吃奶边做爰视频| 波野结衣二区三区在线| 久久国产精品男人的天堂亚洲 | 亚洲人成网站在线播| 久热久热在线精品观看| 成人国语在线视频| 免费看不卡的av| 精品一区二区免费观看| 人妻人人澡人人爽人人| 亚洲,一卡二卡三卡| 国产亚洲精品久久久com| 欧美亚洲 丝袜 人妻 在线| 国内精品宾馆在线| 综合色丁香网| 美女国产视频在线观看| 女人久久www免费人成看片| 亚洲精品第二区| 国产精品人妻久久久影院| 成人国语在线视频| 国产视频内射| 简卡轻食公司| 丰满迷人的少妇在线观看| 草草在线视频免费看| 一区二区av电影网| 精品熟女少妇av免费看| 午夜影院在线不卡| 九九爱精品视频在线观看| 久久久久久人妻| 日本-黄色视频高清免费观看| 精品一区在线观看国产| 亚洲欧美色中文字幕在线| 国产精品一区www在线观看| 久久99蜜桃精品久久| 欧美xxⅹ黑人| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 狂野欧美激情性xxxx在线观看| 国产一级毛片在线| 亚洲av.av天堂| 三级国产精品片| 最近2019中文字幕mv第一页| 国产免费一区二区三区四区乱码| 成人黄色视频免费在线看| 性色av一级| 久久 成人 亚洲| 日本vs欧美在线观看视频| 日韩大片免费观看网站| 精品国产一区二区三区久久久樱花| 中文字幕最新亚洲高清| 精品一区在线观看国产| 国产免费现黄频在线看| 日韩av在线免费看完整版不卡| 2018国产大陆天天弄谢| av专区在线播放| 亚洲,一卡二卡三卡| 国产成人一区二区在线| 亚洲国产欧美在线一区| 国产成人免费观看mmmm| 成人国产麻豆网| 午夜av观看不卡| 大香蕉久久成人网| 91久久精品电影网| 亚洲久久久国产精品| 亚洲av在线观看美女高潮| 亚洲人与动物交配视频| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 国产毛片在线视频| 国产黄色视频一区二区在线观看| 丰满乱子伦码专区| 日本午夜av视频| 日韩一区二区视频免费看| 久久午夜综合久久蜜桃| 亚洲成色77777| 王馨瑶露胸无遮挡在线观看| 人人妻人人澡人人看| 国产毛片在线视频| 乱码一卡2卡4卡精品| 亚洲熟女精品中文字幕| 少妇的逼好多水| 日本-黄色视频高清免费观看| 国语对白做爰xxxⅹ性视频网站| 免费久久久久久久精品成人欧美视频 | 国产精品一区二区三区四区免费观看| 精品视频人人做人人爽| √禁漫天堂资源中文www| 日韩,欧美,国产一区二区三区| 美女中出高潮动态图| 亚洲欧美中文字幕日韩二区| 寂寞人妻少妇视频99o| 国产 精品1| 久久精品人人爽人人爽视色| 美女视频免费永久观看网站| a 毛片基地| 亚洲国产最新在线播放| 毛片一级片免费看久久久久| www.色视频.com| 亚洲av成人精品一区久久| 国产成人免费无遮挡视频| 成人漫画全彩无遮挡| 亚洲综合色惰| 亚洲伊人久久精品综合| 黄色配什么色好看| 午夜福利视频精品| 黄片播放在线免费| 99热国产这里只有精品6| 午夜福利在线观看免费完整高清在| 久久久久久久久久久丰满| 一区二区三区免费毛片| 亚洲av成人精品一二三区| 成年女人在线观看亚洲视频| 日本爱情动作片www.在线观看| 两个人的视频大全免费| 久久毛片免费看一区二区三区| 综合色丁香网| 国产精品一区二区三区四区免费观看| 黑人巨大精品欧美一区二区蜜桃 | 免费高清在线观看日韩| av电影中文网址| 日韩av不卡免费在线播放| 在线免费观看不下载黄p国产| 亚洲精品久久午夜乱码| 99九九线精品视频在线观看视频| 大陆偷拍与自拍| 91精品一卡2卡3卡4卡| 国产免费又黄又爽又色| 在线观看人妻少妇| 啦啦啦视频在线资源免费观看| 一级毛片电影观看| 欧美日本中文国产一区发布| 国产av精品麻豆| 亚洲综合精品二区| 美女大奶头黄色视频| 国产在线免费精品| 亚洲av在线观看美女高潮| 久久影院123| 久久精品国产亚洲av涩爱| 亚洲伊人久久精品综合| 天天影视国产精品| 亚洲综合色惰| 夜夜爽夜夜爽视频| 少妇被粗大的猛进出69影院 | 中文乱码字字幕精品一区二区三区| 国产精品 国内视频| 欧美一级a爱片免费观看看| 国产精品久久久久久久久免| 高清欧美精品videossex| 午夜免费鲁丝| 日本av手机在线免费观看| 美女xxoo啪啪120秒动态图| 伦理电影免费视频| 又大又黄又爽视频免费| 亚洲精品久久久久久婷婷小说| 午夜日本视频在线| 精品一品国产午夜福利视频| 91在线精品国自产拍蜜月| 免费av中文字幕在线| 国产精品国产三级国产av玫瑰| 99热国产这里只有精品6| 欧美精品一区二区免费开放| 80岁老熟妇乱子伦牲交| 国产成人aa在线观看| 欧美三级亚洲精品| 日韩,欧美,国产一区二区三区| 99久久精品一区二区三区| 久久99热6这里只有精品| 18禁在线无遮挡免费观看视频| 国产高清有码在线观看视频| 午夜久久久在线观看| 午夜激情久久久久久久| 亚洲欧洲国产日韩| 色网站视频免费| 国产av精品麻豆| 日本-黄色视频高清免费观看| 男女边摸边吃奶| 亚洲精华国产精华液的使用体验| 免费黄网站久久成人精品| 男人添女人高潮全过程视频| 久久久国产精品麻豆| 成人毛片60女人毛片免费| 超色免费av| 亚洲经典国产精华液单| 久久精品人人爽人人爽视色| 精品人妻在线不人妻| 国产毛片在线视频| 国产av精品麻豆| 内地一区二区视频在线| 午夜精品国产一区二区电影| 一个人免费看片子| 亚洲第一av免费看| 妹子高潮喷水视频| 女性被躁到高潮视频| 春色校园在线视频观看| 日韩 亚洲 欧美在线| 欧美3d第一页| 最近手机中文字幕大全| 亚洲av中文av极速乱| 日韩av不卡免费在线播放| 久久国产精品大桥未久av| 国产在线视频一区二区| 国产成人freesex在线| 在线播放无遮挡| 久久婷婷青草| 在线播放无遮挡| 欧美老熟妇乱子伦牲交| 久久精品国产a三级三级三级| 97在线人人人人妻| 精品一区二区三卡| 亚洲精品久久成人aⅴ小说 | 欧美成人午夜免费资源| 内地一区二区视频在线| 777米奇影视久久| 丰满饥渴人妻一区二区三| 人妻人人澡人人爽人人| 国产日韩欧美视频二区| 女的被弄到高潮叫床怎么办| 久久久午夜欧美精品| 日韩av在线免费看完整版不卡| 亚洲av欧美aⅴ国产| 欧美亚洲 丝袜 人妻 在线| 色哟哟·www| 卡戴珊不雅视频在线播放| 97精品久久久久久久久久精品| 青春草国产在线视频| 免费看av在线观看网站| 夜夜爽夜夜爽视频| 国产av一区二区精品久久| 看十八女毛片水多多多| 精品人妻偷拍中文字幕| 亚洲国产av新网站| 亚洲国产欧美在线一区| 好男人视频免费观看在线| 亚洲少妇的诱惑av| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| 五月玫瑰六月丁香| 亚洲精品av麻豆狂野| 狂野欧美白嫩少妇大欣赏| 丁香六月天网| 黄色一级大片看看| 日产精品乱码卡一卡2卡三| 中国三级夫妇交换| 高清不卡的av网站| 午夜91福利影院| 亚洲国产欧美日韩在线播放| 日韩视频在线欧美| videosex国产| 国产午夜精品久久久久久一区二区三区| 一级毛片 在线播放| 少妇的逼好多水| 日韩免费高清中文字幕av| 99久久精品国产国产毛片| 另类精品久久| 免费看不卡的av| 欧美精品一区二区大全| 97超视频在线观看视频| 99久久精品国产国产毛片| 涩涩av久久男人的天堂| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产av国产精品国产| 超碰97精品在线观看| 另类亚洲欧美激情| 热99久久久久精品小说推荐| 国产av码专区亚洲av| 五月伊人婷婷丁香| 日韩强制内射视频| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 91国产中文字幕| 国产精品欧美亚洲77777| 简卡轻食公司| 免费黄频网站在线观看国产| 天天影视国产精品| 夫妻性生交免费视频一级片| 最黄视频免费看| 大片电影免费在线观看免费| 在线观看免费高清a一片| 超碰97精品在线观看| 国产精品不卡视频一区二区| 一级片'在线观看视频| 久久人人爽av亚洲精品天堂| 午夜91福利影院| 亚洲精品乱码久久久v下载方式| 国产高清不卡午夜福利| 亚洲av二区三区四区| 精品人妻偷拍中文字幕| 我的女老师完整版在线观看| 人人澡人人妻人| 热re99久久精品国产66热6| 岛国毛片在线播放| 2022亚洲国产成人精品| 制服诱惑二区| 视频中文字幕在线观看| 欧美日韩亚洲高清精品| 欧美激情 高清一区二区三区| 22中文网久久字幕| 在线观看三级黄色| 国产亚洲精品久久久com| 国产黄色视频一区二区在线观看| 欧美人与善性xxx| 麻豆乱淫一区二区| 久久久精品免费免费高清| 2022亚洲国产成人精品| av卡一久久| 一个人看视频在线观看www免费| 大香蕉久久成人网| 黄色毛片三级朝国网站| 丝袜喷水一区| .国产精品久久| 街头女战士在线观看网站| 国产熟女午夜一区二区三区 | 久久久久久久久大av| 男女边摸边吃奶| 欧美老熟妇乱子伦牲交| 嘟嘟电影网在线观看| 22中文网久久字幕| 国产一区亚洲一区在线观看| 亚洲五月色婷婷综合| www.av在线官网国产| 一级毛片 在线播放| 美女国产高潮福利片在线看| kizo精华| 欧美bdsm另类| 亚洲四区av| 久久久欧美国产精品| 看非洲黑人一级黄片| 亚洲国产最新在线播放| 精品人妻在线不人妻| 国产熟女午夜一区二区三区 | 人妻一区二区av| 欧美三级亚洲精品| av卡一久久| 亚洲精品日本国产第一区| 性色av一级| 多毛熟女@视频| 国产 一区精品| 91久久精品电影网| 日本色播在线视频| 18禁在线播放成人免费| 精品久久久精品久久久| 欧美3d第一页| 国产精品人妻久久久久久| 22中文网久久字幕| 亚洲av福利一区| 高清不卡的av网站| 亚洲av免费高清在线观看| 黑人巨大精品欧美一区二区蜜桃 | 久久人人爽人人爽人人片va| 亚洲国产色片| 另类精品久久| 麻豆乱淫一区二区| 亚洲久久久国产精品| 国产精品偷伦视频观看了| 日韩中字成人| 国模一区二区三区四区视频| 免费少妇av软件| av在线观看视频网站免费| 免费观看a级毛片全部| 插阴视频在线观看视频| 国产淫语在线视频| 男的添女的下面高潮视频| 91精品一卡2卡3卡4卡| 久久女婷五月综合色啪小说| 久久精品国产自在天天线| 精品国产国语对白av| 国产精品.久久久| 国产高清有码在线观看视频| 亚洲国产精品999| 精品久久久久久久久av| 夜夜爽夜夜爽视频| 亚洲国产av新网站| 丝袜喷水一区| 五月玫瑰六月丁香| 日韩电影二区| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| videosex国产| 丝袜喷水一区| av在线老鸭窝| 亚洲人成77777在线视频| 国产精品成人在线| 久久影院123| 久热久热在线精品观看| 亚洲成人av在线免费| 精品久久久久久久久av| 国产亚洲一区二区精品| 久久久久久久久久久免费av| 五月玫瑰六月丁香| 国产视频内射| 色94色欧美一区二区| 一级a做视频免费观看| 在线亚洲精品国产二区图片欧美 | 国产亚洲午夜精品一区二区久久| 欧美3d第一页| 成年美女黄网站色视频大全免费 | 久久精品熟女亚洲av麻豆精品| 如日韩欧美国产精品一区二区三区 | 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久 | 99视频精品全部免费 在线| 一本大道久久a久久精品| 成年美女黄网站色视频大全免费 | 国产精品一国产av| 免费黄网站久久成人精品| 亚洲伊人久久精品综合| 亚洲三级黄色毛片| 国产亚洲欧美精品永久| 黄色欧美视频在线观看| 在线观看国产h片| 国产毛片在线视频| 91精品伊人久久大香线蕉| 午夜免费观看性视频| 男的添女的下面高潮视频| 美女脱内裤让男人舔精品视频| 欧美精品一区二区免费开放| 国产片内射在线| 日韩亚洲欧美综合| 欧美 日韩 精品 国产| 国产欧美亚洲国产| 欧美bdsm另类| 亚洲欧美中文字幕日韩二区| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 亚洲欧美一区二区三区黑人 | 欧美成人精品欧美一级黄| 高清黄色对白视频在线免费看| 黑人欧美特级aaaaaa片| 亚洲精品乱码久久久久久按摩| 午夜激情av网站| 日产精品乱码卡一卡2卡三| 欧美3d第一页| 亚洲av男天堂| 两个人免费观看高清视频| 亚洲av电影在线观看一区二区三区| 欧美激情国产日韩精品一区| 美女福利国产在线| 亚洲av二区三区四区| 王馨瑶露胸无遮挡在线观看| 永久免费av网站大全| 下体分泌物呈黄色| 熟女电影av网| 日韩强制内射视频| 日日摸夜夜添夜夜爱| 激情五月婷婷亚洲| 国产精品蜜桃在线观看| 全区人妻精品视频| 丰满少妇做爰视频| 亚洲av二区三区四区| 热re99久久国产66热| 人妻制服诱惑在线中文字幕| 91在线精品国自产拍蜜月| 少妇被粗大的猛进出69影院 | 熟女电影av网| 国模一区二区三区四区视频| 人人妻人人爽人人添夜夜欢视频| 在线观看三级黄色| 99热这里只有精品一区| 国产精品一区二区三区四区免费观看| 国产视频首页在线观看| h视频一区二区三区| 亚洲av男天堂| 亚洲图色成人| 日本色播在线视频| 国产精品蜜桃在线观看| 亚洲精品日韩在线中文字幕| 亚洲精品第二区| 亚洲av中文av极速乱| 日韩亚洲欧美综合| 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 美女中出高潮动态图| 爱豆传媒免费全集在线观看| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| 中文字幕免费在线视频6| 在线观看免费日韩欧美大片 | 91午夜精品亚洲一区二区三区| 我要看黄色一级片免费的| 九九在线视频观看精品| 午夜免费鲁丝| 大又大粗又爽又黄少妇毛片口| 精品久久蜜臀av无| 亚洲精品国产av蜜桃| 又大又黄又爽视频免费| 中文字幕免费在线视频6| 国产精品一国产av| 国产精品久久久久久久久免| 26uuu在线亚洲综合色| 亚洲不卡免费看| 亚洲欧洲国产日韩| 国产精品久久久久久精品古装| 2022亚洲国产成人精品| 99热这里只有是精品在线观看| a级毛片在线看网站| 国产精品99久久99久久久不卡 | 五月天丁香电影| 日韩av在线免费看完整版不卡| 老司机亚洲免费影院| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 日本黄大片高清| 老司机影院成人| 成年美女黄网站色视频大全免费 | 免费人成在线观看视频色| 各种免费的搞黄视频| 久久精品国产a三级三级三级| 亚州av有码| 日韩在线高清观看一区二区三区| 日韩强制内射视频| 九草在线视频观看| 久久影院123| 精品少妇黑人巨大在线播放| 国产高清国产精品国产三级| 在线精品无人区一区二区三| 色视频在线一区二区三区| 国产成人freesex在线| 亚洲欧洲日产国产| 成人午夜精彩视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲不卡免费看| 日韩大片免费观看网站| 一区二区日韩欧美中文字幕 | 中文天堂在线官网| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看| 日韩中字成人| 在线亚洲精品国产二区图片欧美 | 高清毛片免费看| 日韩大片免费观看网站| 亚洲欧美色中文字幕在线| 精品久久蜜臀av无| 精品视频人人做人人爽| 一区二区av电影网| 婷婷成人精品国产| 午夜免费观看性视频| 国产高清三级在线| 视频区图区小说| 亚洲av在线观看美女高潮| 99久久中文字幕三级久久日本| 久久国产精品男人的天堂亚洲 | 69精品国产乱码久久久| 成年av动漫网址| 日韩制服骚丝袜av| 内地一区二区视频在线| 黑人高潮一二区| 考比视频在线观看| 激情五月婷婷亚洲| 人妻制服诱惑在线中文字幕| 日韩免费高清中文字幕av| 男的添女的下面高潮视频| 欧美3d第一页| 亚洲综合色惰| 成人综合一区亚洲| 国产精品女同一区二区软件| 国产精品一区二区三区四区免费观看| 性色avwww在线观看| 交换朋友夫妻互换小说| 久久99热6这里只有精品| 成人国产麻豆网| 成人综合一区亚洲| 国产精品女同一区二区软件| 久久久国产精品麻豆| 毛片一级片免费看久久久久| 伦理电影大哥的女人| 这个男人来自地球电影免费观看 | 亚洲怡红院男人天堂| 国产日韩欧美视频二区| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 黑人高潮一二区| 99国产精品免费福利视频| 在线观看国产h片| 成人亚洲精品一区在线观看| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 十八禁高潮呻吟视频| 色哟哟·www| 岛国毛片在线播放| 精品人妻熟女av久视频| 视频区图区小说|