• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New family of piecewise smooth support vector machine

    2015-04-11 02:35:47QingWuLeyouZhangandWanWang

    Qing Wu,Leyou Zhang,and Wan Wang

    1.School of Automation,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;

    2.School of Mathematics and Statistics,Xidian University,Xi’an 710126,China;

    3.School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    New family of piecewise smooth support vector machine

    Qing Wu1,*,Leyou Zhang2,and Wan Wang3

    1.School of Automation,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;

    2.School of Mathematics and Statistics,Xidian University,Xi’an 710126,China;

    3.School of Computer Science and Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    Support vector machines(SVMs)have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of unconstrained SVMs.The three-order piecewise smooth support vector machine(TPWSSVMd)is proposed.The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d.The global convergence proof of TPWSSVMdis given with the rough set theory.TPWSSVMdcan efciently handle large scale and high dimensional problems.Numerical results demonstrate TPWSSVMdhas better classication performance and learning efciency than other competitive baselines.

    support vector machine(SVM),piecewise smooth function,smooth technique,bound of convergence.

    1.Introduction

    The support vector machine(SVM)is an effective and intelligent machine learning method and has drawn much attention in recent years[1–5].It can solve classication problems and nonlinear function estimation problems in theelds of pattern recognition and machine learning[6–14].

    The SVM minimizes the empirical classication error and maximizes the geometric margin.It offers a hyperplane that maximizes the margin between two classes.By introducing slack variables,the soft margin SVM cannd a hyperplanethat splits the examples as cleanly as possible [1,2,4].Maximizing the margins between two classes can be described as a quadratic programming(QP)problem. However,the objectivefunctionof the unconstrainedSVM model is non-smooth at zero.Hence,a lot of good optimization algorithms cannot be used tond the solution. To overcome the above disadvantage,Lee and his partners proposedtouse theintegralofthesigmoidfunctiontoget a smooth support vector machine(SSVM)for classication model in 2001[15].They had done the headmost work of the smooth technique in the SVM.It is a signicant result to the SVM since many famous algorithms can be used to solveit.In2005,Yuanproposedtwopolynomialfunctions, namely,the smooth quadratic polynomial function and the smooth forth polynomial function,which result in a forth polynomial smooth support vector machine(FPSSVM) model and a quadratic polynomial smooth support vector machine(QPSSVM)model[16,17].Soon after,Yuan used a three-order spline function T(x,k)to smooth the objective function of the unconstrained optimization problem of the SVM and obtained a three-order spline smooth support vector machine model(TSSVM)[18].In 2013,a twice continuously differentiable piecewise smooth function ?(x,k)with smoothing parameter k>0 is proposed to approximatethe plus function,which issues a piecewise smooth support vector machine(PWSSVM)model[19]. However,these approximate functions are constructed separatelyand are in lack of generalization.Furthermore,the efciency or the precision of the algorithms are limited. How to seek better smoothing functions to improve the efciency and the precision is a challenging topic.

    Based on ?(x,k),generalized smooth functions are presented.That is a parameterized family of twice continuously differentiable three-order piecewise smooth functions ?d(x,k).And a three-order piecewise smooth support vector machine(TPWSSVMd)is proposed.With the increase of the parameter d,the smooth piecewise functions have better approximation performance.Compared to the other smooth approximation functions,our smooth functionsare a family of smooth functionsrather than only one function.The smooth functions T(x,k)and ?(x,k)are the special cases of the proposed family of piecewise smoothfunctions?d(x,k).Furthermore,thesmoothprecision has been improvedobviously.The globalconvergence proof of TPWSSVMdis given with the rough set theory. The fast Newton-Armijo algorithm[20–22]can be used to solve TPWSSVMd.Experimental results show the great superiority of our scheme in terms of training speed and classication performance.

    The rest of the paper is organized as follows.In Section 2,we state pattern classication and describe the TPWSSVMdmodel.The approximation performance of the smooth functions to the plus function is compared in Section 3.The convergence performance of TPWSSVMdis presented in Section 4.In Section 5,we describe the fast Newton-Armijo algorithm.Section 6 shows the experiment results and comparisons.At last,a brief conclusion is given.

    In this paper,unless otherwise stated,all vectors will be column vectors unless transposed to row vectors by a prime superscript“T”.For a vector x in the n-dimensional real space Rn,the plus function x+is dened as(x+)i= max(0,xi).The inner product of two vectors x,y in the n-dimensional real space is given as xTy.For a matrix A∈Rm×n,the p-norm will be denoted by‖·‖p.A column vector of those of n-dimension will be denoted by e. If ? is a real valued function,the gradient of ? is represented by??(x)at x which is a row vector and the Hessian matrix of ? is represented by?2?(x)at x.

    2.TPWSSVMd

    Consider a given data set which consists of m training pointsin then-dimensionalrealspaceRn.Itis represented by an m×n matrix A,according to membership of each point Aiin the class 1 or class–1 as specied by a given m×m diagonal matrix D with 1 or–1 along its diagonal. For this problem,the standard SVM with a linear kernel is given by the following quadratic program

    where υ is a positive penalty parameter,e is a vector of 1 s.w and γ are the normal vector and the corresponding bias term of the SVM hyperplane respectively.The second term in the objective function of(1)is the 1-norm of the slack variable y with weight υ.Replacing eTy with 2-norm vector y and adding the term1 2γ2can induce strong convexity,which has little or no effect on the problem. Then the SVM model is transferred to the following problem

    Let y=(e?D(Aw?eγ))+,where(·)+replaces negativecomponentsofa vectorbyzeros.ThentheSVMmodel (2)can be converted into the following unconstrained optimization problem

    which is a strongly convex minimization problem and has a global unique solution.The function(·)+is a continuous but non-smoothfunction.Therefore,the objective function of(3)is non-smooth.Many optimization algorithms based on derivatives and gradients cannot solve the optimization problem(3)directly.

    In 2001,Lee et al.[15]employed the integral of the sigmoid function p(x,k)to approximate the nondifferentiable function x+as follows:

    where ln(·)is the natural logarithm,ε is the base of natural logarithmand k is a smoothing parameter.They got the SSVM model.

    In 2005,Yuan et al.[16,17]proposed two polynomial functions as follows:

    where k>0.Using the above smooth functions to proximate plus function x+,they got two smooth polynomial support vector machine models(FPSSVM and QPSSVM). Theory analysis and numerical results showed FPSSVM and QPSSVM were more effective than SSVM[15].

    In 2007,a three-order spline function[18]was introduced as

    With this function,a smooth SVM model TSSVM is obtained.However,the efciency or the precision of these smooth SVMs is limited.

    In order to solve the above problem,Wu et al.proposed a new piecewise-smooth function ?(x,k)to approximate the plus function.It is given as follows:

    In this paper,we extend T(x,k)and ?(x,k)to a family of three-order piecewise smooth functions ?d(x,k)with smoothing parameter k>0 to approximate the function x+.

    and

    The solution of the problem(3)can be obtained by solving the following smooth unconstrained optimization problem with the smoothing parameter k approaching positive innity.

    Thus,we develop a new smooth approximation for problem(3)and get a TPWSSVMdmodel.

    3.Approximation performance comparison of smooth functions

    In this section,we will analyze the approximation performance of the smooth functions above.

    Lemma 1[15] The integral of the sigmoid function p(x,k)is dened as(4),and x+is a plus function.We can obtain the following conclusions easily:

    (i)p(x,k)is arbitrary order smooth about x;

    (ii)p(x,k)≥x+;

    Lemma 2[16] The quadratic polynomial function q(x,k)and the fourth polynomial function h(x,k)are denedas(5)and(6)respectively.Thefollowingconclusions can be obtained:

    (i)q(x,k)is one order smooth about x,h(x,k)is twice order smooth about x;

    (ii)q(x,k)≥x+,h(x,k)≥x+;

    Lemma 3[18]The three-orderspline function T(x,k) is dened as(7).The following conclusion are easily obtained:

    (i)T(x,k)is twice order smooth about x;

    (ii)T(x,k)≥x+;

    Theorem 1The piecewise approximation functions ?d(x,k)dened as(9)have the following properties:

    (i)?d(x,k)is twice order smooth about x;

    (ii)For any x∈R,?d(x,k)≥x+;

    ProofAccording to the formulae(10)and(11),one can easily obtain property(i)above.

    Now we prove the inequality ?d(x,k)≥(x)+.

    Without loss of generality,we only prove

    Now we consider three cases.

    Table 1 Approximation accuracy of different smooth functions

    Fig.1 Comparison of approximation performance of different smooth functions

    4.Convergence analysis of TPWSSVMd

    In this section,the convergence of TPWSSVMdis proposed.By the rough set theory,we prove that the solution of TPWSSVMdcan closely approximate the optimal solution of the original model(3)when k approaches positive innity.

    Theorem 2Let A∈Rm×n,b∈Rm×1,and dene real function f(x)and gd(x,k)as follows:

    where ?d(·,k)is dened in(9),k>0,d=1,2,3,... Then the following results can be achieved:

    (i)f(x)and gd(x,k)are strongly convex functions;

    Proof(i)For arbitrary k>0,f(x)and gd(x,k)are strongly convex functions because‖·‖2is a strongly convex function.

    Add the two formulas above and notice that ?d(x,k)≥x+,then we can get

    According to Theorem 1,we get to know that

    5.Newton-Armijo algorithm for TPWSSVMd

    The objective function of(12)is twice continuously differentiable,so we can apply the Newton-Armijo method [15,20,21]to solve TPWSSVMd.The Newton-Armijo method is a fast solution method for optimal problems.It can be described as follows.

    Step 1Start with any(w0,γ0)∈Rn+1,τ and set i=0.

    Step 2Compute Φid= Φd(wi,γi,k)and gi=?Φd(wi,γi,k).

    Step 3If‖gi‖2≤ τ or λi≤ 10?12,then stop, andaccept(wi,γi).Otherwise,computeNewtondirection pi∈Rn+1from the following linear system

    Step 5Replace i by i+1 and go to Step 2.

    Whatweneedtosolveis alinearsystem(14)insteadofa quadraticprogram.Itis easytoget thatthe Newton-Armijo algorithm has the globally optimization solution[20–22]. PWESSVM describedabovecan be extendedto solve nonlinear problems with the kernel technique in[15].

    6.Numerical implementation and comparison

    To show the effectiveness and speed of TPWSSVMd, we perform some experiments to compare the performance numerically between SSVM,FPSSVM,TSSVM and TPWSSVMd.QPSSVM can not be solved by a Newton-Armijo algorithm,which is in lack of the second order derivative.In fact,the classication capacity of FPSSVM is slightly better than QPSSVM[16,17].Hence QPSSVM is not compared in this section.All the experiments are run on a personal computer with a 2.66 GHz and a maximum of 2 Gbytes of memory available for all processes.The computer runs Windows 2007 with Matlab 7.10.The codes of four models are written in Matlab language.We perform tenfold cross-validation on each dataset.For the nonlinear data,we apply the Gaussian kernel.With the change of the parametersd,TPWSSVMdhas different performances.

    Table 2 Experimental results for TPWSSVMdon NDC datasets (ν=0.1,k=1,d=1,2,3,4)

    The second experiment is used to compare the performance numerically between SSVM,FPSSVM,TSSVM, TPWSSVM3and TPWSSVM4.We use the NDC datasets to test theve algorithms.The test samples also account for 5%of the training samples.Table 3 shows that TPWSSVM4has the highest training accuracy and testing accuracyformassivelysized datasetswith slightdifference in the CPU time.

    Table 3 Experimental results for four algorithms on NDC datasets (ν=0.1,k=1)

    The third experiment is designed to demonstrate the effectiveness of TPWSSVMdthrough the nonlinear“tried and true”checkerboard dataset[24].The checkerboard dataset is generated by uniformly distributing the regions [0,1]×[0,1]to 1002=10 000 points and labeling two classes“white”and“black”by 4×4 grids as Fig.2 shows.

    Fig.2 Checkerboard dataset

    The training correctness is 98.28%.The test accuracy of TPWSSVM4is 97.49%on a 9 000 points dataset. FPSSVM,TSSVM and TPWSSVM3solve the same problem with 0.96 s,1.09 s and 1.07 s,respectively.The test accuracies of them are 97.38%,97.36%and 97.47%,respectively.SSVM obtain the train accuracy of 98%with 5.67 s,with the testing accuracy of 97.30%.

    In the rest trials,the training set is randomly selected from the checkerboard with different sizes.The remaining samples are used as test samples.We compare the classication results of TPWSSVM3,TPWSSVM4,TSSVM, FPSSVM and SSVM with the same Gaussian kernel function.

    Table 4 shows that TPWSSVM4can deal with the nonlinear massive problems quickly with the best classication performance.

    Table 4 Experimental results for four algorithms on checkerboard datasets

    7.Conclusions

    In this paper,a family of twice continuously differentiable piecewise-smooth functions are proposed to smooth the unconstrained objective function of SVM,which issues a PWESSVMdmodel.The approximation accuracy of the family of piecewise functions can be as high as required with the increase of the parameter d.The numerical results illustrate that PWESSVMdhas better classication performance for linear and nonlinear massive and high dimensional problems.

    [1]V.N.Vapnik.The nature of statistical learning theory.New York:Springer Verlag,1995.

    [2]C.J.C.Burges.A tutorial on support vector machines for pattern recognition.Data Mining and Knowledge Discovery, 1998,2(2):121–167.

    [3]G.Fung,O.L.Mangasarian.Data selection for support vector machine classiers.Proc.of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data,2000: 64–70.

    [4]A.Christmann,R.Hable.Consistency of support vector machines using additive kernels for additive models.Computational Statistics and Data Analysis,2012,56(4):854–873.

    [5]L.Yao,X.J.Zhang,D.H.Li,et al.An interior point method for 1/2-SVM and application to feature selection in classication.Journal of Applied Mathematics,2014,2014:1–16.

    [6]N.Cristianini,J.S.Taylor.An introduction to support vector machines and other kernel-based learning methods.Cambridge:Cambridge University Press,2000.

    [7]Y.B.Yuan.Forecasting the movement direction of exchange rate with polynomial smooth support vector machine.Mathematical and Computer Modelling,2013,57(3–4):932–944.

    [8]J.Zheng,B.L.Lu.A support vector machine classier with automatic condence and its application to gender classication.Neurocomputing,2011,74(11):1926–1935.

    [9]J.Y.Zhu,B.Ren,H.X.Zhang,et al.Timeseries prediction via new support vector machines.Proc.of the International Conference on Machine Learning and Cybernetics,2002:364–366.

    [10]X.F.Yuan,Y.N.Wang.Parameter selection of support vector machine for function approximation based on chaos optimization.Journal of Systems Engineering and Electronics,2008, 19(1):191–197.

    [11]T.Joachims.Text categorization withsupport vector machines: learning with many relevant features.Proc.of the 10th European Conference on Machine Learning,1998:137–142.

    [12]L.M.R.Baccarini,V.V.R.Silva,B.R.D.Menezes.SVM practical industrial application for mechanical faults diagnostic.Expert Systems with Applications,2011,38(6):6980–6984.

    [13]A.Christmann,R.Hable.Consistency of support vector machines using additive kernels for additive models.Computational Statistics and Data Analysis,2012,56(4):854–873.

    [14]G.Wei,X.D.Yu,X.W.Long.Novel approach for identifying Z-axis drift of RLG based on GA-SVR model.Journal of Systems Engineering and Electronics,2014,25(1):115–121. [15]Y.J.Lee,O.L.Mangarasian.SSVM:a smooth support vector machine for classication.Computational Optimization and Applications,2001,20(1):5–22.

    [16]Y.B.Yuan,J.Yan,C.Xu.Polynomial smooth support vector machine.Chinese Journal of Computers,2005,28(1):9–17. (in Chinese)

    [17]Y.B.Yuan,T.Z.Huang.A polynomial smooth support vector machine for classication.Lecture Note on Artifcial Intelligence,2005,3584:157–164.

    [18]Y.B.Yuan,W.Fan,D.Pu.Splinefunction smoothsupport vector machine for classication.Journal of Industrial and Management Optimization,2007,3(3):529–542.

    [19]Q.Wu,W.Q.Wang.Piecewise-smooth support vector machine for classication.Mathematical Problems in Engineering,2013,2013:1–7.

    [20]D.P.Bertsekas.Nonlinear programming.Belmont:Athena Scientic,1999.

    [21]C.Xu,J.Zhang.A survey of quasi-Newton equations and nuasi-Newton methods for optimization.Annals of Operations Research,2001,103(1–4):213–234.

    [22]J.E.Dennis,R.B.Schnabel.Numerical methods for unconstrained optimization and nonlinear equations.Englewood Cliffs:Prentice-Hall,1983.

    [23]D.R.Musicant.NDC:normally distributed clustered datasets. http://www.cs.wisc.edu/~musicant/data/ndc,1998.

    [24]T.K.Ho, E.M.Kleinberg.Checkerboard dataset. http://www.cs.wisc.edu/~musicant/data/ndc/,1996.

    Biographies

    Qing Wu was born in 1975.She received her M.S. and Ph.D.degrees in applied mathematics from Xidian University in 2005 and 2009.Now she is an associate professor at the School of Automation, Xi’an University of Posts and Telecommunications. Her research interests include pattern recognition, machine learning and data mining.

    E-mail:xiyouwuq@126.com

    Leyou Zhang was born in 1977.He received his Ph.D.degree in applied mathematics from Xidian University in 2009.Now he is an associate professor at the School of Mathematics and Statistics in Xidian University.His research interests include data mining and information security.

    E-mail:lyzhang77@qq.com

    Wan Wang was born in 1989.She received her B.S.degree in mathematics and applied mathematics from Weinan Normal University in 2012.Now, she is a master candidate in Xi’an University of Posts and Telecommunications.Her research interests include machine learning and optimization theory and computation.

    E-mail:wcf2ww@163.com

    10.1109/JSEE.2015.00069

    Manuscript received May 29,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61100165;61100231;51205309;61472307),the Natural Science Foundation of Shaanxi Province(2012JQ8044;2014JM8313; 2010JQ8004),the Foundation of Education Department of Shaanxi Province(2013JK1096),and the New Star Team of Xi’an University of Posts and Telecommunications.

    中文字幕久久专区| 亚洲美女黄片视频| 亚洲一区中文字幕在线| 香蕉久久夜色| 日韩国内少妇激情av| 美国免费a级毛片| 精品久久久久久久人妻蜜臀av | 法律面前人人平等表现在哪些方面| 女人被狂操c到高潮| 最新在线观看一区二区三区| 麻豆国产av国片精品| 亚洲一卡2卡3卡4卡5卡精品中文| 极品人妻少妇av视频| e午夜精品久久久久久久| 国产97色在线日韩免费| 91麻豆av在线| 亚洲avbb在线观看| 日韩欧美在线二视频| 黄色丝袜av网址大全| 免费观看精品视频网站| 99精品在免费线老司机午夜| 91在线观看av| 欧美国产精品va在线观看不卡| 成人国产综合亚洲| 少妇 在线观看| 999精品在线视频| 亚洲精品国产色婷婷电影| 久久久精品国产亚洲av高清涩受| 免费在线观看亚洲国产| 成人国语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 色综合欧美亚洲国产小说| 国产一区二区三区在线臀色熟女| 制服丝袜大香蕉在线| 欧美国产精品va在线观看不卡| 久久久国产成人免费| 日本免费一区二区三区高清不卡 | 亚洲视频免费观看视频| 中文字幕人妻丝袜一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 欧美av亚洲av综合av国产av| 亚洲国产毛片av蜜桃av| 一区福利在线观看| 久久天堂一区二区三区四区| 日韩精品免费视频一区二区三区| 婷婷六月久久综合丁香| 99精品欧美一区二区三区四区| 国产精品爽爽va在线观看网站 | 国产精品久久久久久精品电影 | 变态另类丝袜制服| 欧美日韩亚洲综合一区二区三区_| 亚洲av第一区精品v没综合| av网站免费在线观看视频| 青草久久国产| 热99re8久久精品国产| 日本vs欧美在线观看视频| 18禁裸乳无遮挡免费网站照片 | 欧美亚洲日本最大视频资源| 国产精品国产高清国产av| 亚洲三区欧美一区| ponron亚洲| 午夜福利欧美成人| АⅤ资源中文在线天堂| 日本a在线网址| 久99久视频精品免费| 欧美另类亚洲清纯唯美| 久久人妻av系列| 成人欧美大片| 亚洲国产日韩欧美精品在线观看 | 久久久久久人人人人人| 神马国产精品三级电影在线观看 | 久久 成人 亚洲| 女性被躁到高潮视频| 丝袜在线中文字幕| 日韩成人在线观看一区二区三区| avwww免费| АⅤ资源中文在线天堂| 一个人观看的视频www高清免费观看 | 伊人久久大香线蕉亚洲五| 搡老岳熟女国产| 老汉色av国产亚洲站长工具| 狠狠狠狠99中文字幕| 99riav亚洲国产免费| 国产精品美女特级片免费视频播放器 | 欧美色欧美亚洲另类二区 | 搡老岳熟女国产| 精品国产亚洲在线| 91字幕亚洲| 无遮挡黄片免费观看| 少妇被粗大的猛进出69影院| 久久久精品欧美日韩精品| 精品免费久久久久久久清纯| 啪啪无遮挡十八禁网站| 欧美日韩福利视频一区二区| 色综合欧美亚洲国产小说| 最新美女视频免费是黄的| 国产成人免费无遮挡视频| 久久精品亚洲熟妇少妇任你| 午夜两性在线视频| 精品人妻1区二区| 黄片小视频在线播放| 99国产综合亚洲精品| 老鸭窝网址在线观看| 好男人在线观看高清免费视频 | 好男人在线观看高清免费视频 | 久久久国产成人精品二区| 正在播放国产对白刺激| 又黄又粗又硬又大视频| 国产亚洲av高清不卡| 精品人妻1区二区| 91字幕亚洲| 午夜影院日韩av| 亚洲精品在线美女| 天天躁夜夜躁狠狠躁躁| 在线视频色国产色| 欧美日本中文国产一区发布| 中文字幕另类日韩欧美亚洲嫩草| 国产av又大| 国产精品永久免费网站| 可以在线观看毛片的网站| 757午夜福利合集在线观看| 不卡一级毛片| 无遮挡黄片免费观看| 免费av毛片视频| 90打野战视频偷拍视频| 夜夜爽天天搞| 好男人在线观看高清免费视频 | 精品欧美一区二区三区在线| 国产精品一区二区免费欧美| 国产精品国产高清国产av| 日韩欧美国产一区二区入口| 亚洲片人在线观看| 黄色视频不卡| av网站免费在线观看视频| x7x7x7水蜜桃| 法律面前人人平等表现在哪些方面| 看片在线看免费视频| 亚洲国产精品合色在线| 大型黄色视频在线免费观看| 亚洲片人在线观看| 亚洲av日韩精品久久久久久密| 1024视频免费在线观看| 国产熟女午夜一区二区三区| 国产精品亚洲av一区麻豆| 午夜久久久久精精品| 欧美日本视频| 精品一区二区三区视频在线观看免费| 人人妻人人澡欧美一区二区 | 欧美中文日本在线观看视频| 久久热在线av| 美国免费a级毛片| 女性被躁到高潮视频| 亚洲五月色婷婷综合| 乱人伦中国视频| 长腿黑丝高跟| 一边摸一边抽搐一进一小说| 久久久久久亚洲精品国产蜜桃av| 欧美一级a爱片免费观看看 | 国产区一区二久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美精品综合久久99| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 一区二区日韩欧美中文字幕| 免费高清在线观看日韩| 欧美色视频一区免费| www.精华液| 激情在线观看视频在线高清| 神马国产精品三级电影在线观看 | 又黄又粗又硬又大视频| 一进一出抽搐gif免费好疼| 午夜福利欧美成人| 一个人免费在线观看的高清视频| 一本久久中文字幕| 免费在线观看黄色视频的| 婷婷丁香在线五月| 久久精品国产综合久久久| 久久久久久人人人人人| 久久中文看片网| 老鸭窝网址在线观看| 少妇的丰满在线观看| 国产激情欧美一区二区| 精品不卡国产一区二区三区| 国产成人系列免费观看| 国产一区二区三区在线臀色熟女| 99在线视频只有这里精品首页| 国产精品永久免费网站| 国产成+人综合+亚洲专区| 国产成人欧美| 色综合亚洲欧美另类图片| 亚洲精品中文字幕一二三四区| 别揉我奶头~嗯~啊~动态视频| 丰满人妻熟妇乱又伦精品不卡| 亚洲最大成人中文| 日本五十路高清| 久久香蕉国产精品| 国产精华一区二区三区| www.精华液| 欧美激情久久久久久爽电影 | 两性夫妻黄色片| √禁漫天堂资源中文www| 欧美乱色亚洲激情| 嫩草影视91久久| 深夜精品福利| 一级片免费观看大全| www国产在线视频色| 咕卡用的链子| 久久精品国产亚洲av高清一级| 免费搜索国产男女视频| 久久久国产成人精品二区| 一本综合久久免费| 麻豆一二三区av精品| 欧美性长视频在线观看| 国产精品影院久久| 国产一区二区在线av高清观看| 一区在线观看完整版| 黄色丝袜av网址大全| 九色亚洲精品在线播放| 国产真人三级小视频在线观看| 少妇裸体淫交视频免费看高清 | 国产亚洲精品久久久久久毛片| 一区福利在线观看| 免费看美女性在线毛片视频| 午夜老司机福利片| 一区二区三区国产精品乱码| 12—13女人毛片做爰片一| 国产精品久久久久久精品电影 | cao死你这个sao货| 欧美丝袜亚洲另类 | 色尼玛亚洲综合影院| 久久久久国产精品人妻aⅴ院| 国产三级在线视频| 黄频高清免费视频| 亚洲欧美精品综合久久99| 亚洲色图av天堂| 一区福利在线观看| 亚洲国产精品成人综合色| 国产国语露脸激情在线看| 国产99久久九九免费精品| 午夜视频精品福利| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片 | 久久精品国产清高在天天线| 亚洲国产欧美一区二区综合| 淫秽高清视频在线观看| 国产精品日韩av在线免费观看 | 亚洲专区字幕在线| 亚洲国产精品sss在线观看| 男人的好看免费观看在线视频 | 成人特级黄色片久久久久久久| 亚洲国产看品久久| 亚洲七黄色美女视频| www.精华液| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 久久久久国内视频| 日韩欧美国产在线观看| 国产精品一区二区精品视频观看| 两个人免费观看高清视频| 大型av网站在线播放| av天堂久久9| 亚洲中文字幕日韩| 亚洲男人天堂网一区| 男人的好看免费观看在线视频 | 日韩视频一区二区在线观看| 99久久国产精品久久久| 可以在线观看毛片的网站| 乱人伦中国视频| 精品国产乱码久久久久久男人| 国产成人欧美在线观看| 国产精品乱码一区二三区的特点 | 国内精品久久久久久久电影| 精品久久久精品久久久| 日韩欧美一区视频在线观看| 老鸭窝网址在线观看| 9色porny在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品美女久久久久99蜜臀| 一进一出抽搐动态| 亚洲国产欧美网| 国产又色又爽无遮挡免费看| 麻豆av在线久日| 欧美一级a爱片免费观看看 | 国产亚洲欧美精品永久| 久热爱精品视频在线9| 变态另类丝袜制服| 亚洲一区高清亚洲精品| 91在线观看av| 国产真人三级小视频在线观看| 日韩高清综合在线| 国产精品久久电影中文字幕| 亚洲中文字幕日韩| 久久香蕉国产精品| 在线av久久热| 又黄又爽又免费观看的视频| 久久婷婷人人爽人人干人人爱 | 亚洲精品在线美女| videosex国产| 中文字幕色久视频| 99国产精品一区二区三区| av在线播放免费不卡| 一级片免费观看大全| 久久久久久久久免费视频了| 动漫黄色视频在线观看| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩综合在线一区二区| 在线国产一区二区在线| 精品人妻1区二区| 好男人在线观看高清免费视频 | 国产区一区二久久| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 国产精品美女特级片免费视频播放器 | 99在线人妻在线中文字幕| 亚洲七黄色美女视频| 亚洲国产精品久久男人天堂| 精品国内亚洲2022精品成人| 97碰自拍视频| 性色av乱码一区二区三区2| 亚洲av电影不卡..在线观看| 国产精品99久久99久久久不卡| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频 | 美女高潮到喷水免费观看| 无人区码免费观看不卡| 精品一区二区三区av网在线观看| www.自偷自拍.com| 91av网站免费观看| 中文字幕最新亚洲高清| 日本黄色视频三级网站网址| 亚洲av美国av| 一进一出抽搐动态| 欧美绝顶高潮抽搐喷水| 在线观看一区二区三区| 欧美乱妇无乱码| 黄色毛片三级朝国网站| 日本五十路高清| 1024视频免费在线观看| 啦啦啦观看免费观看视频高清 | 黄色片一级片一级黄色片| 色播在线永久视频| 日韩成人在线观看一区二区三区| а√天堂www在线а√下载| 9色porny在线观看| 97碰自拍视频| 人成视频在线观看免费观看| 黄色丝袜av网址大全| 91字幕亚洲| 亚洲精华国产精华精| 中文字幕高清在线视频| 97人妻精品一区二区三区麻豆 | 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| 亚洲五月婷婷丁香| 国产熟女xx| 精品人妻1区二区| 欧美午夜高清在线| 亚洲精华国产精华精| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 最近最新中文字幕大全免费视频| 成人亚洲精品av一区二区| 老汉色∧v一级毛片| 免费观看人在逋| 亚洲精品国产色婷婷电影| 少妇粗大呻吟视频| 国内毛片毛片毛片毛片毛片| svipshipincom国产片| 黄网站色视频无遮挡免费观看| 国产精品自产拍在线观看55亚洲| 色尼玛亚洲综合影院| 欧美绝顶高潮抽搐喷水| 看黄色毛片网站| 久久狼人影院| 久久九九热精品免费| 亚洲av成人一区二区三| 国产av一区二区精品久久| 两性夫妻黄色片| 中文字幕精品免费在线观看视频| 黄色女人牲交| 一进一出抽搐动态| www日本在线高清视频| 欧美老熟妇乱子伦牲交| 三级毛片av免费| 侵犯人妻中文字幕一二三四区| 亚洲av日韩精品久久久久久密| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 最近最新中文字幕大全免费视频| 怎么达到女性高潮| 搡老岳熟女国产| 久9热在线精品视频| 国产伦一二天堂av在线观看| 国产精品二区激情视频| 性欧美人与动物交配| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 黑人欧美特级aaaaaa片| 国产精品影院久久| 一区二区三区精品91| 757午夜福利合集在线观看| 国产午夜精品久久久久久| 色av中文字幕| 午夜福利高清视频| 搡老妇女老女人老熟妇| 久久人人爽av亚洲精品天堂| 国产不卡一卡二| 69精品国产乱码久久久| 色老头精品视频在线观看| 色综合站精品国产| 久久人妻av系列| 国产高清激情床上av| 日本撒尿小便嘘嘘汇集6| 亚洲熟女毛片儿| 一夜夜www| 国产精品一区二区免费欧美| 美女免费视频网站| 好男人在线观看高清免费视频 | 色婷婷久久久亚洲欧美| 一二三四社区在线视频社区8| 成熟少妇高潮喷水视频| 国产精品综合久久久久久久免费 | 久久伊人香网站| 久久久久亚洲av毛片大全| 久久精品91无色码中文字幕| 韩国av一区二区三区四区| www.999成人在线观看| 人妻久久中文字幕网| 亚洲中文av在线| 国产精品九九99| 亚洲精品国产一区二区精华液| 久久人人97超碰香蕉20202| av超薄肉色丝袜交足视频| 国产亚洲精品一区二区www| 欧美黑人欧美精品刺激| 欧美一级毛片孕妇| 日本免费一区二区三区高清不卡 | 亚洲午夜精品一区,二区,三区| 极品教师在线免费播放| 99精品在免费线老司机午夜| 欧美黑人精品巨大| www国产在线视频色| 久久久久久人人人人人| 国产成人影院久久av| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 少妇粗大呻吟视频| 欧美乱妇无乱码| 午夜激情av网站| 中文字幕另类日韩欧美亚洲嫩草| 99精品在免费线老司机午夜| 午夜福利一区二区在线看| 老司机午夜福利在线观看视频| 神马国产精品三级电影在线观看 | 亚洲国产毛片av蜜桃av| 久99久视频精品免费| 丝袜在线中文字幕| 久久久久国内视频| 欧美日韩精品网址| 一夜夜www| 好看av亚洲va欧美ⅴa在| 久久香蕉国产精品| 夜夜躁狠狠躁天天躁| 久久天堂一区二区三区四区| 精品日产1卡2卡| 波多野结衣高清无吗| 99在线视频只有这里精品首页| 不卡一级毛片| 亚洲人成电影观看| 少妇 在线观看| 亚洲国产欧美一区二区综合| 男男h啪啪无遮挡| 岛国视频午夜一区免费看| 亚洲精品国产色婷婷电影| avwww免费| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 夜夜夜夜夜久久久久| 亚洲精品一区av在线观看| 久久香蕉激情| 亚洲 欧美 日韩 在线 免费| 麻豆av在线久日| 欧美精品亚洲一区二区| 两个人视频免费观看高清| 国产成+人综合+亚洲专区| 女生性感内裤真人,穿戴方法视频| xxx96com| 国产精品,欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 神马国产精品三级电影在线观看 | 日本五十路高清| 精品一区二区三区四区五区乱码| 天天躁夜夜躁狠狠躁躁| 久9热在线精品视频| 国产高清视频在线播放一区| 一区在线观看完整版| 久久婷婷成人综合色麻豆| 真人一进一出gif抽搐免费| 久久精品91蜜桃| 免费看美女性在线毛片视频| 亚洲专区字幕在线| 欧美激情高清一区二区三区| 久久精品国产综合久久久| 久久中文字幕人妻熟女| 女人爽到高潮嗷嗷叫在线视频| 极品教师在线免费播放| 咕卡用的链子| 国产亚洲精品久久久久5区| 久久精品亚洲精品国产色婷小说| 黄色视频,在线免费观看| 搡老熟女国产l中国老女人| 性色av乱码一区二区三区2| 国产精品乱码一区二三区的特点 | 国产亚洲精品综合一区在线观看 | 一本综合久久免费| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 一进一出好大好爽视频| 91大片在线观看| 欧美黑人精品巨大| 高清在线国产一区| 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| av欧美777| 国产片内射在线| 国产精品香港三级国产av潘金莲| 成熟少妇高潮喷水视频| 一a级毛片在线观看| 亚洲国产精品久久男人天堂| 国产蜜桃级精品一区二区三区| 成熟少妇高潮喷水视频| avwww免费| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 午夜久久久在线观看| av视频免费观看在线观看| 久久草成人影院| 久久国产乱子伦精品免费另类| bbb黄色大片| 嫩草影视91久久| 国产国语露脸激情在线看| 纯流量卡能插随身wifi吗| 国产欧美日韩一区二区精品| 女人被躁到高潮嗷嗷叫费观| av福利片在线| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 亚洲一区二区三区色噜噜| 成人手机av| 成人特级黄色片久久久久久久| 好男人在线观看高清免费视频 | 麻豆久久精品国产亚洲av| 一区二区三区精品91| 国产成人欧美| 无人区码免费观看不卡| 国产三级在线视频| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 日本在线视频免费播放| 日韩欧美一区二区三区在线观看| 午夜成年电影在线免费观看| 男女做爰动态图高潮gif福利片 | 精品少妇一区二区三区视频日本电影| 黄片大片在线免费观看| 老汉色∧v一级毛片| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 无遮挡黄片免费观看| 黄网站色视频无遮挡免费观看| 啪啪无遮挡十八禁网站| 久热爱精品视频在线9| 精品欧美国产一区二区三| 亚洲 国产 在线| 国产区一区二久久| 中文字幕人成人乱码亚洲影| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀| 一区二区三区国产精品乱码| 日韩视频一区二区在线观看| 欧美绝顶高潮抽搐喷水| 老鸭窝网址在线观看| 一边摸一边做爽爽视频免费| 成年人黄色毛片网站| 久久人人97超碰香蕉20202| 精品一区二区三区四区五区乱码| 午夜福利18| 成熟少妇高潮喷水视频| 一进一出好大好爽视频| 啦啦啦观看免费观看视频高清 | x7x7x7水蜜桃| 久久久国产欧美日韩av| 中文字幕色久视频| 最好的美女福利视频网| 亚洲一卡2卡3卡4卡5卡精品中文| 人人妻人人澡欧美一区二区 | 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色 | 欧美在线黄色| 最新美女视频免费是黄的| 变态另类丝袜制服| 国产亚洲精品一区二区www| 欧美在线一区亚洲| 亚洲国产高清在线一区二区三 | 制服丝袜大香蕉在线| 一二三四在线观看免费中文在| 如日韩欧美国产精品一区二区三区| 国产欧美日韩一区二区三区在线|