李伶俐 陳小燕 朱 蓉 趙 逵*
遵義醫(yī)學(xué)院(563003)1 遵義醫(yī)學(xué)院附屬醫(yī)院消化內(nèi)科2
Wnt信號(hào)轉(zhuǎn)導(dǎo)通路與結(jié)直腸癌的研究進(jìn)展
李伶俐1陳小燕2朱蓉2趙逵2*
遵義醫(yī)學(xué)院(563003)1遵義醫(yī)學(xué)院附屬醫(yī)院消化內(nèi)科2
結(jié)直腸癌是胃腸道最常見(jiàn)的惡性腫瘤之一,發(fā)病機(jī)制尚未完全明確,目前認(rèn)為是一個(gè)多步驟、多階段參與的疾病。Wnt信號(hào)轉(zhuǎn)導(dǎo)通路是進(jìn)化上高度保守的信號(hào)系統(tǒng),可調(diào)控細(xì)胞生長(zhǎng)、運(yùn)動(dòng)和分化,且在胚胎發(fā)育、腫瘤發(fā)生等過(guò)程中起重要作用。人類多種惡性腫瘤中均存在Wnt通路異常,90%以上的結(jié)直腸癌存在Wnt經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路激活[1]。本文就Wnt信號(hào)轉(zhuǎn)導(dǎo)通路與結(jié)直腸癌的研究進(jìn)展作一綜述。
一、Wnt信號(hào)轉(zhuǎn)導(dǎo)通路
1. Wnt經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路:Wnt經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路即Wnt/β-catenin通路。Wnt通路的模式是:無(wú)Wnt信號(hào)時(shí),降解復(fù)合體與β-catenin結(jié)合使其磷酸化,β-catenin隨即脫離復(fù)合體,通過(guò)β-轉(zhuǎn)導(dǎo)重復(fù)相容蛋白(β-TrCP)泛素化,從而被蛋白酶體降解;Wnt信號(hào)刺激時(shí),Wnt信號(hào)誘導(dǎo)軸蛋白(Axin)與磷酸化的低密度脂蛋白受體相關(guān)蛋白(LRP)結(jié)合,降解復(fù)合體分離,β-catenin在胞質(zhì)中穩(wěn)定存在,并轉(zhuǎn)位入胞核,與T細(xì)胞因子(TCF)結(jié)合,形成轉(zhuǎn)錄復(fù)合體,激活Lgr5等靶基因。近年來(lái),基于內(nèi)源性降解復(fù)合體的研究提出一種新的Wnt信號(hào)轉(zhuǎn)導(dǎo)通路模式:無(wú)Wnt信號(hào)時(shí),降解復(fù)合體通過(guò)β-TrCP與β-catenin結(jié)合,使其磷酸化和泛素化后被降解;Wnt信號(hào)刺激時(shí),降解復(fù)合物與磷酸化LRP結(jié)合,然后結(jié)合β-catenin使其磷酸化,但此過(guò)程可被β-TrCP泛素化阻止,導(dǎo)致β-catenin在胞質(zhì)內(nèi)積聚[2]。
2. Wnt非經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路:目前有多種Wnt非經(jīng)典通路,如Wnt/PCP、Wnt-RAP1、Wnt-Ror2、Wnt-PKA、Wnt-GSK3MT、Wnt-aPKC、Wnt-RYK、Wnt-mTOR以及Wnt/Ca2+、Wnt/Wg等,多種通路可重疊出現(xiàn)。其中Wnt/Ca2+通路尤為重要,其由Wnt5a或Wnt4激活后可抑制包括結(jié)直腸癌在內(nèi)的多種腫瘤[3]。
二、Wnt信號(hào)轉(zhuǎn)導(dǎo)通路主要組成成分
1. Wnt蛋白:①Wnt蛋白脂?;揎棧篧nt蛋白中高度保守的半胱氨酸與棕櫚酸酯通過(guò)硫脂鍵結(jié)合后被脂?;痆4]。研究[5-6]發(fā)現(xiàn),Wnt蛋白去除半胱氨酸后,活性喪失,提示W(wǎng)nt蛋白活性受脂?;{(diào)控。②Wnt蛋白的轉(zhuǎn)運(yùn):Wls是7次跨膜蛋白,存在于高爾基體網(wǎng)絡(luò)、核內(nèi)體和質(zhì)膜,可與Wnt蛋白結(jié)合,將Wnt蛋白從高爾基體運(yùn)至質(zhì)膜,且對(duì)Wnt蛋白穩(wěn)定分泌起重要作用。研究[7]顯示,胞內(nèi)轉(zhuǎn)運(yùn)復(fù)合體retromer亦對(duì)Wnt信號(hào)途徑十分重要,其參與Wnt蛋白的轉(zhuǎn)運(yùn),通過(guò)逆向轉(zhuǎn)運(yùn)將核內(nèi)體中的Wls運(yùn)回至高爾基網(wǎng)絡(luò),從而避免被溶酶體降解。
2. β-catenin:β-catenin 是Wnt/β-catenin通路的中樞成分。正常成熟細(xì)胞中,大部分β-catenin與細(xì)胞膜上的E-鈣黏蛋白結(jié)合,參與細(xì)胞間黏附、生長(zhǎng)、增殖等過(guò)程,少部分與胞質(zhì)降解復(fù)合體結(jié)合被降解。β-catenin的黏附作用和信號(hào)轉(zhuǎn) 導(dǎo)功能獨(dú)立存在[8]。Wnt信號(hào)活化可提高β-catenin水平[9]。
三、Wnt信號(hào)轉(zhuǎn)導(dǎo)通路的調(diào)節(jié)
1. β-catenin對(duì)Wnt通路的調(diào)節(jié):降解復(fù)合體可調(diào)控胞質(zhì)內(nèi)β-catenin的穩(wěn)定性,后者對(duì)經(jīng)典Wnt信號(hào)轉(zhuǎn)導(dǎo)通路起關(guān)鍵作用[10]。β-catenin降解復(fù)合體可使β-catenin磷酸化,而后被泛素-蛋白酶體系統(tǒng)降解,使其保持低水平,從而關(guān)閉Wnt通路[11]。WTX是一種抑癌蛋白,參與β-catenin降解復(fù)合體功能,促進(jìn)β-catenin降解,發(fā)揮抑癌作用。目前關(guān)于WTX在Wnt通路中的作用存在爭(zhēng)議[12]。
2. Lgr對(duì)Wnt通路的調(diào)節(jié):Glinka等[13]的研究顯示,Lgr4、Lgr5是R-脊柱蛋白受體,其可介導(dǎo)R-脊柱蛋白參與Wnt經(jīng)典信號(hào)通路。在生殖器、眼睛、膀胱、腎、毛囊、下顎、舌頭、胃、腸道等多種器官中均有Lgr4、Lgr5表達(dá)[14-16]。對(duì)胃腸道腫瘤的研究[15]發(fā)現(xiàn),Lgr5是Wnt通路的靶基因,胃腸道中Lgr5陽(yáng)性表達(dá)的干細(xì)胞可發(fā)揮組織重建作用。Walker等[17]對(duì)結(jié)直腸癌細(xì)胞株的研究顯示,Lgr5可拮抗Wnt信號(hào),調(diào)控細(xì)胞黏附,抑制腫瘤生長(zhǎng)。
3. 金屬結(jié)合蛋白(Dpr)對(duì)Wnt通路的調(diào)節(jié):Dpr的功能域在進(jìn)化上高度保守,對(duì)于調(diào)控Wnt信號(hào)的機(jī)制尚未明確。Dpr可與散亂蛋白(DSH)結(jié)合,誘導(dǎo)DSH在溶酶體中降解,從而抑制Wnt經(jīng)典通路和非經(jīng)典通路激活[18]。Gao等[19]亦發(fā)現(xiàn)Dpr1能同時(shí)負(fù)性調(diào)控細(xì)胞質(zhì)和細(xì)胞核中的Wnt信號(hào)途徑。但是,Gloy等[20]對(duì)爪蟾的研究顯示,Dpr1能協(xié)同加強(qiáng)DSH的作用。因此,Dpr1對(duì)Wnt信號(hào)通路的調(diào)節(jié)作用尚存爭(zhēng)議。
四、Wnt通路與結(jié)直腸癌的關(guān)系
1. 基因異常:①β-catenin基因突變:β-catenin基因缺失或突變導(dǎo)致β-catenin不能降解,在胞質(zhì)內(nèi)積累,引起腫瘤發(fā)生。雖然β-catenin基因突變可導(dǎo)致Wnt信號(hào)活化,但大多數(shù)結(jié)腸癌患者顯示了β-catenin的異質(zhì)性,表明Wnt信號(hào)調(diào)控的復(fù)雜性[21]。②APC基因突變:多數(shù)結(jié)直腸癌存在APC基因缺失突變或失活[22]。APC基因突變點(diǎn)位于與Axin結(jié)合位點(diǎn),產(chǎn)生截短APC蛋白,導(dǎo)致不能形成降解復(fù)合體降解β-catenin。APC功能缺失不僅導(dǎo)致β-catenin聚積,亦促進(jìn)β-catenin與TCF4形成 TCF/β-catenin復(fù)合物,激活Wnt信號(hào)轉(zhuǎn)導(dǎo)通路下游的靶基因。Yoshie等[23]用氣相色譜法比較表達(dá)正常APC蛋白和截短APC蛋白的SW480結(jié)直腸癌細(xì)胞代謝物含量,結(jié)果顯示,表達(dá)截短APC蛋白的SW480細(xì)胞的代謝產(chǎn)物含量明顯提高,提示APC突變通過(guò)改變能量代謝通路參與結(jié)直腸癌的發(fā)展。此外,Bellis等[24]的研究表明,APC突變的小鼠腺瘤細(xì)胞中,干細(xì)胞不對(duì)稱分裂發(fā)生改變,此為結(jié)直腸癌的發(fā)展提供了新線索。③Axin基因突變:結(jié)直腸癌細(xì)胞株中Axin表達(dá)缺失可導(dǎo)致β-catenin大量積聚,從而引起Wnt信號(hào)通路異?;钴S。Vermeulen等[21]通過(guò)研究克什米爾人群中結(jié)直腸癌患者的Axin基因突變模式發(fā)現(xiàn),Axin1和Axin2基因突變參與了結(jié)直腸癌的發(fā)生和發(fā)展,并發(fā)現(xiàn)Axin2基因突變可能是克什米爾人群患結(jié)直腸癌的誘發(fā)因素。
2. Wnt信號(hào)通路與結(jié)直腸癌干細(xì)胞:腫瘤干細(xì)胞能夠自我更新以及維持分化潛能,其行為需依賴外部信號(hào),如Wnt信號(hào)[25]。研究顯示,Wnt非經(jīng)典途徑可拮抗β-catenin依賴的轉(zhuǎn)錄,表明其有抗癌作用[26]。近年來(lái),大量研究證實(shí),Wnt信號(hào)、干細(xì)胞信號(hào)及以腫瘤干細(xì)胞行為間存在聯(lián)系,提示干細(xì)胞生物學(xué)與結(jié)直腸癌相關(guān)。
①腸道干細(xì)胞與結(jié)直腸癌干細(xì)胞:在自我更新以及多向分化潛能方面,腫瘤干細(xì)胞與干細(xì)胞具有相似的生物學(xué)特性。腫瘤干細(xì)胞學(xué)說(shuō)認(rèn)為,腫瘤干細(xì)胞可能源于正常干細(xì)胞的累積突變和(或)祖細(xì)胞通過(guò)基因突變重新獲得自我更新能力。腫瘤干細(xì)胞可能帶有正常干細(xì)胞/祖細(xì)胞的特異性表面標(biāo)記物,如結(jié)腸癌干細(xì)胞具有與結(jié)腸干細(xì)胞相同的標(biāo)記物如CD133、Lgr5。
②Wnt信號(hào)通路與結(jié)腸干細(xì)胞:正常人結(jié)腸由數(shù)百萬(wàn)個(gè)隱窩組成,每個(gè)隱窩含有2 000個(gè)細(xì)胞。干細(xì)胞位于隱窩基底部,每個(gè)隱窩約有5~10個(gè)干細(xì)胞[27-28]。肌成纖維細(xì)胞可通過(guò)調(diào)控Wnt信號(hào)對(duì)肝配蛋白B1(EFNB1)、EPHB2以及EPHB3作用,從而調(diào)節(jié)干細(xì)胞功能。Wnt信號(hào)通路亦對(duì)結(jié)腸干細(xì)胞自我更新的調(diào)控起重要作用[29-30]。此外,Lgr蛋白作為R-脊柱蛋白受體可介導(dǎo)Wnt信號(hào)與干細(xì)胞緊密聯(lián)系。通過(guò)抑制TCF4或給予Wnt拮抗劑Dickkopf-1(DDK1)阻斷Wnt信號(hào),導(dǎo)致上皮細(xì)胞增殖能力減弱。
③Wnt信號(hào)通路與結(jié)腸癌干細(xì)胞:Wnt/β-catenin通路可調(diào)控腫瘤細(xì)胞的生長(zhǎng)。研究[29]指出,結(jié)腸癌細(xì)胞球可減少β-catenin在細(xì)胞膜黏附,提高β-catenin、cyclin D1以及c-myc的胞質(zhì)水平,同時(shí)下調(diào)Axin1和磷酸化β-catenin。β-catenin表達(dá)增多與TCF/LEF轉(zhuǎn)錄活化密切相關(guān),采用RNA干擾技術(shù)使β-catenin基因沉默,可導(dǎo)致TCF/LEF降低,從而減少結(jié)腸癌細(xì)胞球形成。相反,上調(diào)c-myc和TCF/LEF下游效應(yīng)器可大幅增加結(jié)腸癌球囊細(xì)胞生成。Barker等[30]通過(guò)敲除小鼠Lgr5-Cre+腸隱窩干細(xì)胞的APC基因,發(fā)現(xiàn)3~5周后干細(xì)胞仍存留于隱窩底部,并形成肉眼可見(jiàn)的Lgr5+腺瘤,提示W(wǎng)nt信號(hào)轉(zhuǎn)導(dǎo)通路參與正常腸干細(xì)胞向腫瘤干細(xì)胞轉(zhuǎn)化。
五、結(jié)語(yǔ)
基于Wnt信號(hào)轉(zhuǎn)導(dǎo)通路是一條多環(huán)節(jié)、多作用位點(diǎn)的開放通路,其對(duì)結(jié)直腸癌的發(fā)生、發(fā)展尤為重要,因此可針對(duì)該信號(hào)途徑進(jìn)行分子靶向治療。然而,結(jié)直腸癌的發(fā)生是一個(gè)復(fù)雜的網(wǎng)絡(luò)工程,Wnt信號(hào)轉(zhuǎn)導(dǎo)通路的作用機(jī)制以及Wnt信號(hào)轉(zhuǎn)導(dǎo)通路與其他信號(hào)通路如STATs 、MAPKs、Hedgehog、BMP等的相互作用機(jī)制尚未完全明確,仍有待進(jìn)一步研究。
參考文獻(xiàn)
1 Silva AL, Dawson SN, Arends MJ, et al. Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists[J]. BMC Cancer, 2014, 14: 891.
2 Li VS, Ng SS, Boersema PJ, et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex[J]. Cell, 2012, 149 (6): 1245-1256.
3 De A. Wnt/Ca2+ signaling pathway: a brief overview[J]. Acta biochim biophys Sin (Shanghai), 2011, 43 (10): 745-756.
4 Takada R, Satomi Y, Kurata T, et al. Monouns aturated fatty acid modification of Wnt protein: its role in Wnt secretion[J]. Dev Cell, 2006, 11 (6): 791-801.
5 Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors[J]. Nature, 2003, 423 (6938): 448-451.
6 Janda C, Waghray D, Levin AM, et al. Structural basis of Wnt recognition by Frizzled[J]. Science, 2012, 337 (6090): 59-64.
7 Port F, Kuster M, Herr P, et al. Wingless secretion promotes and requires retromer-dependent cycling of Wntless[J]. Nat Cell Biol, 2008, 10 (2): 178-185.
8 Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149 (6): 1192-1205.
9 Goentoro L, Kirschner MW. Evidence that fold-change, and not absolute level, of beta-catenin dictates Wnt signaling[J]. Mol Cell, 2009, 36 (5): 872-884.
10Krausova M, Korinek V. Wnt signaling in adult intestinal stem cells and cancer[J]. Cell Sign, 2014, 26 (3): 570-579.
11Tan CW, Gardiner BS, Hirokawa Y, et al. Analysis of Wnt signaling β-catenin spatial dynamics in HEK293T cells[J]. BMC Syst Biol, 2014, 8 (1): 1-34.
12Regimbald-Dumas Y, He X. Wnt signalling:What The X@# is WTX?[J]. EMBO J, 2011, 30 (8): 1415-1417.
13Glinka A, Dolde C, Kirsch N, et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling[J]. EMBO Rep, 2011, 12 (10): 1055-1061.
14Barker N, Clevers H. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells[J]. Gastroenterology, 2010, 138 (5): 1681-1696.
15Barker N, Huch M, Kujala P, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric unitsinvitro[J]. Cell Stem Cell, 2010, 6 (1): 25-36.
16Mustata RC, Van Loy T, Lefort A, et al. Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cellsexvivo[J]. EMBO Rep, 2011, 12 (6): 558-564.
17Walker F, Zhang HH, Odorizzi A, et al. LGR5 is a negative regulator of tumourigenicity, antagonizes wnt signalling and regulates cell adhesion in colorectal cancer cell lines[J]. PLoS One, 2011, 6 (7): e22733.
18Cheyette BNR, Waxman JS, Miller JR, et al. Dapper, a Dishevelled-associated antagonist of beta-Catenin and JNK signaling, is required for Notochord formation[J]. Developmental Cell, 2002, 2 (4): 449-461.
19Gao X, Wen J, Zhang L, et al. Dapper1 is a nucleocyto-plasmic shuttling protein that negatively modulates wnt signaling in the nucleus[J]. J Biol Chem, 2008, 283 (51): 35679-35688.
20Gloy J, Hikasa H, Sokol SY. Frodo interacts with Dishevelled to transduce Wnt signals[J]. Nat Cell Biol, 2002, 4 (5): 351-357.
21Vermeulen L, De Sousa E Melo F, van der Heijden M, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment[J]. Nat Cell Biol, 2010, 12 (5): 468-476.
22Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers[J]. Science, 2007, 318 (5853): 1108-1113.
23Yoshie T, Nishiumi S, Izumi Y, et al. Regulation of the metabolite profile by an APC gene mutation in colorectal cancer[J]. Cancer Sci, 2012, 103 (6): 1010-1021.
24Bellis J, Duluc I, Romagnolo B, et al. The tumor suppressor Apc controls planar cell polarities central to gut homeostasis[J]. J Cell Biol, 2012, 198 (3): 331-341.
25Clevers H, Nusse R. Wnt/β-catenin signaling and disease[J]. Cell, 2012, 149 (6): 1192-1205.
26Kühl M,Sheldahl LC,Park M, et al. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape[J]. Trends in Genetics, 2000, 16 (7): 279-283.
27Roy S, Majumdar AP. Signaling in colon cancer stem cells[J]. J Mol Signal, 2012, 7 (1): 11.
28Willis ND, Przyborski SA, Hutchison CJ, et al. Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers[J]. J Anat, 2008, 213 (1): 59-65.
29Kanwar SS, Yu Y, Nautiyal J, et al. The Wnt/beta-catenin pathway regulates growth and maintenance of colonospheres[J]. Mol Cancer, 2010, 9: 212.
30Barker N, Ridgway RA, van Es JH, et al. Crypt stem cells as the cells-of-origin of intestinal cancer[J]. Nature, 2009, 457 (7229): 608-611.
(2015-01-28收稿;2015-02-05修回)
·病例分析與個(gè)案報(bào)道·
摘要結(jié)直腸癌是胃腸道最常見(jiàn)的惡性腫瘤之一,發(fā)病機(jī)制尚未完全明確,目前認(rèn)為是一個(gè)多步驟、多階段參與的疾病。Wnt信號(hào)轉(zhuǎn)導(dǎo)通路可調(diào)控細(xì)胞生長(zhǎng)、運(yùn)動(dòng)和分化,且在胚胎發(fā)育、腫瘤發(fā)生等過(guò)程中起重要作用。本文就Wnt信號(hào)轉(zhuǎn)導(dǎo)通路與結(jié)直腸癌的研究進(jìn)展作一綜述。
關(guān)鍵詞結(jié)直腸腫瘤;Wnt信號(hào)通路;β連環(huán)素;干細(xì)胞
Advances in Study on Wnt Signaling Transduction Pathway and Colorectal CancerLILingli1,CHENXiaoyan2,ZHURong2,ZHAOKui2.1ZunyiMedicalCollege,Zunyi,GuizhouProvince(563003);2DepartmentofGastroenterology,AffiliatedHospitalofZunyiMedicalCollege,Zunyi,GuizhouProvince
Correspondence to: ZHAO Kui, Email: kuizhao95868@msn.com
AbstractColorectal cancer is one of the most commonly seen gastrointestinal carcinomas and its pathogenesis has not yet been fully clarified. It is considered as a multi-step and multi-stage disease. Wnt signaling transduction pathway regulates cell growth, motility and differentiation, and plays a crucial role in the regulation of embryonic development and tumor genesis. This article reviewed the advances in study on Wnt signaling transduction pathway and colorectal cancer.
Key wordsColorectal Neoplasms;Wnt Signaling Pathway;beta Catenin;Stem Cells
通信作者*本文,Email: kuizhao95868@msn.com
DOI:10.3969/j.issn.1008-7125.2015.10.015