• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    2015-03-03 07:50:52XUYongjieWANGZhijun
    關(guān)鍵詞:彈箭背風(fēng)面王志軍

    XU Yong-jie, WANG Zhi-jun

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Characteristics analysis of rocket projectile based on intelligent morphing technology

    XU Yong-jie, WANG Zhi-jun

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    Nose deflection control is a new concept of fast response control model. The partial nose of projectile deflects a certain angle relative to the axis of projectile body and then pressure difference emerges on the windward and leeward sides of warhead. Consequently, aerodynamic control force is generated. This control way has high control efficiency and very good application prospects in the ammunition system. Nose deflection actuator based on smart material and structure enables projectile body morphing to obtain additional aerodynamic force and moment, changes the aerodynamic characteristics in the projectile flight process, produces the corresponding balance angle and sideslip angle resulting in motor overload, adjusts flight moving posture to control the ballistics, finally changes shooting range and improves firing accuracy. In order to study characteristics of self-adaptive control projectile, numerical simulations are conducted by using fluid dynamics software ANSYS FLUENT for stabilized rocket projectile. The aerodynamic characteristics at different nose delectation angles, different Mach numbers and different angles of attack are obtained and compared. The results show that the nose deflection control has great influence on the head of rocket projectile, and it causes the asymmetry of the flow field structure and the increase of pressure differences of the warhead on the windward and leeward surface, which results in a larger lift. Finally, ballistics experiments are done for verification. The results can offer theoretical basis for self-adaptive rocket projectile design and optimization and also provide new ideas and methods for field smart ammunition research.

    rocket projectile; intelligent morphing technology; nose deflection; ballistics characteristics

    0 Introduction

    Smartness, intelligence and high mobility of ammunition will be the important development directions of ammunition technology in a long historical period in the future[1-3]. To research and develop active, detective and self-adaptive ballistic correction and autonomous smart attack ammunition by means of various innovative and intelligent control technologies, simple guidance way or ballistic adaptive way has become the research hotspot of national defense science and technology in the world.

    Intelligent morphing technology means that the shape of self-adaptive aircraft changes according to flight mission, flight speed and flight environment. It uses intelligent material or structure to realize active, adaptive and continuous changes in appearance to meet different missions with different aerodynamic layouts, thus performance optimization of aerodynamic and flight is achieved[4-7]. For modern high mobility weapons, it can solve the contradictions of different aerodynamic layouts of the aircrafts designed by intelligent morphing technology and improve economic efficiency and operational capability.

    Human beings are dedicated to development of lighter and more intelligent missiles now and even for the future. Research on creative and intelligent control technology has very important significance and practical value, where external ballistics plays a key role in this modern missile control technology.

    1 Modeling

    1.1 Geometrical model

    The 3D model of simplified standard fin stabilized rocket projectile is shown in Fig.1, where lengthL=600.0 mm, and diameterD=90.0 mm. The rocket projectile with nose deflection angleδis shown in Fig.2.

    Fig.1 Standard fin stabilized rocket projectile

    Fig.2 Rocket projectile with nose deflection angle

    1.2 Mass properties

    The trajectory correction models for rocket projectiles with different nose deflection angles, including 0°, 2°, 4°, 6°, 8° and 10°, are established. The mass properties of each model are shown in Table 1.

    Table 1 Mass properties

    1.3 Aerodynamic force analysis

    According to ballistic theory[8-9], in the flight process of projectile, regardless of the spinning, in order to measure the effects from each force and resultant force, all the forces and moments are simplified as the centroid of projectile. For illustrating conveniently, it is shown in Fig.3.

    Fig.3 Diagram for simplifying aerodynamic forces

    1)Rxis drag and expressed as

    whereCxis drag coefficient andSMis reference area (m2).

    2)Ryis lift and expressed as

    whereCyis drag coefficient andSMis reference area (m2).

    3)Mzis static moment and expressed as

    wheremzis moment coefficient.

    2 Ballistic flight flow field simulation

    Mach numbers in simulation are 0.8, 1.0, 1.2, 2.0 and 3.0, respectively, involving subsonic, transonic and supersonic speed ranges; and nose deflection angles contains 0°, 2°, 4°, 6°, 8° and 10°. The dynamics parameters such as flow field velocity and pressure, drag coefficient, lift coefficient and pitching moment coefficient, are obtained by simulation. In computational procedure, single equation model Spalart-Allmaras is used for turbulence model[10-13], which only solves a transport equation about the eddy viscosity and obtains good results involving wall limit flow problem and inverse pressure gradient of boundary layer problem. It is commonly used for solving aerodynamic problems of aircraft, flow around airfoil, flow field analysis, and so on.

    2.1 Pressure field analysis

    Typical simulation results of pressure field distribution are shown in Fig.4. Fig.4(a) is the pressure nephogram and Fig.4(b) is the pressure contour line.

    Fig.4 Pressure field distribution

    As shown in Fig.4, the pressure on projectile increases with the increase of deflection angle. For nose deflection angle of 10°, there is a mutation pressure due to its unsmooth surface. The greater the deflection angle is, the more obvious the mutation pressure is.

    The warhead is the most stressful part of the whole projectile, whereby ballistic cap is the most stressful part in the warhead. Its pressure grows with the increase of Mach number and the pressure region has a tendency to gradually expand and gradually move to the rear end of rocket.

    When air flows through the pressure region, there is an inflection point of pressure on the shoulder of the rocket, then gas expansion wave emerges. At the same time, a low pressure area emerges in the area near the bottom of the projectile, and it becomes smaller and smaller when Mach number increases, and the speed difference is more and more obvious. The reason is that the rocket empennage impedes the air flow, consequently gas choking phenomenon appears in the empennage leading edge and dilatational wave appears in the empennage trailing edge, finally the interaction leading edge and trailing edge flow field form tail flow field.

    In addition, it can be seen that the pressure flow field distribution is asymmetric, and the asymmetry intensifies that because of the existence of nose deflection angle, in front of the shoulder, with the increase of deflection angle, the pressure coefficient on the windward side is larger than that on the leeward side. On the back of the shoulder, with the increase of deflection angle, the pressure coefficient diminishes on the windward side and increases on the leeward side, and the pressure coefficient on the windward side is less than that on the leeward side.

    2.2 Velocity field analysis

    Typical simulation results of pressure field distribution are shown in Fig.5. Fig.5(a) is the pressure nephogram and Fig.5(b) is the pressure contour line.

    As shown in Fig.5, a high pressure area emerges around warhead in the flight process of external ballistics, and vortex area and stress concentration are around tail.

    Deflection angle has important influence on tail flow field. The larger the deflection angle is, the greater impact it has. Circle flow field changes a lot because of the warhead deflection angle. With the increase of deflection angle, the rocket overall speed slows down. The head velocity is low, and the low speed region caused by warhead is larger and moves to rear end of the rocket.

    Fig.5 Velocity field distribution

    The larger the deflection angle is, the greater impact it has on the warhead flow field structure and the less impact it has on the downstream flow field. The tail flow field asymmetry increases with the increment of deflection angle. The greater the deflection angle is, the greater warhead disturbance impact it has on the tail flow field. High speed area emerges on the warhead and expansion wave emerges on the shoulder at the same time.

    There is also a speed-jump on the shoulder windward side because of the existence of attack angle, and the larger Mach number, the larger speed-jump area. The fluid velocity is low in the empennage leading-edge area. Choking phenomenon occurs because of its retardation, and a series of smaller spirals also emerge in the tail flow field due to the speed differences caused by projectile disturbance.

    2.3 Aerodynamic characteristics analysis

    Calculation of drag coefficient is shown in Fig.6, and the changing laws of all the models are consistent and the curves change smoothly.

    Under the condition of the same Mach number, when the attack angle is 0°, aerodynamic drag coefficient changes smaller with the change of nose deflection angle. By comparing a large amount of simulation data, rocket projectile’s aerodynamic performance is poor in subsonic and transonic velocity ranges and aerodynamic lift and control torque are limited very much in subsonic velocity range.

    Fig.6 Drag coefficient when attack angle is 0°

    Simulations of lift coefficient and control moment coefficient are shown in Fig.7.

    Lift coefficient and additional control torque change obviously when the attack angle is 2° and aerodynamic performance changes significantly. Aerodynamic lift and control moment caused by nose deflection angle are objective and the smaller nose deflection angle can produce large aerodynamic control force.

    Control mode of nose deflection can provide greater aerodynamic lift and torque control than rocket projectile without nose deflection angle. Lift coefficient ratio and control moment coefficient ratio of rocket projectile with different nose deflection angles are shown in Table 2.

    Fig.7 Aerodynamic coefficient when attack angle is 2°

    Table 2 Calculation results of coefficient ratio

    In supersonic velocity range, nose deflection angle is 10°. And it can provide the aerodynamic lift 2.64 times and control moment 15.28 times as much as that without nose deflection angle.

    3 Experiment

    To improve rocket projectile design, the experiments for ballistic correction of rocket projectile with nose deflection angle of 5° was conducted. There are 5 ballistic correction rocket projectiles prepared for the flying experiment[14-15]. The arrangement for testing is shown in Fig.8.

    Fig.8 Arrangement for testing

    The distance of 200 m was intercepted in the shooting range direction and the distance between the aiming point and fall point was determined as transverse correction range, marked as ΔX.

    In order to get convenient verification, the nose deflection angle was set toward to the same launch direction and the distance between aiming point and fall point was measured as the horizontal correction range caused by nose deflection angle. The experimental results are shown in Table 3. The results show that at the velocity of 151.06 m/s and nose deflection angle being of 5°, the ballistic correction for rocket projectile can obtain horizontal correction range of 0.43 m on the average.

    Table 3 Horizontal correction value

    4 Conclusions

    From the simulation calculation and ballistic experiment on deflectable nose rocket projectile, the following conclusions can be obtained:

    1) Large number of aerodynamic simulations show that using nose deflection angle can achieve desired aerodynamic lift, aerodynamic drag and additional torque control. Furthermore, it can correct ballistic trajectory effectively and realize rocket projectile maneuvering flight.

    2) With rocket projectile ballistic correction as fine pneumatic control characteristics in the supersonic velocity range and limited aerodynamic performance in subsonic velocity range. Nose deflection has greater influence on warhead flow field structure and smaller impact on the downstream.

    3) With the increase of nose deflection angle, the pressure on the rocket body increases, especially the pressure mutation on the area around the shoulder of the rocket. The flow field changes dramatically and the pressure becomes bigger with the deflection angle being larger. The expansion waves emerge on the shoulder and low pressure area at the bottom of the projectile. The asymmetry of the flow field is bigger and different pressures on the windward and leeward surfaces increase, which result in larger lift.

    4) Flight test shows that flying control method of nose deflection is feasible and reliable, thus it can be used for engineering research in the further.

    [1] YIN Jian-ping, WANG Zhi-jun. Ammunition theory. Beijing: Beijing Institute of Technology Press, 2014.

    [2] ZHANG Bo, WANG Shu-shan, CAO Meng-yu, et al. Impacts of deflection nose on ballistic trajectory control law. Mathematical Problems in Engineering, 2014.

    [3] GAO Ting-xin. Study of aerodynamic characteristics of migraine control. In: Proceedings of Aviation Aircraft Development and Aerodynamics Seminar, Hangzhou, 2006.

    [4] ZHANG Tong, ZHAO Xiao-li. Analysis of trajectory correction projectile and its key technology.Cruise Missile, 2014, 24(5): 38-42.

    [5] Landers M G, Hall L H, Auman L M, et al. Deflectable nose and canard controls for a fin-stabilized projectile at supersonic and hypersonic speeds. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 1.

    [6] XIA Bin, ZHOU Liang. Trajectory correction projectile and analysis on the key technologies for the trajectory correction process. National Defense Science & Technology, 2013, 34(3): 27-33.

    [7] Vaughn, M E, Auman L M. Assessment of a productivity-oriented cfd methodology for designing a hypervelocity missile. In: Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlardo, Florida, 2003: 23-29.

    [8] HAN Zi-peng. Exterior ballistics of projectile and rockets. Beijing: Beijing Institute of Technology Press, 2014.

    [9] XU Ming-you. Advanced external ballistics. Beijing: Higher Education Press, 2003.

    [10] YU Wen-jie. Study of aerodynamic characteristics for a fin-stabilized projectile with a deflectable nose control. Nanjing: Nanjing University of Science&Technology, 2010.

    [11] WANG Fei, WU Guo-dong, WANG Zhi-jun. Numerical calculation of aerodynamic characteristics of shell with attack angle at the shell head. Journal of North China Institute of Technology, 2005, 26(3): 177-179.

    [12] WEIi Fang-hai, WANG Zhi-jun, YIN Jian-ping. Numerical calculation of aerodynamic characteristics of shell with an angle of warhead. Journal of Projectiles, Rockets, Missiles and Guidance, 2006, 26(1): 553-558.

    [13] DONG Er-bao. Research on realization mechanism and some key technologies of smart morphing aircraft structures. Anhui: University of Science and Technology of China, 2010.

    [14] XU Yu-xin, WANG Shu-shan. Armor-piercing experiment on fragment against sandwich plate with fiber reinforced composite cores. Acta Materiae Compositae Sinica, 2012, 29(3): 72-78.

    [15] XU Yu-xin, WANG Shu-shan. Armor-piercing ultimate of tungsten alloy spherical fragment against low-carbon steel. Journal of Vibration and Shock, 2011, 30(5): 192-195.

    基于智能變形技術(shù)的火箭彈特性分析

    偏轉(zhuǎn)頭部控制是一種新概念快速響應(yīng)的控制方式。 彈頭部相對(duì)于彈軸進(jìn)行局部偏轉(zhuǎn), 并且在彈頭的迎風(fēng)面和背風(fēng)面形成壓力差從而產(chǎn)生空氣控制力, 在彈藥系統(tǒng)里, 這是一個(gè)高效并具有良好應(yīng)用前景的控制方式。 基于智能材料和結(jié)構(gòu)的彈箭頭部智能變形驅(qū)動(dòng)機(jī)構(gòu)可以使彈箭獲得額外的控制力和控制力矩, 改變彈丸在飛行過(guò)程中的空氣動(dòng)力特性, 在彈箭飛行過(guò)程中會(huì)產(chǎn)生附加的平衡角、 側(cè)滑角, 進(jìn)而產(chǎn)生機(jī)動(dòng)過(guò)載, 控制飛行姿態(tài)和飛行彈道, 并在最后時(shí)限提高彈丸的射擊精確度。 為了研究自適應(yīng)控制彈箭的特性, 利用流體力學(xué)軟件對(duì)尾翼穩(wěn)定的火箭彈進(jìn)行了數(shù)值模擬。 獲得不同頭部偏角、 不同馬赫數(shù)和不同攻角情況下的彈箭空氣動(dòng)力學(xué)特性。 結(jié)果表明, 偏轉(zhuǎn)頭部控制對(duì)彈箭的頭部具有較大的影響, 并且引起流場(chǎng)的不對(duì)稱性。 彈頭部迎風(fēng)面和背風(fēng)面的壓力差為彈箭提供較大的升力。 最后, 做彈道試驗(yàn)驗(yàn)證了仿真的研究結(jié)果。 研究結(jié)果可以為自適應(yīng)彈箭的設(shè)計(jì)及優(yōu)化提供理論基礎(chǔ), 并為智能彈藥的研究提供新思路和新方法。

    火箭彈; 智能變形技術(shù); 頭部偏轉(zhuǎn); 彈道特性

    XU Yong-jie, WANG Zhi-jun. Characteristics analysis of rocket projectile based on intelligent morphing technology. Journal of Measurement Science and Instrumentation, 2015, 6(3): 205-211. [

    徐永杰, 王志軍

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.001]

    XU Yong-jie (yongqiang515@126.com)

    1674-8042(2015)03-0205-07 doi: 10.3969/j.issn.1674-8042.2015.03.001

    Received date: 2015-05-15

    CLD number: TJ415 Document code: A

    猜你喜歡
    彈箭背風(fēng)面王志軍
    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL
    王志軍 油畫(huà)作品
    3D模型在彈箭拆裝實(shí)訓(xùn)課程教學(xué)實(shí)踐過(guò)程的應(yīng)用
    旋轉(zhuǎn)尾翼彈馬格努斯效應(yīng)數(shù)值模擬
    偏轉(zhuǎn)頭彈箭飛行特性
    非均勻等離子體Ka-Band傳輸性能中繼法優(yōu)化研究
    高超聲速風(fēng)洞子母彈大迎角拋殼投放試驗(yàn)
    高壓輸電鐵塔塔身背風(fēng)面風(fēng)荷載遮擋效應(yīng)研究
    Optimization of projectile aerodynamic parameters based on hybrid genetic algorithm
    Study on the impact of particle perturbation on yaw characteristics of aircraft at high angles of attack
    久久欧美精品欧美久久欧美| 亚洲国产精品久久男人天堂| 色老头精品视频在线观看| 大型黄色视频在线免费观看| АⅤ资源中文在线天堂| 香蕉国产在线看| 国产精品永久免费网站| 亚洲精品一卡2卡三卡4卡5卡| 日本五十路高清| 亚洲av成人av| 别揉我奶头~嗯~啊~动态视频| 最近最新中文字幕大全电影3 | 韩国av一区二区三区四区| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱妇无乱码| www.熟女人妻精品国产| 一级a爱视频在线免费观看| 美女免费视频网站| 亚洲av第一区精品v没综合| 免费在线观看亚洲国产| 色播在线永久视频| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 在线av久久热| 欧美精品啪啪一区二区三区| 一a级毛片在线观看| 少妇裸体淫交视频免费看高清 | 俄罗斯特黄特色一大片| 亚洲成a人片在线一区二区| 看黄色毛片网站| 18禁观看日本| 国产精品爽爽va在线观看网站 | 91麻豆av在线| 欧美国产精品va在线观看不卡| 国产三级黄色录像| 久久久国产成人免费| 国产在线精品亚洲第一网站| 一进一出抽搐gif免费好疼| АⅤ资源中文在线天堂| x7x7x7水蜜桃| 在线国产一区二区在线| 无遮挡黄片免费观看| or卡值多少钱| 久久久国产成人精品二区| 黑人操中国人逼视频| 日韩精品青青久久久久久| 久久香蕉国产精品| e午夜精品久久久久久久| 亚洲国产日韩欧美精品在线观看 | 久久久精品欧美日韩精品| 国产成人av教育| 国产1区2区3区精品| 午夜视频精品福利| 国产精品日韩av在线免费观看 | 欧美在线黄色| 久久天躁狠狠躁夜夜2o2o| 午夜成年电影在线免费观看| 又紧又爽又黄一区二区| 老汉色av国产亚洲站长工具| 精品无人区乱码1区二区| 精品久久久久久久人妻蜜臀av | 黄片大片在线免费观看| 免费在线观看日本一区| av天堂在线播放| 制服人妻中文乱码| 曰老女人黄片| 精品乱码久久久久久99久播| 69精品国产乱码久久久| 亚洲国产日韩欧美精品在线观看 | 性色av乱码一区二区三区2| 女人被狂操c到高潮| 可以在线观看毛片的网站| 国产视频一区二区在线看| 久久狼人影院| 90打野战视频偷拍视频| 大码成人一级视频| 亚洲五月色婷婷综合| 亚洲视频免费观看视频| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 99久久久亚洲精品蜜臀av| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 黄色女人牲交| 男人的好看免费观看在线视频 | 成人三级做爰电影| 久久精品91蜜桃| 男女床上黄色一级片免费看| av片东京热男人的天堂| 成年版毛片免费区| 1024香蕉在线观看| 无人区码免费观看不卡| 岛国在线观看网站| 18禁国产床啪视频网站| 国产熟女午夜一区二区三区| 无限看片的www在线观看| 免费看a级黄色片| 香蕉丝袜av| 欧美中文日本在线观看视频| 亚洲欧美日韩另类电影网站| 视频区欧美日本亚洲| 夜夜夜夜夜久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰成人久久| 午夜福利,免费看| 香蕉国产在线看| 成人欧美大片| 日本欧美视频一区| 亚洲人成电影观看| 久久久久久久久中文| 久久国产乱子伦精品免费另类| 男女之事视频高清在线观看| 日本在线视频免费播放| 亚洲全国av大片| 免费观看人在逋| 亚洲avbb在线观看| 欧美亚洲日本最大视频资源| 丝袜美腿诱惑在线| 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 久久久精品欧美日韩精品| 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 婷婷六月久久综合丁香| 女警被强在线播放| 日韩国内少妇激情av| 亚洲片人在线观看| 欧美人与性动交α欧美精品济南到| 一区二区三区国产精品乱码| 黄色女人牲交| 老司机午夜十八禁免费视频| 一级黄色大片毛片| 女性生殖器流出的白浆| 欧美国产日韩亚洲一区| 亚洲全国av大片| 性色av乱码一区二区三区2| 亚洲国产精品久久男人天堂| 韩国精品一区二区三区| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 亚洲精品国产区一区二| 亚洲人成77777在线视频| 欧美一级毛片孕妇| 12—13女人毛片做爰片一| 大陆偷拍与自拍| 免费久久久久久久精品成人欧美视频| 亚洲成人久久性| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 黑人巨大精品欧美一区二区mp4| АⅤ资源中文在线天堂| 亚洲男人的天堂狠狠| 亚洲国产高清在线一区二区三 | 两个人视频免费观看高清| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看影片大全网站| 国产高清有码在线观看视频 | 亚洲精品久久国产高清桃花| av电影中文网址| 亚洲片人在线观看| 在线天堂中文资源库| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三 | 啪啪无遮挡十八禁网站| 丝袜美足系列| 久久国产精品男人的天堂亚洲| 日韩大码丰满熟妇| 超碰成人久久| av有码第一页| 日韩欧美国产在线观看| 伊人久久大香线蕉亚洲五| 搡老妇女老女人老熟妇| av天堂久久9| 18禁观看日本| 高清毛片免费观看视频网站| 成人永久免费在线观看视频| 91精品三级在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品1区2区在线观看.| www.999成人在线观看| av片东京热男人的天堂| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 韩国av一区二区三区四区| 午夜福利一区二区在线看| 可以在线观看的亚洲视频| 女性被躁到高潮视频| 在线免费观看的www视频| 日本vs欧美在线观看视频| 欧美日韩精品网址| 免费高清在线观看日韩| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| 国产欧美日韩精品亚洲av| 最新在线观看一区二区三区| 欧美一区二区精品小视频在线| 满18在线观看网站| 看免费av毛片| 午夜福利一区二区在线看| 99久久国产精品久久久| 妹子高潮喷水视频| 18禁美女被吸乳视频| 精品第一国产精品| 亚洲精品久久成人aⅴ小说| 69精品国产乱码久久久| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | 一区在线观看完整版| 免费在线观看视频国产中文字幕亚洲| 亚洲中文av在线| 国产精品 欧美亚洲| 大型黄色视频在线免费观看| 国产色视频综合| 亚洲专区字幕在线| videosex国产| 黄片播放在线免费| av视频免费观看在线观看| 无人区码免费观看不卡| 国产成人欧美| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕精品免费在线观看视频| av有码第一页| 午夜免费鲁丝| 久久亚洲精品不卡| 国产单亲对白刺激| 国产av在哪里看| 久久久久九九精品影院| 美女国产高潮福利片在线看| 欧美日韩亚洲综合一区二区三区_| 国产aⅴ精品一区二区三区波| 涩涩av久久男人的天堂| 黄色片一级片一级黄色片| 一级黄色大片毛片| 免费人成视频x8x8入口观看| 亚洲自偷自拍图片 自拍| 一二三四社区在线视频社区8| 色av中文字幕| 在线视频色国产色| 精品无人区乱码1区二区| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 一区二区三区国产精品乱码| 99在线人妻在线中文字幕| 美女扒开内裤让男人捅视频| 国产三级在线视频| 午夜老司机福利片| 国产高清视频在线播放一区| 久久九九热精品免费| www日本在线高清视频| 国产午夜精品久久久久久| 久久伊人香网站| 午夜影院日韩av| 波多野结衣一区麻豆| 97人妻天天添夜夜摸| 90打野战视频偷拍视频| 一级毛片精品| 国产精品一区二区三区四区久久 | 国产激情欧美一区二区| 精品乱码久久久久久99久播| 一卡2卡三卡四卡精品乱码亚洲| 波多野结衣高清无吗| 国产成人影院久久av| 中文字幕精品免费在线观看视频| 国产精品自产拍在线观看55亚洲| 男男h啪啪无遮挡| 午夜福利,免费看| www.精华液| 亚洲自拍偷在线| 69精品国产乱码久久久| 亚洲一区二区三区色噜噜| 老鸭窝网址在线观看| 香蕉久久夜色| 亚洲av电影在线进入| 高潮久久久久久久久久久不卡| 久久精品国产亚洲av香蕉五月| 国产精品亚洲av一区麻豆| 亚洲国产欧美日韩在线播放| 久久午夜亚洲精品久久| 一边摸一边做爽爽视频免费| 电影成人av| 美国免费a级毛片| 久久香蕉国产精品| 国产激情欧美一区二区| 在线天堂中文资源库| 最新美女视频免费是黄的| 一区福利在线观看| 亚洲男人的天堂狠狠| 亚洲成人精品中文字幕电影| 最新在线观看一区二区三区| 亚洲精品一区av在线观看| 日韩有码中文字幕| ponron亚洲| 十八禁人妻一区二区| 一边摸一边抽搐一进一出视频| 免费高清在线观看日韩| 国产亚洲精品综合一区在线观看 | 午夜免费观看网址| 国产人伦9x9x在线观看| 国产精品久久久久久精品电影 | 国语自产精品视频在线第100页| 国产亚洲精品久久久久5区| 99国产精品99久久久久| 亚洲av日韩精品久久久久久密| 欧美一级a爱片免费观看看 | 免费av毛片视频| 大码成人一级视频| 啦啦啦免费观看视频1| 老司机午夜十八禁免费视频| 久久久久亚洲av毛片大全| 欧美日韩一级在线毛片| 12—13女人毛片做爰片一| 在线观看免费日韩欧美大片| 激情视频va一区二区三区| 18美女黄网站色大片免费观看| 色婷婷久久久亚洲欧美| 大型av网站在线播放| 无限看片的www在线观看| 在线国产一区二区在线| 免费高清在线观看日韩| 亚洲国产日韩欧美精品在线观看 | 两人在一起打扑克的视频| 欧美一区二区精品小视频在线| 欧美乱妇无乱码| 国产视频一区二区在线看| av视频在线观看入口| 麻豆一二三区av精品| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 国产日韩一区二区三区精品不卡| 亚洲男人天堂网一区| 亚洲第一电影网av| 国产精品,欧美在线| 国产高清videossex| 午夜a级毛片| 亚洲av电影不卡..在线观看| 日本 av在线| 色av中文字幕| 久热这里只有精品99| 午夜福利成人在线免费观看| 欧美黑人精品巨大| 一卡2卡三卡四卡精品乱码亚洲| 美女免费视频网站| 午夜久久久在线观看| 精品国产一区二区三区四区第35| 午夜久久久在线观看| 在线观看一区二区三区| 午夜久久久在线观看| 午夜福利欧美成人| 久久伊人香网站| 日韩欧美一区视频在线观看| 久久伊人香网站| 日韩欧美一区视频在线观看| 天堂影院成人在线观看| 深夜精品福利| 中文字幕久久专区| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品综合久久久久久久免费 | 亚洲中文字幕日韩| 国产亚洲av嫩草精品影院| 亚洲电影在线观看av| 91国产中文字幕| 夜夜看夜夜爽夜夜摸| 大香蕉久久成人网| 久久久久久人人人人人| x7x7x7水蜜桃| 成人三级黄色视频| 色综合欧美亚洲国产小说| 精品国产一区二区三区四区第35| 欧美国产日韩亚洲一区| 免费在线观看完整版高清| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| 亚洲精品av麻豆狂野| 琪琪午夜伦伦电影理论片6080| 国产精品电影一区二区三区| 久久久久久久午夜电影| 午夜福利影视在线免费观看| 一夜夜www| 超碰成人久久| 亚洲精华国产精华精| 亚洲五月色婷婷综合| 久久久久九九精品影院| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区久久| 色在线成人网| 一卡2卡三卡四卡精品乱码亚洲| 午夜a级毛片| www.熟女人妻精品国产| 中文字幕人妻丝袜一区二区| 男男h啪啪无遮挡| 嫩草影院精品99| 好看av亚洲va欧美ⅴa在| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一出视频| 一级片免费观看大全| 黑人巨大精品欧美一区二区mp4| 一本久久中文字幕| 黄色 视频免费看| 女警被强在线播放| 亚洲欧美日韩无卡精品| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 日日爽夜夜爽网站| 成在线人永久免费视频| www日本在线高清视频| 母亲3免费完整高清在线观看| 久久国产精品影院| 91国产中文字幕| 国产高清视频在线播放一区| aaaaa片日本免费| 亚洲国产精品999在线| 熟女少妇亚洲综合色aaa.| 一进一出好大好爽视频| 黄色a级毛片大全视频| 黄色视频不卡| 无限看片的www在线观看| 99国产精品一区二区蜜桃av| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| √禁漫天堂资源中文www| 久久中文看片网| 免费在线观看日本一区| 俄罗斯特黄特色一大片| 777久久人妻少妇嫩草av网站| 久久久久九九精品影院| 亚洲 国产 在线| 免费不卡黄色视频| 亚洲国产看品久久| 国产在线精品亚洲第一网站| 国产成人精品在线电影| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 午夜精品国产一区二区电影| 亚洲人成伊人成综合网2020| 91字幕亚洲| 两性夫妻黄色片| 好男人电影高清在线观看| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 国产精华一区二区三区| 神马国产精品三级电影在线观看 | 久久草成人影院| 亚洲国产毛片av蜜桃av| 国产片内射在线| АⅤ资源中文在线天堂| 91九色精品人成在线观看| 亚洲av第一区精品v没综合| 亚洲欧美精品综合一区二区三区| tocl精华| 亚洲精品一区av在线观看| 亚洲精品国产一区二区精华液| 宅男免费午夜| 波多野结衣巨乳人妻| 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 99精品久久久久人妻精品| 涩涩av久久男人的天堂| svipshipincom国产片| 一二三四社区在线视频社区8| 91在线观看av| av超薄肉色丝袜交足视频| 激情视频va一区二区三区| 热99re8久久精品国产| 亚洲第一av免费看| xxx96com| 日韩视频一区二区在线观看| 激情在线观看视频在线高清| tocl精华| 色在线成人网| 亚洲天堂国产精品一区在线| 亚洲av日韩精品久久久久久密| 天天一区二区日本电影三级 | 大型黄色视频在线免费观看| 亚洲欧美精品综合久久99| 亚洲视频免费观看视频| 中文字幕高清在线视频| 免费搜索国产男女视频| 亚洲成人久久性| 国产成人欧美在线观看| 一进一出好大好爽视频| 一区二区三区国产精品乱码| 免费人成视频x8x8入口观看| 免费在线观看影片大全网站| 中文字幕色久视频| 欧美黄色片欧美黄色片| 女人爽到高潮嗷嗷叫在线视频| a级毛片在线看网站| 久久久久久人人人人人| 色综合欧美亚洲国产小说| 亚洲男人天堂网一区| 久久精品国产综合久久久| a级毛片在线看网站| 国产欧美日韩一区二区三区在线| 欧美成人免费av一区二区三区| 亚洲,欧美精品.| 日日夜夜操网爽| 日日干狠狠操夜夜爽| 亚洲三区欧美一区| 操美女的视频在线观看| 国产主播在线观看一区二区| 久久 成人 亚洲| 亚洲aⅴ乱码一区二区在线播放 | 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 一区二区日韩欧美中文字幕| 麻豆一二三区av精品| 免费人成视频x8x8入口观看| 国产欧美日韩一区二区三区在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成av片中文字幕在线观看| 香蕉久久夜色| 禁无遮挡网站| 亚洲国产精品999在线| 久久热在线av| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 女人被狂操c到高潮| 如日韩欧美国产精品一区二区三区| 国产亚洲精品第一综合不卡| 九色国产91popny在线| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 国产单亲对白刺激| 亚洲熟妇中文字幕五十中出| 不卡av一区二区三区| 如日韩欧美国产精品一区二区三区| 精品久久久久久,| 精品一区二区三区av网在线观看| 51午夜福利影视在线观看| 亚洲电影在线观看av| 国产精品亚洲av一区麻豆| 国产成年人精品一区二区| 亚洲自偷自拍图片 自拍| 久久午夜亚洲精品久久| 欧美在线黄色| 久久 成人 亚洲| 中亚洲国语对白在线视频| 久久久久亚洲av毛片大全| 国产精品一区二区在线不卡| 欧美激情高清一区二区三区| 激情视频va一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 香蕉国产在线看| 欧美在线黄色| 精品久久久久久久人妻蜜臀av | 久久精品亚洲熟妇少妇任你| 别揉我奶头~嗯~啊~动态视频| av欧美777| 在线国产一区二区在线| 桃红色精品国产亚洲av| 无遮挡黄片免费观看| 国内精品久久久久精免费| 男女下面插进去视频免费观看| 日本免费一区二区三区高清不卡 | 久久香蕉国产精品| 黄色成人免费大全| 桃色一区二区三区在线观看| 国产精品二区激情视频| 亚洲最大成人中文| 一进一出抽搐动态| 国产一卡二卡三卡精品| 熟妇人妻久久中文字幕3abv| 久久久国产成人免费| 美女大奶头视频| 一级毛片精品| 亚洲精品久久国产高清桃花| 在线视频色国产色| 一级毛片精品| www.www免费av| 国产成人系列免费观看| 免费观看精品视频网站| 色精品久久人妻99蜜桃| 91成人精品电影| 看免费av毛片| 国产精品久久视频播放| 无遮挡黄片免费观看| 国产99久久九九免费精品| 最近最新免费中文字幕在线| 午夜福利18| 窝窝影院91人妻| 亚洲精华国产精华精| 亚洲美女黄片视频| 可以在线观看毛片的网站| 亚洲精品久久国产高清桃花| 成人三级黄色视频| 真人做人爱边吃奶动态| 大香蕉久久成人网| av在线播放免费不卡| 91在线观看av| 一区在线观看完整版| 国产免费av片在线观看野外av| 国产成+人综合+亚洲专区| 好男人在线观看高清免费视频 | 日韩高清综合在线| 欧美在线黄色| 精品国产国语对白av| 好男人在线观看高清免费视频 | 一本久久中文字幕| 亚洲国产看品久久| 在线观看舔阴道视频| 制服诱惑二区| 国产精品久久久人人做人人爽| 亚洲自偷自拍图片 自拍|