• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Investigation on nonlinear rolling dynamics of amphibious vehicle under wind and wave load

    2015-03-03 08:37:42MAXinmouCHANGLiezhen
    關(guān)鍵詞:尼科夫中北大學(xué)太原

    MA Xin-mou, CHANG Lie-zhen

    (1. College of Mechatronic Engineering, North University of China, Taiyuan 030051, China;2. School of Science, North University of China, Taiyuan 030051, China)

    馬新謀1, 常列珍2

    (1. 中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051; 2. 中北大學(xué) 理學(xué)院, 山西 太原 030051)

    ?

    Investigation on nonlinear rolling dynamics of amphibious vehicle under wind and wave load

    MA Xin-mou1, CHANG Lie-zhen2

    (1.CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China;2.SchoolofScience,NorthUniversityofChina,Taiyuan030051,China)

    Nonlinear amphibious vehicle rolling under regular waves and wind load is analyzed by a single degree of freedom system. Considering nonlinear damping and restoring moments, a nonlinear rolling dynamical equation of amphibious vehicle is established. The Hamiltonian function of the nonlinear rolling dynamical equation of amphibious vehicle indicate when subjected to joint action of periodic wave excitation and crosswind, the nonlinear rolling system degenerates into being asymmetric. The threshold value of excited moment of wave and wind is analyzed by the Melnikov method. Finally, the nonlinear rolling motion response and phase portrait were simulated by four order Runge-Kutta method at different excited moment parameters.

    amphibious vehicle; nonlinear rolling motion; Melnikov method; nonlinear dynamics; crosswind load

    Amphibious vehicles such as amphibious assault vehicles and amphibious armored personnel carriers have been utilized in military services for many years. Their mission specifications include amphibious operations described as to be deployed from a ship in calm to moderate seas and to reach the shore at a reasonable time. In the open literature, there are only a few published papers on the design principles and hydrodynamics of amphibious vehicles[1-2]. The amphibious vehicle’s nonlinear rolling motion is similar to that of ship in waves, so we can use the research method of ship rolling dynamics for reference to study the amphibious vehicle’s nonlinear rolling motion[3]. For a ship, the traditional stability criteria are based only on hydrostatics, and the GZ curve is used to examine if they meet the requirements based on empirical criteria. During the last three decades, a great deal of work has been done using GZ curve to predict ship capsize in wind and waves[4-8]. Melnikov’s method is one of powerful analytical methods for ship nonlinear dynamics. Falzarano, et al. applied Melnikov’s method to the single-degree-of-freedom equation of rolling motion using a cubic polynomial for the GZ curve with a nonlinear damping term for both heteroclinic and homoclinic cases[9-10].

    In this paper, we will foucs on the amphibious vehicle’s nonlinear roll dynamics, with the GZ curve for determination of the restoring moment terms, the free roll decay curve for the damping moment terms, and then the Melnikov’s method for the rolling dynamics of the amphibious vehicle.

    1 Nonlinear dynamical modeling of amphibious vehicles rolling motion

    In this paper, we assume that the amphibious vehicles do not possess any forward speed and the amphibious vehicles rolling motion is uncoupled from other motions. A second order nonautonomous system is used as a model of amphibious vehicles rolling motion. The simple single-degree-of-freedom roll equation of motion from Refs.[11-14] is used here. It can be written as

    (1)

    For amphibious vehicles, like a ship, the wind heeling moment can be expressed as[15]

    (2)

    whereFwindis the wind heeling moment when the amphibious vehicle is upright, namely, the roll angleφ=0, and the magnitude of wind heeling moment is mainly affected by wind speed and wind area.

    To facilitate the subsequent calculation, we implement cosφTaylor expansion atφ=0, thus we have

    (3)

    For regular wave load, it can be written as

    (4)

    whereFwaveandωare the regular wave heeling moment amplitude and frequency, respectively.

    SubstitutingEq.(3) and Eq.(4), we have

    (5)

    For analytical convenience, dividing two sides of Eq.(5) byIxx+δIxx, we have

    (6)

    (7)

    The amphibious vehicle’s general dimensions are given in Table 1[3].

    Table 1 Amphibious vehicle characteristics

    In addition to floatability, the vehicle should also be stable in a floating condition. Righting arm curve of the amphibious vehicle is given in Fig.1. Although the righting arm of the amphibious vehicle is similar to the typical ship forms, we adopt the least square method to estimate the restore moment coefficientsk1andk3.

    Fig.1 GZ curve of the amphibious vehicle

    (8)

    The distanceejfrom the data point (φj,GZj) and the fitting curve is given by

    (9)

    A least-squares fitting minimizes the sum of squares ofej. This minimum can be shown to result in the most probable values ofk1andk3.

    We define

    (10)

    whereNis the number of points of GZ curve.

    To minimizeWwith respect tok1andk3, we solve

    (11)

    Taking the partial derivatives, we have

    (12)

    These equations form a system of two linear equations in the two unknownsk1andk3, which is evident when rewritten it in the form

    (13)

    In this study, for floatability and stability analysis of the amphibious vehicle, a 1/4 scaled physical model was tested at Dalian University of Technology’s Ship Model Towing Experiment Tank (July, 2010). The obtained free rolling decay curve is shown in Fig.2[13-14].

    Least square method is adopted to identify the damping coefficientsd1andd3. Let Eq.(6) right side equal to zero, we can get the free rolling motion equation of amphibious vehicle

    (14)

    wherek1andk3have been determined by GZ curve,d1andd3have be determined by the free rolling motion decay curve.

    Fig.2 Free rolling decay curve of amphibious vehicle in still water

    (15)

    (16)

    (17)

    To minimizeχ2with respect tod1andd3, we solve

    0.044 3 andd3=2.591 8.

    (19)

    Wind load is inevitable in ship’s navigation. It is similar to amphibious vehicle rolling motion under wind and wave load. When subjected to crosswind, the amphibious vehicle rolling dynamical system is no more symmetric. The causes of asymmetry are, in essence, the even order terms in the wind load formula. The wind load is in fact fluctuating data corresponding to different wind velocities rather than a constant value. In this paper, the magnitude of wind loadMwindvaries from 0.1 to 300 according to some previous computed data.

    Taking into account wind load, Eq.(7) degenerates into unperturbed Hamiltonian system Eq.(20) with potential function in Eq.(21).

    (20)

    (21)

    The Hamiltonian function associated with Eq.(20)

    (22)

    The phase portraits of the system in Eq.(22) are shown in Fig.3. According to Fig.3, we can see that when subjected to crosswind, the amphibious vehicle rolling dynamical system is no more symmetrical. The two saddles are no more symmetric about y-axis and they are located at different energy levels. Meanwhile, center point has an increasing deviation from the origin with an augment in wind load. Furthermore, the safety boundaries transform from heteroclinic orbits to one homoclinic orbit and one heteroclinic orbit[16].

    Fig.3 Phase diagram for Eq.(22)

    2 Melnikov analysis

    In consideration of damping and periodic perturbation of a Hamiltonian system, Melnikov function can be used to describe the way that heteroclinic orbits break up in the presence of perturbation. The Melnikov function is defined as

    (23)

    whereyisy(t), parametric orbit without perturbation. According to Eq.(22), we can get

    (24)

    From Eq.(24), we have

    (25)

    where (xs,ys) is the coordinate value of saddle.

    Substituting Eqs.(24) and (25) into Eq.(23),

    (26)

    where

    andxsl,xsrare thexcoordinate values of left and right saddles.

    Set tanψ=I2/I1, Eq.(26) can be rewritten as

    (27)

    IfM(τ)>0, the threshold value can be given by

    (28)

    3 Numerical simulation of amphibious vehicles rolling motion

    In this section, we will plot the safe basins of the amphibious vehicle rolling system and the phase portrait corresponding to four cases (different values of wind load, wave load and frequency) to analyze the motion stability and ulterior by evaluate the effect of wind load on stability. Here, We choose different values of wind loads and frequencyωto evaluate the response of the nonlinear rolling motion of amphibious vehicles rolling motion.

    In Figs.4-7, the roll motion response figure shows that the roll angle displacement value decreases with the increase of time, and the nonlinear characteristic is a monotonously increasing respect to excitation frequencyω, wave loadMwaveand wind loadMwind. More portraits of nonlinear roll motion of amphibious vehicle can be calculated by Matlab routine in different load values and frequency values.

    Fig.4 Nonlinear roll motion of amphibious vehicle response and phase portrait (Mwave=0.1, Mwind=0.0, )

    Fig.5 Nonlinear roll motion of amphibious vehicle response and phase portrait (Mwave=0.1, Mwind=0.1, )

    Fig.6 Nonlinear roll motion of amphibious vehicle response and phase portrait (Mwave=0.2, Mwind=0.1, )

    Fig.7 Nonlinear roll motion of amphibious vehicle response and phase portrait (Mwave=0.2, Mwind=0.1, )

    4 Conclusion

    For amphibious vehicle rolling dynamical system, the heteroclinic orbits are symmetric without wind load or other biased terms; while the symmetry begins to break when the system is subjected to cross wind. As asymmetric parameters,Mwind,Mwaveandωhave critical effects on degree of asymmetry. Numerical method can be used to solve the simple zero point of Melnikov function in nonlinear dynamical system. It expands the range of applicable systems and improves the computation efficiency of threshold value. The analysis in this paper has some significance for amphibious vehicle navigation and stability assessment.

    [1] Chun H H, Ahn B H, Cha S M. Self-propulsion test and analysis of an amphibious tracked vehicle with waterjet. In: Proceedings of World Maritime Technology Conference and SNAME Annual Meeting, USA, 2003.

    [2] Sticker J G, Becnel A J, Purnell J G. Advanced waterjet systems. Naval Engineers Journal, 1994, 106 (5): 100-109.

    [3] Helvacioglu S, Helvacioglu I H, Tuncer B. Improving the river crossing capability of an amphibious vehicle. Ocean Engineering, 2011, 38(17/18): 2201- 2207.

    [4] Spyrou K J, Cotton B, Gurd B. Analytical expressions of capsize boundary for a ship with roll bias in beam waves. Journal of Ship Research, 2002, 46(3): 125-135.

    [5] Neves M A S, Rodriguez C A. On unstable ship motions resulting from strong non-linear coupling. Ocean Engingeering, 2006, 33(13/14): 1853-1883.

    [6] Falzarano J M. Predicting complicated dynamics leading to vessel capsizing. Ann Arbor: University of Michigan, 1990.

    [7] Falzarano J M, Shaw S W, Troesch A W. Application of global methods for analyzing dynamical systems to ship rolling motion and capsizing. International Journal of Bifurcation and Chaos, 1992, 2: 101-115.

    [8] WU Wan, McCue L. Application of the extended Melnikov’s method for single-degree-of-freedom vessel roll motion. Ocean Engineering, 2008, 35(1): 1739-1746.

    [9] Ueno K, Kimura N, Amagai K. Estimation of coefficients of the equation of nonlinear roll motion for fishing boats by improved energy method and genetic algorithm. Japan Journal of Industrial and Applied Mathematics, 2003, 20(2): 155-192.

    [10] Jang T S, Choi H S, Han S L. A new method for detecting non-linear damping and restoring forces in non-linear oscillation systems from transient data. International Journal of Non-Linear Mechanics, 2009, 44(7): 801-808.

    [11] MA Xin-mou, PAN Yu-tian, CHANG Lie-zhen, et al. Study on nonlinear rolling motion dynamics of amphibious combat weapon. Journal of Gun Launch & Control, 2010, (4): 66-69.

    [12] MA Xin-mou, PAN Yu-tian, CHANG Lie-zhen, et al. Lyapunov characteristic exponents for analyzing the nonlinear rolling motion of amphibious vehicle. Journal of North University of China (Natural science edition), 2011, 32(4): 448-453.

    [13] MA Xin-mou, PAN Yu-tian, CHANG Lie-zhen. Estimated nonlinear damping coefficients of amphibious vehicle roll motion. Journal of Ship Mechanics, 2013, (5): 488-493.

    [14] MA Xin-mou, CHANG Lie-zhen, HOU Hong-hua. Research on dynamics parameters identification for amphibious vehicle nonlinear rolling motion. Journal of North University of China (Natural science edition), 2015, 36(2): 134-139.

    [15] LIU Ya-chong, HU An-kang, HAN Feng-lei, et al. Stability analysis of nonlinear ship-roll dynamics under wind and wave. Chaos, Solitons & Fractals, 2015, 76: 32-39.

    [16] Manucharyan G V, Mikhlin Y V. The construction of homoclinic and heteroclinic orbits in non-linear systems. Applied Mathematics and Mechanics, 2005, 69: 39-48.

    風(fēng)浪激勵(lì)下的兩棲車輛非線性橫搖動(dòng)力學(xué)研究

    采用單自由度系統(tǒng)研究了兩棲車輛在規(guī)則波浪和風(fēng)載荷激勵(lì)下的非線性橫搖動(dòng)力學(xué), 建立了考慮非線性阻尼和非線性恢復(fù)力矩的非線性橫搖動(dòng)力學(xué)方程。 非線性橫搖動(dòng)力學(xué)方程對(duì)應(yīng)的哈密爾頓函數(shù)表明, 當(dāng)只有波浪擾動(dòng)力矩作用時(shí), 非線性橫搖運(yùn)動(dòng)是對(duì)稱的; 當(dāng)有風(fēng)載荷作用時(shí), 兩棲車輛的非線性橫搖運(yùn)動(dòng)不在對(duì)稱。 采用梅爾尼科夫法給出了激勵(lì)幅值的閾值范圍。 最后, 采用四階龍格庫塔法對(duì)兩棲車輛的非線性橫搖運(yùn)動(dòng)方程在不同的外載荷參數(shù)下進(jìn)行數(shù)值積分。 結(jié)果表明, 兩棲車輛橫搖在風(fēng)浪聯(lián)合作用下表現(xiàn)出明顯的非線性特性。

    兩棲車輛; 非線性橫搖; 梅爾尼科夫法; 非線性動(dòng)力學(xué); 側(cè)風(fēng)載荷

    MA Xin-mou, CHANG Lie-zhen. Investigation on nonlinear rolling dynamics of amphibious vehicle under wind and wave load. Journal of Measurement Science and Instrumentation, 2015, 6(3): 275-281. [

    馬新謀1, 常列珍2

    (1. 中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051; 2. 中北大學(xué) 理學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.013]

    Received date: 2015-05-20 Foundation items: The Pre-research Project of the General Armament Department; The Science Fund of North University of China (No.20130105)

    MA Xin-mou (maxinmou03@163.com)

    1674-8042(2015)03-0275-07 doi: 10.3969/j.issn.1674-8042.2015.03.013

    CLD number: TJ811+.6 Document code: A

    猜你喜歡
    尼科夫中北大學(xué)太原
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    下雪天的聲音
    太原清廉地圖
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    除夜太原寒甚
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    永凍層排水處理的案例研究
    對(duì)一個(gè)人的認(rèn)識(shí)
    知識(shí)窗(2013年6期)2013-02-11 10:52:04
    俄羅斯女排主教練被疑上吊自殺
    亚洲中文日韩欧美视频| 日日夜夜操网爽| 在线 av 中文字幕| 亚洲av成人不卡在线观看播放网| 91精品三级在线观看| 久久精品人人爽人人爽视色| 免费在线观看黄色视频的| 国产日韩一区二区三区精品不卡| 五月天丁香电影| av天堂在线播放| 在线天堂中文资源库| 国产黄色免费在线视频| 人妻久久中文字幕网| 男男h啪啪无遮挡| 亚洲精品成人av观看孕妇| 搡老岳熟女国产| 亚洲精品美女久久久久99蜜臀| 男女免费视频国产| 久久久久视频综合| 久久精品亚洲熟妇少妇任你| 亚洲第一av免费看| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区| 成人黄色视频免费在线看| 国产高清videossex| 热99国产精品久久久久久7| 日韩制服丝袜自拍偷拍| 91成年电影在线观看| 成人黄色视频免费在线看| 久久影院123| 97人妻天天添夜夜摸| 在线观看人妻少妇| 久久人妻福利社区极品人妻图片| 成人国语在线视频| 欧美性长视频在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲性夜色夜夜综合| 免费在线观看黄色视频的| 久久99热这里只频精品6学生| 午夜两性在线视频| 精品人妻熟女毛片av久久网站| 欧美日韩成人在线一区二区| 精品少妇久久久久久888优播| 午夜两性在线视频| 十八禁网站网址无遮挡| 99香蕉大伊视频| 久久国产精品人妻蜜桃| 欧美日韩黄片免| a级片在线免费高清观看视频| 欧美精品一区二区大全| 丰满人妻熟妇乱又伦精品不卡| 热99国产精品久久久久久7| 色在线成人网| 交换朋友夫妻互换小说| 搡老乐熟女国产| 黄色成人免费大全| 亚洲男人天堂网一区| 欧美日韩成人在线一区二区| 窝窝影院91人妻| 欧美 日韩 精品 国产| 日韩欧美三级三区| 美女主播在线视频| 99久久99久久久精品蜜桃| 好男人电影高清在线观看| 99在线人妻在线中文字幕 | 女警被强在线播放| 男男h啪啪无遮挡| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 国产亚洲欧美精品永久| 国产亚洲av高清不卡| 一区二区日韩欧美中文字幕| 免费人妻精品一区二区三区视频| 亚洲精品av麻豆狂野| 在线亚洲精品国产二区图片欧美| 国产精品自产拍在线观看55亚洲 | 国产1区2区3区精品| 亚洲精品中文字幕在线视频| 天天添夜夜摸| 高清av免费在线| 亚洲色图av天堂| 一区福利在线观看| 国产av又大| 黄色怎么调成土黄色| 另类精品久久| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区久久| www日本在线高清视频| 国产不卡一卡二| 国产精品久久久久久人妻精品电影 | 一级毛片女人18水好多| 日韩欧美国产一区二区入口| 亚洲精品中文字幕一二三四区 | 男女床上黄色一级片免费看| 亚洲国产av影院在线观看| 王馨瑶露胸无遮挡在线观看| 国产淫语在线视频| 中文欧美无线码| 精品一区二区三区av网在线观看 | 亚洲av国产av综合av卡| av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 丝袜美腿诱惑在线| 亚洲avbb在线观看| 精品国产亚洲在线| 精品久久久久久久毛片微露脸| 老司机午夜十八禁免费视频| 午夜激情av网站| av视频免费观看在线观看| 久久久久国内视频| 免费一级毛片在线播放高清视频 | 2018国产大陆天天弄谢| 久久久久久免费高清国产稀缺| 美女视频免费永久观看网站| 十八禁网站网址无遮挡| 十分钟在线观看高清视频www| 中文字幕精品免费在线观看视频| 一进一出好大好爽视频| 男人操女人黄网站| 欧美 亚洲 国产 日韩一| 在线观看免费视频网站a站| 十八禁人妻一区二区| 午夜免费鲁丝| 亚洲国产毛片av蜜桃av| 欧美日韩成人在线一区二区| 制服人妻中文乱码| 新久久久久国产一级毛片| 亚洲av日韩在线播放| 欧美国产精品一级二级三级| 亚洲av成人不卡在线观看播放网| 中亚洲国语对白在线视频| 黑人欧美特级aaaaaa片| 国产一区有黄有色的免费视频| 夜夜爽天天搞| 国产高清国产精品国产三级| 三上悠亚av全集在线观看| 欧美日韩亚洲综合一区二区三区_| 老司机福利观看| 女同久久另类99精品国产91| 成在线人永久免费视频| 久久久久精品国产欧美久久久| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 国产一区有黄有色的免费视频| 久久精品91无色码中文字幕| 黑人操中国人逼视频| 亚洲第一av免费看| 亚洲人成电影免费在线| 97人妻天天添夜夜摸| 亚洲成av片中文字幕在线观看| bbb黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 热99久久久久精品小说推荐| av片东京热男人的天堂| 国产亚洲一区二区精品| 精品国产乱码久久久久久男人| 夫妻午夜视频| 91字幕亚洲| 男女免费视频国产| 美女福利国产在线| 亚洲视频免费观看视频| 亚洲伊人久久精品综合| 麻豆乱淫一区二区| 极品教师在线免费播放| 黄色丝袜av网址大全| 欧美日韩亚洲高清精品| 欧美精品人与动牲交sv欧美| 一区二区三区国产精品乱码| 国产欧美日韩一区二区三| 中亚洲国语对白在线视频| 亚洲精品乱久久久久久| 这个男人来自地球电影免费观看| 91字幕亚洲| videos熟女内射| 日本黄色日本黄色录像| 麻豆国产av国片精品| 国产片内射在线| 天堂8中文在线网| 亚洲精品中文字幕在线视频| 久久精品人人爽人人爽视色| 久久天堂一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 男女无遮挡免费网站观看| 俄罗斯特黄特色一大片| 免费av中文字幕在线| 午夜视频精品福利| 视频在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 精品乱码久久久久久99久播| 亚洲综合色网址| 蜜桃国产av成人99| 中亚洲国语对白在线视频| 国产成人免费无遮挡视频| 国产不卡一卡二| 国产欧美日韩一区二区精品| 九色亚洲精品在线播放| 免费观看av网站的网址| 脱女人内裤的视频| 少妇被粗大的猛进出69影院| 在线av久久热| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 欧美激情久久久久久爽电影 | 正在播放国产对白刺激| 少妇精品久久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 最新美女视频免费是黄的| 精品亚洲成a人片在线观看| 嫁个100分男人电影在线观看| 欧美乱码精品一区二区三区| 捣出白浆h1v1| 久久久久精品国产欧美久久久| 精品人妻1区二区| 汤姆久久久久久久影院中文字幕| 美国免费a级毛片| 黄片小视频在线播放| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 日韩人妻精品一区2区三区| 精品高清国产在线一区| 国产欧美日韩精品亚洲av| 大码成人一级视频| 午夜精品国产一区二区电影| 日韩人妻精品一区2区三区| 亚洲成人手机| 日本黄色日本黄色录像| 久久热在线av| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 国产成人欧美| 高清毛片免费观看视频网站 | 少妇的丰满在线观看| 久久婷婷成人综合色麻豆| 大型av网站在线播放| 黄色毛片三级朝国网站| 免费在线观看完整版高清| 久久久久视频综合| 亚洲少妇的诱惑av| 国产熟女午夜一区二区三区| 亚洲欧美激情在线| av网站免费在线观看视频| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院| 高清av免费在线| 老熟女久久久| 欧美人与性动交α欧美精品济南到| 下体分泌物呈黄色| 狠狠狠狠99中文字幕| 黄色毛片三级朝国网站| 久久久久精品人妻al黑| 91大片在线观看| 欧美精品高潮呻吟av久久| 69精品国产乱码久久久| 日韩中文字幕欧美一区二区| 人成视频在线观看免费观看| 欧美人与性动交α欧美软件| 亚洲人成77777在线视频| 国产精品一区二区在线不卡| 日韩精品免费视频一区二区三区| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 99精国产麻豆久久婷婷| 中文字幕高清在线视频| 99在线人妻在线中文字幕 | 国产在线精品亚洲第一网站| 一区福利在线观看| 极品人妻少妇av视频| 夜夜骑夜夜射夜夜干| 99精品欧美一区二区三区四区| 免费观看a级毛片全部| 水蜜桃什么品种好| 亚洲一码二码三码区别大吗| 欧美日韩国产mv在线观看视频| 99精品欧美一区二区三区四区| 国产成人啪精品午夜网站| 极品少妇高潮喷水抽搐| bbb黄色大片| 精品一区二区三区视频在线观看免费 | 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 免费在线观看日本一区| 深夜精品福利| 国产一区二区 视频在线| 精品一品国产午夜福利视频| 高清av免费在线| 亚洲美女黄片视频| av片东京热男人的天堂| 日本五十路高清| av福利片在线| 亚洲国产欧美日韩在线播放| 国产黄频视频在线观看| 国产视频一区二区在线看| 69av精品久久久久久 | 丝袜人妻中文字幕| 黄色成人免费大全| 久久天躁狠狠躁夜夜2o2o| 99国产精品一区二区三区| 国产男女超爽视频在线观看| 精品国产国语对白av| 老汉色av国产亚洲站长工具| 亚洲情色 制服丝袜| 久久精品国产亚洲av香蕉五月 | 岛国在线观看网站| 高清黄色对白视频在线免费看| 一本综合久久免费| 精品国产乱码久久久久久男人| 亚洲成人手机| 午夜福利在线免费观看网站| 亚洲av片天天在线观看| 免费高清在线观看日韩| 亚洲午夜理论影院| 午夜福利在线免费观看网站| netflix在线观看网站| 国产一区二区三区综合在线观看| 9色porny在线观看| 亚洲成av片中文字幕在线观看| 欧美精品av麻豆av| 国产精品免费一区二区三区在线 | 亚洲 欧美一区二区三区| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| www.999成人在线观看| 国产高清国产精品国产三级| 亚洲,欧美精品.| 高清在线国产一区| 国产91精品成人一区二区三区 | 成人免费观看视频高清| 淫妇啪啪啪对白视频| 1024香蕉在线观看| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 久久久精品94久久精品| 欧美午夜高清在线| 国产精品 欧美亚洲| 一区福利在线观看| 国产激情久久老熟女| 日韩 欧美 亚洲 中文字幕| 两人在一起打扑克的视频| 日韩制服丝袜自拍偷拍| e午夜精品久久久久久久| 老熟女久久久| 成人国产av品久久久| 欧美日韩成人在线一区二区| 亚洲精品在线美女| 69精品国产乱码久久久| 成人国产一区最新在线观看| 99热网站在线观看| 亚洲欧美色中文字幕在线| 国产单亲对白刺激| 少妇精品久久久久久久| 久久久国产一区二区| av在线播放免费不卡| 欧美成人免费av一区二区三区 | 人妻一区二区av| 最新美女视频免费是黄的| 国产不卡av网站在线观看| www.熟女人妻精品国产| 宅男免费午夜| 人人澡人人妻人| 欧美黄色片欧美黄色片| 亚洲精品久久午夜乱码| 女人久久www免费人成看片| 91精品国产国语对白视频| 在线天堂中文资源库| 亚洲色图综合在线观看| 亚洲av电影在线进入| 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 一区二区三区乱码不卡18| 99精国产麻豆久久婷婷| 欧美国产精品va在线观看不卡| 国产免费福利视频在线观看| 9热在线视频观看99| 69av精品久久久久久 | av福利片在线| 久久精品国产a三级三级三级| 亚洲人成伊人成综合网2020| 99国产极品粉嫩在线观看| 国产成人免费观看mmmm| 午夜福利欧美成人| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 亚洲视频免费观看视频| 50天的宝宝边吃奶边哭怎么回事| 欧美激情极品国产一区二区三区| 黑人操中国人逼视频| 极品教师在线免费播放| 高清欧美精品videossex| 久久精品国产亚洲av高清一级| 色婷婷久久久亚洲欧美| 久久精品91无色码中文字幕| 妹子高潮喷水视频| 精品国产乱码久久久久久小说| 韩国精品一区二区三区| 最新在线观看一区二区三区| 免费少妇av软件| 熟女少妇亚洲综合色aaa.| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 在线天堂中文资源库| 热re99久久国产66热| 黄色视频,在线免费观看| 成人永久免费在线观看视频 | 婷婷成人精品国产| 一区二区av电影网| 搡老岳熟女国产| 亚洲国产中文字幕在线视频| 人妻一区二区av| 国产99久久九九免费精品| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频| 久久亚洲真实| 国产无遮挡羞羞视频在线观看| 麻豆国产av国片精品| www.自偷自拍.com| 国产精品亚洲av一区麻豆| 老熟妇乱子伦视频在线观看| 日韩欧美免费精品| 亚洲欧美精品综合一区二区三区| 久久午夜亚洲精品久久| 老司机靠b影院| 国产国语露脸激情在线看| 丁香六月天网| 国产精品久久电影中文字幕 | 亚洲中文av在线| 亚洲av成人一区二区三| 欧美在线一区亚洲| 亚洲三区欧美一区| 99久久国产精品久久久| 国产又爽黄色视频| 最新美女视频免费是黄的| 日韩三级视频一区二区三区| 国产在视频线精品| 一级片免费观看大全| av免费在线观看网站| 成人手机av| 国产日韩欧美视频二区| 国产精品美女特级片免费视频播放器 | 黄色 视频免费看| 男女床上黄色一级片免费看| 亚洲精品国产色婷婷电影| 美女午夜性视频免费| 伦理电影免费视频| 亚洲精品美女久久av网站| 王馨瑶露胸无遮挡在线观看| 满18在线观看网站| 成人特级黄色片久久久久久久 | 亚洲三区欧美一区| 国产精品美女特级片免费视频播放器 | 亚洲色图 男人天堂 中文字幕| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 国产精品香港三级国产av潘金莲| 国产在线精品亚洲第一网站| 午夜福利在线免费观看网站| 色老头精品视频在线观看| 国产黄色免费在线视频| 三上悠亚av全集在线观看| 女人精品久久久久毛片| 久久精品aⅴ一区二区三区四区| 国产在线精品亚洲第一网站| 精品久久久久久久毛片微露脸| 不卡av一区二区三区| 久久免费观看电影| 久久久久久人人人人人| 日韩中文字幕视频在线看片| 久久久欧美国产精品| 免费在线观看日本一区| 91av网站免费观看| 国产视频一区二区在线看| 国产精品偷伦视频观看了| 久久久久久久国产电影| 久久久久国产一级毛片高清牌| 久久天堂一区二区三区四区| 91精品国产国语对白视频| 一夜夜www| 中文亚洲av片在线观看爽 | 亚洲av片天天在线观看| 久久亚洲真实| 久久久久久久大尺度免费视频| 女人精品久久久久毛片| 国产不卡av网站在线观看| 真人做人爱边吃奶动态| 久久99一区二区三区| 日韩中文字幕欧美一区二区| 精品久久久久久电影网| 精品一品国产午夜福利视频| av国产精品久久久久影院| 肉色欧美久久久久久久蜜桃| 亚洲三区欧美一区| 亚洲成a人片在线一区二区| 午夜福利一区二区在线看| 窝窝影院91人妻| 18禁美女被吸乳视频| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人看| 99re在线观看精品视频| 91老司机精品| 日韩欧美免费精品| 亚洲中文字幕日韩| 国产区一区二久久| 亚洲视频免费观看视频| 精品卡一卡二卡四卡免费| 夜夜爽天天搞| 国产高清视频在线播放一区| 人妻久久中文字幕网| 亚洲男人天堂网一区| 一区二区三区乱码不卡18| 又大又爽又粗| 女人高潮潮喷娇喘18禁视频| av天堂久久9| 国产男女超爽视频在线观看| 女同久久另类99精品国产91| 日韩一卡2卡3卡4卡2021年| 日韩欧美一区视频在线观看| 国产1区2区3区精品| 亚洲黑人精品在线| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 大香蕉久久网| 亚洲午夜精品一区,二区,三区| 免费观看a级毛片全部| 巨乳人妻的诱惑在线观看| 亚洲情色 制服丝袜| 欧美激情高清一区二区三区| 亚洲精品在线美女| 成年女人毛片免费观看观看9 | 香蕉丝袜av| 一区二区三区激情视频| 国产区一区二久久| 深夜精品福利| 免费日韩欧美在线观看| 麻豆国产av国片精品| 国产又爽黄色视频| 窝窝影院91人妻| 欧美在线一区亚洲| 亚洲 国产 在线| 多毛熟女@视频| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区mp4| 国产国语露脸激情在线看| 80岁老熟妇乱子伦牲交| 精品少妇内射三级| 18在线观看网站| 日本五十路高清| 久久影院123| 香蕉丝袜av| 国产一区二区三区视频了| 欧美一级毛片孕妇| 宅男免费午夜| 超碰成人久久| av福利片在线| 国产免费av片在线观看野外av| 99久久99久久久精品蜜桃| a在线观看视频网站| 色在线成人网| 久久99热这里只频精品6学生| 大型av网站在线播放| 999久久久国产精品视频| 国产精品 欧美亚洲| 国产精品自产拍在线观看55亚洲 | 99re6热这里在线精品视频| 欧美国产精品va在线观看不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 国产成人免费无遮挡视频| 亚洲精品自拍成人| 91成人精品电影| 淫妇啪啪啪对白视频| 99国产精品一区二区蜜桃av | 人人妻人人澡人人爽人人夜夜| 国产精品亚洲一级av第二区| 国产成人欧美在线观看 | 国产欧美日韩综合在线一区二区| 两个人免费观看高清视频| 精品国产国语对白av| 欧美乱妇无乱码| 国产在线观看jvid| 免费一级毛片在线播放高清视频 | www.自偷自拍.com| 久久影院123| 亚洲七黄色美女视频| 好男人电影高清在线观看| 久久午夜综合久久蜜桃| 狠狠狠狠99中文字幕| 伊人久久大香线蕉亚洲五| 国产高清国产精品国产三级| 精品免费久久久久久久清纯 | 国产男女超爽视频在线观看| 精品国产亚洲在线| 老司机午夜福利在线观看视频 | 青青草视频在线视频观看| cao死你这个sao货| 韩国精品一区二区三区| 国产在线精品亚洲第一网站| 天天操日日干夜夜撸| 乱人伦中国视频| 9色porny在线观看| 精品福利永久在线观看| 极品少妇高潮喷水抽搐| 精品国内亚洲2022精品成人 | 精品国产一区二区久久| 亚洲av美国av| 欧美激情久久久久久爽电影 | 欧美变态另类bdsm刘玥| 又黄又粗又硬又大视频| 18禁黄网站禁片午夜丰满|