• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh

    2015-03-03 08:37:16ZHANGXueweiLIQiangLVMengrou
    關(guān)鍵詞:中北大學(xué)激波工程學(xué)院

    ZHANG Xue-wei, LI Qiang, LV Meng-rou

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    張學(xué)偉, 李 強(qiáng), 呂夢(mèng)柔

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh

    ZHANG Xue-wei, LI Qiang, LV Meng-rou

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    In order to speed underwater launch of minor-caliber weapons, a sealing device can be set in front of underwater muzzle to separate water, preventing the muzzle from water immersion. By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics (CFD), dynamic mesh and user defined function (UDF), the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out. The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity. When the projectile is launched at 5 m under water, the shock wave before and after the projectile has impact on the box body up to 100 MPa, therefore the sealing device must be strong enough. The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.

    two-phase flow; supercavitation; sealing device; computational fluid dynamics (CFD); dynamic mech

    As a result of the change of international situation, the water weapon has got rapid development. The density of water is about 850 times as dense as that of air, thus water resistance is too large for projectile weapons to hit the target at a distance. Therefore, how to increase the initial velocity and decrease the resistance of underwater weapon inevitably becomes the key of the research.

    In recent years, many experts and scholars have done a lot of work in the numerical simulation of underwater jet and supercavity based on computational fluid dynamics (CFD). TANG, et al.[1]used volume of fluid (VOF) model to simulate the evolution of underwater gas jet. XU Jia-wei, et al.[2-3]used mixture model based on FLUENT software to study the unsteady evolution process of nozzle air-water two-phase flow field at different underwater depths in rocket ignition experiment. CHEN Huan-long, et al.[4-5]calculated the initial flow of underwater gas jet using axisymmetric, inviscid and compressible Euler equations, revealed the gas-water interaction and shock wave shape as well as the formation and evolution process of jet air bags at jet initial stage, and confirmed the similarity of near flow fields of the gas jet in the water and gas. ZHU Lin, et al. used the dynamic mesh technique and mixed multiple flow model to get the effect of thrusting force on production, variation and development processes of water cavity and natural cavity hydrodynamics of projectile bodies[6]. YI Wen-jun, et al. used mixed multi-phase flow model of Fluet6.2 to conduct the simulation of resistance characteristics of underwater projectile[7]. Uhlman and Kinnas[8-10]and Fine used the velocity potential modified boundary element method to carry out nonlinear simulation on many cases of partial cavity flow. But the analysis of muzzle gas injecting sealed container is rare. This paper, using mixed multiple flow model and dynamic mesh technology, by solving N-S equations, carries numerical analysis and calculation for complex water-gas two-phase flow inside it and gets the distribution of the flow field inside the sealing device. Furthermore, the strength of the sealing device and bubble formation of supercavitation are analyzed.

    1 Control equation and numerical method

    1.1 Control equation

    The basic laws of conservation in the element include the following equations.

    Continuity equation

    (1)

    Momentum conservation theorem

    (2)

    Energy conservation equation

    (3)

    whereρstands for the density;t, the time;V, the velocity vector;Sm, the mass added to the continuous phase;p, the pressure born on upon fluid micelle;gandFrepresent gravity and other external volume forces exerted on the infinitesimal;τ, the viscous stress tensor on infinitesimal surface due to molecular viscosity;E, the fluid micelle gross energy;T, the temperature;Jj, the diffusion flux ofj;keff, effective thermal conductivity; andSh, the other customized heat sources.

    1.2 Cavitation model

    Regardless of the influence of the latent heat of evaporation, it is done in the isothermal process. Considering the pressure and bubble volume, Rayleigh-Plesset equation is written as

    (4)

    wherepBis the pressure inside the cavity, which is the sum of steam pressurepvand noncondensable gas partial pressurep;σis coefficient of surface tension. Simulation calculation functions for growth and rupture process of cavitation are given by

    (5)

    2 Dynamic meshing theory and computation model

    2.1 Dynamic mesh updating method

    FLUENT provides three methods of dynamic meshing movement to update the mesh after deformation, including spring smoothing method (smoothing), dynamic layer method (layering) and local mesh reconstruction method (remeshing). Spring smoothing method is to idealize the meshes between the nodes as a spring system. The movement of boundary nodes produces spring force between the nodes, and the force spreads along the downstream nodes in turn and eventually produces a new spring system. Dynamic layer method is that whether to increase or to decrease the mesh layer number is determined by the height of mesh layer close to the moving object surface. In FLUENT, when the mesh cell layer near the border increases or reduces to a certain extent, the mesh automatically splits or merges. Local mesh reconstruction method refers to the interpolation reconstruction method for distorted mesh because the movement of boundary may result in serious quality decline, even negative volume, which increases the difficultly for next solution. The methods adopted in this article to control mesh deformation are the spring smoothing method and the local mesh reconstruction method.

    2.2 Establishment of computation model

    A 3D model profile of a sealing device is shown in Fig.1. The whole sealing device is put under water at a depth of 5 m whose inside pressure and water pressure are equal before firing. The valve (unshown in Fig.1) of the sealing device under the water pressure acts as a seal. Mesh partition method is used for the calculation region, and mesh refinement is processed within the tube and sealing device. The farther from the tank, the sparser the mesh is. Boundary conditions include pressure export, pressure inlet and the solid wall boundary. The related parameters of pressure export and the depth of water are the same, and the pressure inlet parametes are defined based on field function. At the same time, FLUENT UDF is used to control projectile motion parameters. The initial velocity of the projectile is 890 m/s.

    Fig.1 Sealing device with a tube

    Fig.2 exhibits the computation mesh in flow field of the sealing device with a tube.

    Fig.2 Computation mesh in flow field of sealing device with a tube

    In the process of the projectile entering into the water, air, vapor and liquid water are allowed to interpenetrate each other and move at different speeds. VOF model is not applicable, mixture model should be shosen.

    FLUENT simulation settings: ① Calculation is based on three-phase flow, whose major phase is water and minor phases are vapor and compressible gas; ② Realizablek-εmodel is selected as turbulence model, PRESTO is as the pressure and velocity fields coupled mode; ③ Gravity effect should be considered, and the change curve of water pressure with depth is defined based on field function, Patch for repairing it in the computational domain; ④ Using the cavitation model is opened.

    Making unsteady calculation according to the above settings, we can get better convergence by selecting the appropriate iteration step length and the relaxion factor.

    3 Simulation and analysis

    Fig.3 is the nephogram of gas-liquid phase distribution at different times after projectile is out of the chamber. It can be seen that the moment the projectile firing, shock wave in front of projectile is generated by squeezing the air in front of projectile when the projectile moves at high speed in the tube. The gas expands rapidly after entering the sealing device, which results in pressure rising and part of the gas is pushed through the valve into the water forming bubbles. With the projectile velocity increasing, the shock waves in front of the projectile keep swelling and the gas inside the sealing device is constantly discharged into the water, and bubbles increase quickly. After 3.3 ms, gunpowder gas was totally released into the case and enough pressure is created to form a big bubble to wrap the projectile outside the sealing device. At 3.5 ms, the projectile moved throughout the sealing device into the big bubble in the water. At 3.8 ms, the projectile pierced the big bubble into the water, but was still wrapped by cavitation bubbles which are natural supercavitation. The bubbles in the valve in the seal device is helpful to provide the projectile with ventilated supercavitation. The device combines the ventilated supercavitation with natural supercavitation perfectly.

    Fig.3 Nephogram of gas-liquid phase distribution at different times after firing

    Fig.4 is the pressure distribution curve in axial direction of gun when the projectile is fired out of muzzle and goes into the sealing device at different times.

    It can be seen that at 3.3 ms, warhead is just fired out of the tube. The pressure distribution behind the projectile is linear, but the pressure in front of the projectile is higher than atmospheric pressure. This is because the moving projectile in the tube pushes the air in the tube leaked behind the projectile as well as gunpowder gas into the sealing device.

    At 3.5 ms, the projectile goes through the tube into the sealing device, the pressure behind the projectile spreads instantly in the sealing device. But unlike in the air, the pressure diffusion is restricted by the sealing device, resulting in high pressure in the sealing device. The projectile under high pressure continues to move forward and warhead appears in high pressure area. For high-speed projectile, it moves in the sealing device in a very short time, therefore, the effect on the projectile velocity can be neglected. At the time of 3.8 ms, the projectile goes into the water and the end of the projectile appears in low pressure area, which is conducive to the formation of cavitation bubble.

    At 4.0 ms, the pressure of gunpowder gas is still greater than the water pressure. It may be impossible for the gunpowder gas to be instantly released into the sealing device because of the small mouth of the valve, which means the water not going back to the sealing device under super-high firing frequency can be realized absolutely.

    During the whole process, the gunpowder gas is kept in the sealing device and the maxium shock wave can reach up to 100 MPa generated by gunpowder gas at high temperature and high pressure, which requires strong strength capacity of the sealing device.

    Fig.4 Pressure distribution curves in axial direction of gun at different times after projectile is out of muzzle

    4 Conclusion

    The following conclusion can be drawn based on numerical simulation on the complex two-phase flow in the sealing device of underwater weapon by using FLUENT. When the underwater weapon with the sealing device is fired, gunpowder gas pressure distribution in the sealing device is extremely complex. The high pressure also requires strong strength of the sealing device. With high-speed movement, the gas in front of the projectile is extruded and shock wave is formed. The gas in front of the projectile and gunpowder gas leaked from the clearance between projectile and tube expand rapidly after entering sealing device, which results in pressure rising in the sealing device. With the increasing of pressure, the gas inside the sealing device is discharged into the water. As the projectile entering the water, the pressure inside the sealing device is strong enough to prevent the reverse flow of water. Under ultra-high frequency shooting, the pressure of the sealing device can ensure that the water will not flow back at the depth of 25 m under water; at the same time, the actuating pressure of the sealing device caused by the projectile shock wave reach up to 100 MPa. The research results may have some significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.

    [1] Tang J N, Wang N F, Wei Shyy. Flow structure of gaseous jets injected into water for underwater propulsion. Acta Mechanica Sinica, 2011, 27(4): 461-472.

    [2] CHEN Huan-long, WANG Ning, LIU Hua-ping, et al. Investigation of nozzle gas jet characteristics with different launch depth underwater. Chinese Journal of Hydrodynamics, 2012, 27(6): 659-664.

    [3] XU Jia-wei. Numerical simulation of gas jet due to underwater missle of different ocean depths. Harbin: Harbin Institute of Technology, 2009: 33-89.

    [4] HE Xiao-yan, MA Han-dong, JI Chu-qun. Numerical simulation of the underwater gas jets formed. Journal of Hydrodynamics A, 2004, 19(2): 207-212.

    [5] HE Xiao-yan, MA Han-dong, WANG Qiang. Temporal instability of compressible 3D gas injected in liquids. Acta Aerodynamica Sinica, 2002, 20(1):78-83.

    [6] ZHU lin, YUAN Xu-long, WANG Ya-dong. The influence of the thrusting force on the characters of the high speed flow field. Journal of Air Force Engineering University(Natural Science Edition), 2014, 15(1): 10-14.

    [7] YI Wen-jun, WANG Zhong-yuan, XIONG Tian-hong, et al. Research on drag reduction characteristics of a underwater high-speed supercavitation projectile. Journal of Ballistics, 2008, 20(4): 1-4.

    [8] Uhalman J S. The surface singularity method applied to partially cavitating hydofoils. Journal of Ship Research, 1987: 23-36.

    [9] Uhalman J S. The surface singulaity or boundary integral method applied to supercavitating hydrofoils. Journal of ship Research, 1989, 31(1): 51-65.

    [10] Kinnas S A, Fine N E. A numerical nonlinear analysis of the flow around two-and three-dimensional partially cavitating hydrofoils. Journal of Fluid Mechanics, 1993(254): 151-181.

    基于動(dòng)網(wǎng)格的水下發(fā)射裝置兩相流研究

    為防止水下武器發(fā)射時(shí)水流浸沒(méi)身管, 提高小口徑武器在水下發(fā)射的初速, 水下武器膛口前需設(shè)計(jì)密封裝置。 建立水下武器密封裝置模型的非結(jié)構(gòu)網(wǎng)格計(jì)算域模型, 利用計(jì)算流體動(dòng)力學(xué)(CFD)、 動(dòng)網(wǎng)格和UDF等相關(guān)知識(shí), 通過(guò)求解N-S方程, 對(duì)密封裝置內(nèi)復(fù)雜的兩相流進(jìn)行了數(shù)值分析計(jì)算。 仿真結(jié)果表明, 密封裝置內(nèi)排出的氣體有利于射彈超空炮的形成; 此外, 在水下5 m發(fā)射時(shí)彈前激波和彈后激波對(duì)箱體沖擊作用力峰值可達(dá)100 MPa, 因此要求密封裝置要有足夠的強(qiáng)度。

    兩相流; 超空泡; 密封裝置; 計(jì)算流體動(dòng)力學(xué); 動(dòng)網(wǎng)格

    ZHANG Xue-wei, LI Qiang, LV Meng-rou. Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh. Journal of Measurement Science and Instrumentation, 2015, 6(3): 253-257.[

    張學(xué)偉, 李 強(qiáng), 呂夢(mèng)柔

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.009]

    Received date: 2015-05-06 Foundation item: National Natural Science Foundation of China (No.51175481)

    ZHANG Xue-wei (1192579296@qq.com)

    1674-8042(2015)03-0253-05 doi: 10.3969/j.issn.1674-8042.2015.03.009

    CLD number: TJ65; TP391.9 Document code: A

    猜你喜歡
    中北大學(xué)激波工程學(xué)院
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    福建工程學(xué)院
    福建工程學(xué)院
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    一種基于聚類分析的二維激波模式識(shí)別算法
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    福建工程學(xué)院
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    斜激波入射V形鈍前緣溢流口激波干擾研究
    色综合色国产| 波多野结衣高清作品| 久久精品91蜜桃| 一个人看视频在线观看www免费| 最近最新中文字幕大全电影3| 婷婷色av中文字幕| 99久国产av精品国产电影| 日日干狠狠操夜夜爽| 变态另类丝袜制服| 男女下面进入的视频免费午夜| 在线观看av片永久免费下载| 日本熟妇午夜| 最近最新中文字幕大全电影3| 九九爱精品视频在线观看| 国产麻豆成人av免费视频| 午夜福利在线观看吧| 免费观看人在逋| 亚洲18禁久久av| 黄片wwwwww| 精品熟女少妇av免费看| 精品久久久久久久人妻蜜臀av| 在线播放国产精品三级| 亚洲欧美日韩东京热| 精品久久久久久成人av| 一本一本综合久久| 国产成人a∨麻豆精品| 男人的好看免费观看在线视频| 国产不卡一卡二| 欧美高清性xxxxhd video| 久久久色成人| 一级毛片我不卡| 99riav亚洲国产免费| 国产成人a∨麻豆精品| 91久久精品国产一区二区成人| 欧美日韩乱码在线| 亚洲无线在线观看| 亚洲欧洲日产国产| 丰满乱子伦码专区| 免费看美女性在线毛片视频| 乱人视频在线观看| or卡值多少钱| av在线天堂中文字幕| 美女xxoo啪啪120秒动态图| 精品一区二区免费观看| 久久这里有精品视频免费| 黄色欧美视频在线观看| 成人美女网站在线观看视频| 国内精品久久久久精免费| 又黄又爽又刺激的免费视频.| 国产av一区在线观看免费| 亚洲图色成人| av黄色大香蕉| 中文在线观看免费www的网站| 国产 一区 欧美 日韩| 国产在视频线在精品| 欧美一级a爱片免费观看看| 真实男女啪啪啪动态图| 真实男女啪啪啪动态图| 久久人妻av系列| 真实男女啪啪啪动态图| 亚洲av成人精品一区久久| 亚洲在线观看片| 老师上课跳d突然被开到最大视频| 老师上课跳d突然被开到最大视频| 国产精品麻豆人妻色哟哟久久 | 亚洲,欧美,日韩| 国产欧美日韩精品一区二区| 波多野结衣巨乳人妻| 看黄色毛片网站| 亚洲精华国产精华液的使用体验 | 少妇的逼好多水| 国产精品三级大全| 有码 亚洲区| a级毛片免费高清观看在线播放| 国产男人的电影天堂91| 亚洲av免费在线观看| 国产男人的电影天堂91| 99在线人妻在线中文字幕| 国产精品一区二区三区四区久久| 亚州av有码| 精品久久国产蜜桃| 国产精品日韩av在线免费观看| 深夜精品福利| 精品午夜福利在线看| 国产精品免费一区二区三区在线| 丰满人妻一区二区三区视频av| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| 亚洲av男天堂| 亚洲综合色惰| 久久这里只有精品中国| 久久精品国产亚洲av香蕉五月| 91麻豆精品激情在线观看国产| 少妇丰满av| 国产蜜桃级精品一区二区三区| 久久久久久伊人网av| 美女黄网站色视频| 97超视频在线观看视频| 变态另类丝袜制服| 国产av不卡久久| 久久久久久久午夜电影| 美女xxoo啪啪120秒动态图| 亚洲欧美日韩卡通动漫| 日韩高清综合在线| 中文字幕精品亚洲无线码一区| 99riav亚洲国产免费| 成人无遮挡网站| 男插女下体视频免费在线播放| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 精品久久久久久成人av| 精品人妻一区二区三区麻豆| 真实男女啪啪啪动态图| 国产激情偷乱视频一区二区| 欧美高清成人免费视频www| 两性午夜刺激爽爽歪歪视频在线观看| 国产毛片a区久久久久| 一级黄色大片毛片| 成人特级黄色片久久久久久久| 日本黄色视频三级网站网址| 国产女主播在线喷水免费视频网站 | 小蜜桃在线观看免费完整版高清| 国产午夜精品一二区理论片| 国产成人freesex在线| 国语自产精品视频在线第100页| 不卡一级毛片| 国产爱豆传媒在线观看| 国产精品福利在线免费观看| 只有这里有精品99| 少妇丰满av| 国产精品一区二区三区四区久久| 听说在线观看完整版免费高清| 欧美激情在线99| 男人的好看免费观看在线视频| 简卡轻食公司| 欧美丝袜亚洲另类| 又爽又黄无遮挡网站| 99久久人妻综合| 成人午夜精彩视频在线观看| 尾随美女入室| 岛国毛片在线播放| 亚洲中文字幕日韩| 国产毛片a区久久久久| 亚洲色图av天堂| 欧美日韩综合久久久久久| 国产极品精品免费视频能看的| 日韩欧美 国产精品| 又粗又爽又猛毛片免费看| 黄片wwwwww| 久久99精品国语久久久| 国产精品一区二区三区四区免费观看| 91狼人影院| 99久久九九国产精品国产免费| 人体艺术视频欧美日本| 身体一侧抽搐| 亚洲欧美精品专区久久| 日韩精品有码人妻一区| 99久久中文字幕三级久久日本| 变态另类丝袜制服| 欧美一区二区亚洲| 毛片一级片免费看久久久久| 99久国产av精品国产电影| 婷婷色av中文字幕| 中文在线观看免费www的网站| 国产色婷婷99| 久久久久久久久中文| 国产精品国产高清国产av| 亚洲成人av在线免费| 男的添女的下面高潮视频| 久久人人精品亚洲av| 丰满的人妻完整版| 国产精品三级大全| av卡一久久| 简卡轻食公司| 久久久久久久久久久丰满| 国产爱豆传媒在线观看| 中文字幕av在线有码专区| 亚洲国产日韩欧美精品在线观看| 亚洲,欧美,日韩| 在线天堂最新版资源| av天堂在线播放| www.色视频.com| 亚洲欧美成人综合另类久久久 | 自拍偷自拍亚洲精品老妇| 99久久精品热视频| 国产一区二区三区在线臀色熟女| 国产成人a∨麻豆精品| 久99久视频精品免费| 在线播放国产精品三级| kizo精华| 中文亚洲av片在线观看爽| 久久精品人妻少妇| 97人妻精品一区二区三区麻豆| 99久久中文字幕三级久久日本| 超碰av人人做人人爽久久| 国产精品美女特级片免费视频播放器| 干丝袜人妻中文字幕| 亚洲久久久久久中文字幕| 99热这里只有是精品50| 日日摸夜夜添夜夜添av毛片| 欧美区成人在线视频| 久久欧美精品欧美久久欧美| 久久国产乱子免费精品| 哪里可以看免费的av片| 最近中文字幕高清免费大全6| 日韩亚洲欧美综合| 蜜桃亚洲精品一区二区三区| 国产色婷婷99| 麻豆成人av视频| 国产亚洲精品久久久久久毛片| 神马国产精品三级电影在线观看| 精品国产三级普通话版| 欧美一区二区国产精品久久精品| 女人十人毛片免费观看3o分钟| 青春草国产在线视频 | 看免费成人av毛片| 在线a可以看的网站| 日韩精品青青久久久久久| 18禁黄网站禁片免费观看直播| 国产黄a三级三级三级人| 卡戴珊不雅视频在线播放| 亚洲成人久久爱视频| 国产日韩欧美在线精品| 伦理电影大哥的女人| 国产三级中文精品| 国产伦精品一区二区三区视频9| 国产精品三级大全| 午夜免费激情av| 嘟嘟电影网在线观看| 国产在视频线在精品| 久久鲁丝午夜福利片| 天天躁夜夜躁狠狠久久av| 久久久久久伊人网av| 69人妻影院| 久久精品夜色国产| 亚洲天堂国产精品一区在线| 亚洲成av人片在线播放无| 精品一区二区三区人妻视频| 国产精品一区www在线观看| 日韩 亚洲 欧美在线| 在线播放国产精品三级| 国产欧美日韩精品一区二区| 美女脱内裤让男人舔精品视频 | 少妇裸体淫交视频免费看高清| 国内精品宾馆在线| 国产精品蜜桃在线观看 | 22中文网久久字幕| 色噜噜av男人的天堂激情| 国产一区二区亚洲精品在线观看| 毛片一级片免费看久久久久| 夜夜夜夜夜久久久久| 波多野结衣巨乳人妻| 欧美三级亚洲精品| av免费观看日本| 床上黄色一级片| av卡一久久| 如何舔出高潮| 国产精品99久久久久久久久| 日产精品乱码卡一卡2卡三| 中文精品一卡2卡3卡4更新| 色播亚洲综合网| 男人狂女人下面高潮的视频| 中国美白少妇内射xxxbb| 一进一出抽搐gif免费好疼| 美女国产视频在线观看| а√天堂www在线а√下载| 色视频www国产| 天堂av国产一区二区熟女人妻| 天堂中文最新版在线下载 | 久久精品国产亚洲av涩爱 | 国内精品宾馆在线| 亚洲精品乱码久久久v下载方式| 日韩国内少妇激情av| 日韩精品青青久久久久久| 深夜精品福利| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 欧美日韩国产亚洲二区| 亚洲精品乱码久久久久久按摩| 黑人高潮一二区| 男人的好看免费观看在线视频| 亚洲不卡免费看| 搞女人的毛片| 大型黄色视频在线免费观看| 长腿黑丝高跟| 国产亚洲精品久久久com| 国产精品永久免费网站| 日韩,欧美,国产一区二区三区 | 国产女主播在线喷水免费视频网站 | 99在线人妻在线中文字幕| 好男人视频免费观看在线| 国产v大片淫在线免费观看| 91精品一卡2卡3卡4卡| 久久久午夜欧美精品| 久久久久久国产a免费观看| 亚洲av免费高清在线观看| 亚洲人成网站高清观看| 亚洲中文字幕日韩| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| 欧洲精品卡2卡3卡4卡5卡区| 少妇熟女aⅴ在线视频| 欧美日韩精品成人综合77777| 青春草亚洲视频在线观看| 成人亚洲精品av一区二区| 国产成人freesex在线| 亚洲欧美精品专区久久| 超碰av人人做人人爽久久| 婷婷色av中文字幕| 中国美白少妇内射xxxbb| 亚洲真实伦在线观看| 久久久精品欧美日韩精品| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 日本黄大片高清| 亚洲国产欧洲综合997久久,| 毛片女人毛片| 国产综合懂色| 国产免费男女视频| 一区福利在线观看| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 久久久久国产网址| 欧美bdsm另类| 免费搜索国产男女视频| 日本三级黄在线观看| av福利片在线观看| 高清日韩中文字幕在线| 国产亚洲精品久久久com| 精品久久久久久久久久免费视频| 高清午夜精品一区二区三区 | 国产精品伦人一区二区| 国产成人freesex在线| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| 女人被狂操c到高潮| 天天一区二区日本电影三级| 久久精品久久久久久噜噜老黄 | 18禁在线播放成人免费| 麻豆av噜噜一区二区三区| 国产伦一二天堂av在线观看| 国产三级在线视频| 亚洲av一区综合| 国产一级毛片在线| 人妻制服诱惑在线中文字幕| 色噜噜av男人的天堂激情| 色播亚洲综合网| 中文在线观看免费www的网站| 国产一级毛片七仙女欲春2| 色哟哟·www| 男人狂女人下面高潮的视频| 黄色配什么色好看| 亚洲欧美成人综合另类久久久 | 美女内射精品一级片tv| 国产高清视频在线观看网站| 久久人人精品亚洲av| 九草在线视频观看| 精品久久久久久成人av| 中国美女看黄片| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 国产精品久久视频播放| 日本一本二区三区精品| 成人毛片60女人毛片免费| 综合色av麻豆| 特大巨黑吊av在线直播| 在线a可以看的网站| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 成年版毛片免费区| 我的女老师完整版在线观看| 欧美xxxx性猛交bbbb| 91狼人影院| 亚洲av.av天堂| 久久午夜亚洲精品久久| 日韩一区二区视频免费看| 深夜a级毛片| 69av精品久久久久久| 国产乱人偷精品视频| 国内精品美女久久久久久| or卡值多少钱| 欧美极品一区二区三区四区| 亚洲经典国产精华液单| 高清日韩中文字幕在线| 在线免费十八禁| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 少妇猛男粗大的猛烈进出视频 | 99久久人妻综合| 在线观看66精品国产| 国产成人福利小说| 女人被狂操c到高潮| 黄色配什么色好看| 深夜精品福利| 亚洲成a人片在线一区二区| 成年版毛片免费区| av又黄又爽大尺度在线免费看 | 麻豆国产97在线/欧美| 成人鲁丝片一二三区免费| 夫妻性生交免费视频一级片| 九色成人免费人妻av| 成人二区视频| 婷婷精品国产亚洲av| 深夜精品福利| 欧美色欧美亚洲另类二区| 99久久九九国产精品国产免费| 国产高清视频在线观看网站| 美女高潮的动态| 精品不卡国产一区二区三区| 波多野结衣高清作品| 人妻系列 视频| 国产老妇女一区| 狂野欧美激情性xxxx在线观看| 日本三级黄在线观看| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 午夜福利成人在线免费观看| av在线蜜桃| 国产高清有码在线观看视频| 国产在视频线在精品| 久久99精品国语久久久| 欧美成人a在线观看| 波多野结衣巨乳人妻| 国产成人91sexporn| 久久人人爽人人片av| av天堂中文字幕网| 五月玫瑰六月丁香| 久久精品国产亚洲网站| 伦理电影大哥的女人| 天堂√8在线中文| 校园春色视频在线观看| 久久热精品热| 六月丁香七月| 日韩成人伦理影院| 婷婷六月久久综合丁香| 国产精品美女特级片免费视频播放器| 国产精品乱码一区二三区的特点| 久久精品影院6| 高清毛片免费看| 国内少妇人妻偷人精品xxx网站| av在线播放精品| 亚洲丝袜综合中文字幕| avwww免费| 狂野欧美白嫩少妇大欣赏| 在线观看66精品国产| 91久久精品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 天天躁夜夜躁狠狠久久av| 能在线免费看毛片的网站| 欧美+日韩+精品| 五月玫瑰六月丁香| 成年av动漫网址| 2022亚洲国产成人精品| 国模一区二区三区四区视频| 人人妻人人看人人澡| av免费在线看不卡| 欧美3d第一页| 国产女主播在线喷水免费视频网站 | 高清毛片免费观看视频网站| 亚洲人成网站在线观看播放| 亚洲欧美成人综合另类久久久 | 麻豆国产97在线/欧美| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 又爽又黄a免费视频| 美女大奶头视频| 午夜精品在线福利| 国产毛片a区久久久久| 久久久久久大精品| 精品久久久久久久久久久久久| 国产av在哪里看| 亚洲va在线va天堂va国产| 久久久久久久久久成人| 国产精品日韩av在线免费观看| av黄色大香蕉| 欧美+亚洲+日韩+国产| 男插女下体视频免费在线播放| av国产免费在线观看| av卡一久久| 亚洲精华国产精华液的使用体验 | 亚洲欧美精品综合久久99| 精品熟女少妇av免费看| 一个人观看的视频www高清免费观看| 看片在线看免费视频| 亚洲精品色激情综合| 老司机福利观看| 久久热精品热| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 成年女人永久免费观看视频| 久久人妻av系列| 男人舔女人下体高潮全视频| 国产日本99.免费观看| 欧美一区二区精品小视频在线| 18禁裸乳无遮挡免费网站照片| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 99久久成人亚洲精品观看| 2021天堂中文幕一二区在线观| 久久午夜亚洲精品久久| 成年版毛片免费区| 91在线精品国自产拍蜜月| 国产精品野战在线观看| 亚州av有码| 久久久久久久久久久丰满| 亚洲欧美日韩无卡精品| 人妻少妇偷人精品九色| 国产一级毛片七仙女欲春2| 亚洲五月天丁香| 亚洲在久久综合| 丰满乱子伦码专区| 亚洲欧美日韩高清在线视频| 亚洲综合色惰| 蜜桃久久精品国产亚洲av| 中文欧美无线码| 午夜激情福利司机影院| 成人毛片60女人毛片免费| 国产精品久久视频播放| 色综合色国产| 久久综合国产亚洲精品| 国产伦精品一区二区三区四那| 黑人高潮一二区| 国产大屁股一区二区在线视频| 热99在线观看视频| 午夜精品国产一区二区电影 | 夜夜看夜夜爽夜夜摸| 毛片一级片免费看久久久久| 国内精品一区二区在线观看| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 有码 亚洲区| 大又大粗又爽又黄少妇毛片口| 久久久久久久久久黄片| 亚洲国产精品国产精品| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 国产一区二区三区av在线 | 国产三级中文精品| 亚洲人与动物交配视频| 黄色配什么色好看| 一边亲一边摸免费视频| 亚洲天堂国产精品一区在线| 蜜臀久久99精品久久宅男| 国产成人a∨麻豆精品| 国产精品乱码一区二三区的特点| 日本av手机在线免费观看| 欧美日韩国产亚洲二区| 综合色丁香网| 国产伦在线观看视频一区| 深爱激情五月婷婷| 国产伦一二天堂av在线观看| 观看美女的网站| 一个人看视频在线观看www免费| 欧美日韩乱码在线| 欧美激情国产日韩精品一区| 超碰av人人做人人爽久久| 欧美日韩国产亚洲二区| 一级二级三级毛片免费看| 久久亚洲国产成人精品v| 偷拍熟女少妇极品色| 中文字幕av在线有码专区| 亚洲无线在线观看| 日韩一区二区视频免费看| 有码 亚洲区| 久久久欧美国产精品| 乱人视频在线观看| 伦精品一区二区三区| 成人漫画全彩无遮挡| 一个人看视频在线观看www免费| 九九热线精品视视频播放| 中文资源天堂在线| 色综合站精品国产| 日韩成人伦理影院| 免费大片18禁| 婷婷亚洲欧美| 免费搜索国产男女视频| 在线a可以看的网站| 亚洲精品久久国产高清桃花| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 免费观看在线日韩| 美女cb高潮喷水在线观看| 日本黄大片高清| 国产人妻一区二区三区在| 久久久午夜欧美精品| 蜜桃亚洲精品一区二区三区| 黄片无遮挡物在线观看| 秋霞在线观看毛片| 波多野结衣高清无吗| 亚洲最大成人手机在线| 日本-黄色视频高清免费观看| 精品欧美国产一区二区三| 成年女人看的毛片在线观看| 精品一区二区三区视频在线| 中文字幕av成人在线电影| 亚洲一区高清亚洲精品| 久久精品久久久久久噜噜老黄 | 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 国产成人精品一,二区 | av黄色大香蕉| 久久久精品94久久精品| 麻豆成人av视频| 色播亚洲综合网| 国产精品一区二区性色av| 人妻系列 视频| 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费| 有码 亚洲区| 免费av观看视频| 日日干狠狠操夜夜爽| 国产黄片美女视频| 毛片女人毛片| 22中文网久久字幕|