• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh

    2015-03-03 08:37:16ZHANGXueweiLIQiangLVMengrou
    關(guān)鍵詞:中北大學(xué)激波工程學(xué)院

    ZHANG Xue-wei, LI Qiang, LV Meng-rou

    (College of Mechatronic Engineering, North University of China, Taiyuan 030051, China)

    張學(xué)偉, 李 強(qiáng), 呂夢(mèng)柔

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    ?

    Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh

    ZHANG Xue-wei, LI Qiang, LV Meng-rou

    (CollegeofMechatronicEngineering,NorthUniversityofChina,Taiyuan030051,China)

    In order to speed underwater launch of minor-caliber weapons, a sealing device can be set in front of underwater muzzle to separate water, preventing the muzzle from water immersion. By establishing and simplifying the model of underwater weapon sealing device and unstructured mesh computing domain model based on computational fluid dynamics (CFD), dynamic mesh and user defined function (UDF), the N-S equation is solved and the numerical analysis and calculation of the complex two-phase flow inside the sealing device are carried out. The results show that the gas discharged from the sealing device is conducive to the formation of the projectile supercavity. When the projectile is launched at 5 m under water, the shock wave before and after the projectile has impact on the box body up to 100 MPa, therefore the sealing device must be strong enough. The research results have the vital significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.

    two-phase flow; supercavitation; sealing device; computational fluid dynamics (CFD); dynamic mech

    As a result of the change of international situation, the water weapon has got rapid development. The density of water is about 850 times as dense as that of air, thus water resistance is too large for projectile weapons to hit the target at a distance. Therefore, how to increase the initial velocity and decrease the resistance of underwater weapon inevitably becomes the key of the research.

    In recent years, many experts and scholars have done a lot of work in the numerical simulation of underwater jet and supercavity based on computational fluid dynamics (CFD). TANG, et al.[1]used volume of fluid (VOF) model to simulate the evolution of underwater gas jet. XU Jia-wei, et al.[2-3]used mixture model based on FLUENT software to study the unsteady evolution process of nozzle air-water two-phase flow field at different underwater depths in rocket ignition experiment. CHEN Huan-long, et al.[4-5]calculated the initial flow of underwater gas jet using axisymmetric, inviscid and compressible Euler equations, revealed the gas-water interaction and shock wave shape as well as the formation and evolution process of jet air bags at jet initial stage, and confirmed the similarity of near flow fields of the gas jet in the water and gas. ZHU Lin, et al. used the dynamic mesh technique and mixed multiple flow model to get the effect of thrusting force on production, variation and development processes of water cavity and natural cavity hydrodynamics of projectile bodies[6]. YI Wen-jun, et al. used mixed multi-phase flow model of Fluet6.2 to conduct the simulation of resistance characteristics of underwater projectile[7]. Uhlman and Kinnas[8-10]and Fine used the velocity potential modified boundary element method to carry out nonlinear simulation on many cases of partial cavity flow. But the analysis of muzzle gas injecting sealed container is rare. This paper, using mixed multiple flow model and dynamic mesh technology, by solving N-S equations, carries numerical analysis and calculation for complex water-gas two-phase flow inside it and gets the distribution of the flow field inside the sealing device. Furthermore, the strength of the sealing device and bubble formation of supercavitation are analyzed.

    1 Control equation and numerical method

    1.1 Control equation

    The basic laws of conservation in the element include the following equations.

    Continuity equation

    (1)

    Momentum conservation theorem

    (2)

    Energy conservation equation

    (3)

    whereρstands for the density;t, the time;V, the velocity vector;Sm, the mass added to the continuous phase;p, the pressure born on upon fluid micelle;gandFrepresent gravity and other external volume forces exerted on the infinitesimal;τ, the viscous stress tensor on infinitesimal surface due to molecular viscosity;E, the fluid micelle gross energy;T, the temperature;Jj, the diffusion flux ofj;keff, effective thermal conductivity; andSh, the other customized heat sources.

    1.2 Cavitation model

    Regardless of the influence of the latent heat of evaporation, it is done in the isothermal process. Considering the pressure and bubble volume, Rayleigh-Plesset equation is written as

    (4)

    wherepBis the pressure inside the cavity, which is the sum of steam pressurepvand noncondensable gas partial pressurep;σis coefficient of surface tension. Simulation calculation functions for growth and rupture process of cavitation are given by

    (5)

    2 Dynamic meshing theory and computation model

    2.1 Dynamic mesh updating method

    FLUENT provides three methods of dynamic meshing movement to update the mesh after deformation, including spring smoothing method (smoothing), dynamic layer method (layering) and local mesh reconstruction method (remeshing). Spring smoothing method is to idealize the meshes between the nodes as a spring system. The movement of boundary nodes produces spring force between the nodes, and the force spreads along the downstream nodes in turn and eventually produces a new spring system. Dynamic layer method is that whether to increase or to decrease the mesh layer number is determined by the height of mesh layer close to the moving object surface. In FLUENT, when the mesh cell layer near the border increases or reduces to a certain extent, the mesh automatically splits or merges. Local mesh reconstruction method refers to the interpolation reconstruction method for distorted mesh because the movement of boundary may result in serious quality decline, even negative volume, which increases the difficultly for next solution. The methods adopted in this article to control mesh deformation are the spring smoothing method and the local mesh reconstruction method.

    2.2 Establishment of computation model

    A 3D model profile of a sealing device is shown in Fig.1. The whole sealing device is put under water at a depth of 5 m whose inside pressure and water pressure are equal before firing. The valve (unshown in Fig.1) of the sealing device under the water pressure acts as a seal. Mesh partition method is used for the calculation region, and mesh refinement is processed within the tube and sealing device. The farther from the tank, the sparser the mesh is. Boundary conditions include pressure export, pressure inlet and the solid wall boundary. The related parameters of pressure export and the depth of water are the same, and the pressure inlet parametes are defined based on field function. At the same time, FLUENT UDF is used to control projectile motion parameters. The initial velocity of the projectile is 890 m/s.

    Fig.1 Sealing device with a tube

    Fig.2 exhibits the computation mesh in flow field of the sealing device with a tube.

    Fig.2 Computation mesh in flow field of sealing device with a tube

    In the process of the projectile entering into the water, air, vapor and liquid water are allowed to interpenetrate each other and move at different speeds. VOF model is not applicable, mixture model should be shosen.

    FLUENT simulation settings: ① Calculation is based on three-phase flow, whose major phase is water and minor phases are vapor and compressible gas; ② Realizablek-εmodel is selected as turbulence model, PRESTO is as the pressure and velocity fields coupled mode; ③ Gravity effect should be considered, and the change curve of water pressure with depth is defined based on field function, Patch for repairing it in the computational domain; ④ Using the cavitation model is opened.

    Making unsteady calculation according to the above settings, we can get better convergence by selecting the appropriate iteration step length and the relaxion factor.

    3 Simulation and analysis

    Fig.3 is the nephogram of gas-liquid phase distribution at different times after projectile is out of the chamber. It can be seen that the moment the projectile firing, shock wave in front of projectile is generated by squeezing the air in front of projectile when the projectile moves at high speed in the tube. The gas expands rapidly after entering the sealing device, which results in pressure rising and part of the gas is pushed through the valve into the water forming bubbles. With the projectile velocity increasing, the shock waves in front of the projectile keep swelling and the gas inside the sealing device is constantly discharged into the water, and bubbles increase quickly. After 3.3 ms, gunpowder gas was totally released into the case and enough pressure is created to form a big bubble to wrap the projectile outside the sealing device. At 3.5 ms, the projectile moved throughout the sealing device into the big bubble in the water. At 3.8 ms, the projectile pierced the big bubble into the water, but was still wrapped by cavitation bubbles which are natural supercavitation. The bubbles in the valve in the seal device is helpful to provide the projectile with ventilated supercavitation. The device combines the ventilated supercavitation with natural supercavitation perfectly.

    Fig.3 Nephogram of gas-liquid phase distribution at different times after firing

    Fig.4 is the pressure distribution curve in axial direction of gun when the projectile is fired out of muzzle and goes into the sealing device at different times.

    It can be seen that at 3.3 ms, warhead is just fired out of the tube. The pressure distribution behind the projectile is linear, but the pressure in front of the projectile is higher than atmospheric pressure. This is because the moving projectile in the tube pushes the air in the tube leaked behind the projectile as well as gunpowder gas into the sealing device.

    At 3.5 ms, the projectile goes through the tube into the sealing device, the pressure behind the projectile spreads instantly in the sealing device. But unlike in the air, the pressure diffusion is restricted by the sealing device, resulting in high pressure in the sealing device. The projectile under high pressure continues to move forward and warhead appears in high pressure area. For high-speed projectile, it moves in the sealing device in a very short time, therefore, the effect on the projectile velocity can be neglected. At the time of 3.8 ms, the projectile goes into the water and the end of the projectile appears in low pressure area, which is conducive to the formation of cavitation bubble.

    At 4.0 ms, the pressure of gunpowder gas is still greater than the water pressure. It may be impossible for the gunpowder gas to be instantly released into the sealing device because of the small mouth of the valve, which means the water not going back to the sealing device under super-high firing frequency can be realized absolutely.

    During the whole process, the gunpowder gas is kept in the sealing device and the maxium shock wave can reach up to 100 MPa generated by gunpowder gas at high temperature and high pressure, which requires strong strength capacity of the sealing device.

    Fig.4 Pressure distribution curves in axial direction of gun at different times after projectile is out of muzzle

    4 Conclusion

    The following conclusion can be drawn based on numerical simulation on the complex two-phase flow in the sealing device of underwater weapon by using FLUENT. When the underwater weapon with the sealing device is fired, gunpowder gas pressure distribution in the sealing device is extremely complex. The high pressure also requires strong strength of the sealing device. With high-speed movement, the gas in front of the projectile is extruded and shock wave is formed. The gas in front of the projectile and gunpowder gas leaked from the clearance between projectile and tube expand rapidly after entering sealing device, which results in pressure rising in the sealing device. With the increasing of pressure, the gas inside the sealing device is discharged into the water. As the projectile entering the water, the pressure inside the sealing device is strong enough to prevent the reverse flow of water. Under ultra-high frequency shooting, the pressure of the sealing device can ensure that the water will not flow back at the depth of 25 m under water; at the same time, the actuating pressure of the sealing device caused by the projectile shock wave reach up to 100 MPa. The research results may have some significance to the design of underwater weapon sealing device and the formation of the projectile supercavitation.

    [1] Tang J N, Wang N F, Wei Shyy. Flow structure of gaseous jets injected into water for underwater propulsion. Acta Mechanica Sinica, 2011, 27(4): 461-472.

    [2] CHEN Huan-long, WANG Ning, LIU Hua-ping, et al. Investigation of nozzle gas jet characteristics with different launch depth underwater. Chinese Journal of Hydrodynamics, 2012, 27(6): 659-664.

    [3] XU Jia-wei. Numerical simulation of gas jet due to underwater missle of different ocean depths. Harbin: Harbin Institute of Technology, 2009: 33-89.

    [4] HE Xiao-yan, MA Han-dong, JI Chu-qun. Numerical simulation of the underwater gas jets formed. Journal of Hydrodynamics A, 2004, 19(2): 207-212.

    [5] HE Xiao-yan, MA Han-dong, WANG Qiang. Temporal instability of compressible 3D gas injected in liquids. Acta Aerodynamica Sinica, 2002, 20(1):78-83.

    [6] ZHU lin, YUAN Xu-long, WANG Ya-dong. The influence of the thrusting force on the characters of the high speed flow field. Journal of Air Force Engineering University(Natural Science Edition), 2014, 15(1): 10-14.

    [7] YI Wen-jun, WANG Zhong-yuan, XIONG Tian-hong, et al. Research on drag reduction characteristics of a underwater high-speed supercavitation projectile. Journal of Ballistics, 2008, 20(4): 1-4.

    [8] Uhalman J S. The surface singularity method applied to partially cavitating hydofoils. Journal of Ship Research, 1987: 23-36.

    [9] Uhalman J S. The surface singulaity or boundary integral method applied to supercavitating hydrofoils. Journal of ship Research, 1989, 31(1): 51-65.

    [10] Kinnas S A, Fine N E. A numerical nonlinear analysis of the flow around two-and three-dimensional partially cavitating hydrofoils. Journal of Fluid Mechanics, 1993(254): 151-181.

    基于動(dòng)網(wǎng)格的水下發(fā)射裝置兩相流研究

    為防止水下武器發(fā)射時(shí)水流浸沒(méi)身管, 提高小口徑武器在水下發(fā)射的初速, 水下武器膛口前需設(shè)計(jì)密封裝置。 建立水下武器密封裝置模型的非結(jié)構(gòu)網(wǎng)格計(jì)算域模型, 利用計(jì)算流體動(dòng)力學(xué)(CFD)、 動(dòng)網(wǎng)格和UDF等相關(guān)知識(shí), 通過(guò)求解N-S方程, 對(duì)密封裝置內(nèi)復(fù)雜的兩相流進(jìn)行了數(shù)值分析計(jì)算。 仿真結(jié)果表明, 密封裝置內(nèi)排出的氣體有利于射彈超空炮的形成; 此外, 在水下5 m發(fā)射時(shí)彈前激波和彈后激波對(duì)箱體沖擊作用力峰值可達(dá)100 MPa, 因此要求密封裝置要有足夠的強(qiáng)度。

    兩相流; 超空泡; 密封裝置; 計(jì)算流體動(dòng)力學(xué); 動(dòng)網(wǎng)格

    ZHANG Xue-wei, LI Qiang, LV Meng-rou. Numerical simulation of two-phase flow field in underwater sealing device based on dynamic mesh. Journal of Measurement Science and Instrumentation, 2015, 6(3): 253-257.[

    張學(xué)偉, 李 強(qiáng), 呂夢(mèng)柔

    (中北大學(xué) 機(jī)電工程學(xué)院, 山西 太原 030051)

    10.3969/j.issn.1674-8042.2015.03.009]

    Received date: 2015-05-06 Foundation item: National Natural Science Foundation of China (No.51175481)

    ZHANG Xue-wei (1192579296@qq.com)

    1674-8042(2015)03-0253-05 doi: 10.3969/j.issn.1674-8042.2015.03.009

    CLD number: TJ65; TP391.9 Document code: A

    猜你喜歡
    中北大學(xué)激波工程學(xué)院
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    福建工程學(xué)院
    福建工程學(xué)院
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    一種基于聚類分析的二維激波模式識(shí)別算法
    基于HIFiRE-2超燃發(fā)動(dòng)機(jī)內(nèi)流道的激波邊界層干擾分析
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    福建工程學(xué)院
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    斜激波入射V形鈍前緣溢流口激波干擾研究
    两人在一起打扑克的视频| 国产成人aa在线观看| 性欧美人与动物交配| 啦啦啦观看免费观看视频高清| 老司机深夜福利视频在线观看| 国产免费一级a男人的天堂| 国产精品无大码| 亚洲国产精品sss在线观看| 在线观看舔阴道视频| 可以在线观看的亚洲视频| 国产一区二区激情短视频| 日本 av在线| 中文字幕av成人在线电影| 国产精品综合久久久久久久免费| 精品久久久久久久久av| 男人和女人高潮做爰伦理| 久久久久久久久久久丰满 | 欧美潮喷喷水| 免费在线观看日本一区| 麻豆成人午夜福利视频| 亚洲自偷自拍三级| 99久久精品国产国产毛片| 婷婷色综合大香蕉| 久久国产乱子免费精品| 国产精品亚洲一级av第二区| 亚洲国产高清在线一区二区三| 亚洲精品久久国产高清桃花| av天堂在线播放| 欧美区成人在线视频| 国产精品一区二区三区四区免费观看 | 久久久精品欧美日韩精品| 国产亚洲精品久久久com| 一卡2卡三卡四卡精品乱码亚洲| 韩国av一区二区三区四区| 日韩一本色道免费dvd| 国产男人的电影天堂91| 最近在线观看免费完整版| av黄色大香蕉| 日本-黄色视频高清免费观看| 久久婷婷人人爽人人干人人爱| 制服丝袜大香蕉在线| 免费在线观看成人毛片| 在线国产一区二区在线| 国内精品一区二区在线观看| 变态另类成人亚洲欧美熟女| 看片在线看免费视频| 能在线免费观看的黄片| 一本久久中文字幕| 麻豆国产av国片精品| 国产亚洲av嫩草精品影院| 成人鲁丝片一二三区免费| 在线播放无遮挡| 中文字幕av成人在线电影| 亚洲国产欧美人成| 啦啦啦啦在线视频资源| 伊人久久精品亚洲午夜| 欧美日韩精品成人综合77777| 制服丝袜大香蕉在线| 性欧美人与动物交配| 国产精品99久久久久久久久| 一区福利在线观看| 国产精华一区二区三区| 天堂av国产一区二区熟女人妻| 1000部很黄的大片| 亚洲性夜色夜夜综合| 国产中年淑女户外野战色| av专区在线播放| ponron亚洲| 久久人人爽人人爽人人片va| 一本一本综合久久| 国产v大片淫在线免费观看| 最后的刺客免费高清国语| 男女之事视频高清在线观看| 俺也久久电影网| 久久午夜亚洲精品久久| 欧美xxxx性猛交bbbb| 精品久久久久久成人av| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区四那| 亚洲精华国产精华液的使用体验 | 亚洲国产精品sss在线观看| 18禁黄网站禁片免费观看直播| 香蕉av资源在线| 亚洲精品久久国产高清桃花| 亚洲三级黄色毛片| 人人妻人人澡欧美一区二区| 欧美激情在线99| 精品日产1卡2卡| 亚洲av电影不卡..在线观看| 精品午夜福利在线看| 久久精品久久久久久噜噜老黄 | 久久人妻av系列| 成人亚洲精品av一区二区| 亚洲一区高清亚洲精品| 51国产日韩欧美| 久久久国产成人精品二区| 日韩欧美国产在线观看| 国产精品98久久久久久宅男小说| 国产真实伦视频高清在线观看 | 国产亚洲av嫩草精品影院| 国产中年淑女户外野战色| av在线老鸭窝| 欧美激情久久久久久爽电影| 午夜免费成人在线视频| 色吧在线观看| 一级毛片久久久久久久久女| 国产高清视频在线观看网站| 深夜a级毛片| 国产女主播在线喷水免费视频网站 | 国产午夜精品久久久久久一区二区三区 | 精品国产三级普通话版| 国产一区二区亚洲精品在线观看| 听说在线观看完整版免费高清| 波多野结衣高清无吗| 麻豆久久精品国产亚洲av| 99视频精品全部免费 在线| 国产精品一区二区性色av| 变态另类成人亚洲欧美熟女| av天堂在线播放| 女同久久另类99精品国产91| 久久99热这里只有精品18| 性色avwww在线观看| 99热这里只有精品一区| 一进一出抽搐gif免费好疼| 琪琪午夜伦伦电影理论片6080| 可以在线观看的亚洲视频| 亚洲久久久久久中文字幕| 亚洲国产日韩欧美精品在线观看| 免费无遮挡裸体视频| 亚洲中文字幕一区二区三区有码在线看| 国产亚洲精品久久久久久毛片| 久久精品国产亚洲av涩爱 | 国产一区二区三区视频了| 在线观看免费视频日本深夜| 他把我摸到了高潮在线观看| 18禁黄网站禁片午夜丰满| 中国美白少妇内射xxxbb| 又粗又爽又猛毛片免费看| 88av欧美| 99久久无色码亚洲精品果冻| 天天躁日日操中文字幕| 亚洲国产精品成人综合色| 最近中文字幕高清免费大全6 | 一级黄片播放器| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| av天堂在线播放| 亚洲欧美日韩卡通动漫| 日韩大尺度精品在线看网址| 少妇被粗大猛烈的视频| 亚洲国产色片| 国产精品一区二区三区四区免费观看 | avwww免费| 国产精品自产拍在线观看55亚洲| 午夜福利视频1000在线观看| 亚洲五月天丁香| a在线观看视频网站| 精品欧美国产一区二区三| 桃色一区二区三区在线观看| 精品久久久久久成人av| 国产午夜精品论理片| 亚洲美女视频黄频| 在现免费观看毛片| 亚洲国产日韩欧美精品在线观看| 日本色播在线视频| 嫩草影院精品99| 日韩欧美精品免费久久| 99riav亚洲国产免费| 午夜福利在线观看吧| 午夜福利在线观看吧| 色视频www国产| 91麻豆av在线| 中国美白少妇内射xxxbb| 一区福利在线观看| 欧美色视频一区免费| 亚洲av成人精品一区久久| 伊人久久精品亚洲午夜| 久久香蕉精品热| 99国产极品粉嫩在线观看| 美女大奶头视频| 色吧在线观看| 观看美女的网站| 毛片一级片免费看久久久久 | 看免费成人av毛片| 国产精品,欧美在线| 亚洲成人久久爱视频| 国产精品99久久久久久久久| 久久精品国产清高在天天线| 久久99热6这里只有精品| 婷婷亚洲欧美| www.色视频.com| 97热精品久久久久久| 免费看av在线观看网站| 又爽又黄无遮挡网站| 久久久久久久久久久丰满 | 亚洲中文字幕日韩| 看十八女毛片水多多多| 欧美日本亚洲视频在线播放| 好男人在线观看高清免费视频| 国产精品99久久久久久久久| 88av欧美| 夜夜夜夜夜久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 99国产极品粉嫩在线观看| 免费av毛片视频| 美女高潮喷水抽搐中文字幕| 亚洲18禁久久av| 免费人成视频x8x8入口观看| 91精品国产九色| 精品久久久久久久久久免费视频| 一个人看视频在线观看www免费| 国产精品久久久久久久电影| 黄色女人牲交| 欧美日韩乱码在线| av专区在线播放| 最新中文字幕久久久久| 美女 人体艺术 gogo| .国产精品久久| a级毛片免费高清观看在线播放| 亚洲美女搞黄在线观看 | 久久精品影院6| 亚洲人成伊人成综合网2020| 尾随美女入室| 村上凉子中文字幕在线| 精品久久久久久久久av| 一区二区三区四区激情视频 | 欧美激情国产日韩精品一区| 午夜福利高清视频| 草草在线视频免费看| 丝袜美腿在线中文| 国产在线男女| 精品午夜福利在线看| 特大巨黑吊av在线直播| 最好的美女福利视频网| 高清毛片免费观看视频网站| 大又大粗又爽又黄少妇毛片口| ponron亚洲| 在线观看美女被高潮喷水网站| 18禁裸乳无遮挡免费网站照片| 久久久国产成人精品二区| 亚洲天堂国产精品一区在线| 国产探花极品一区二区| 一进一出抽搐gif免费好疼| 免费av毛片视频| 免费搜索国产男女视频| 久久久久久大精品| 色在线成人网| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 亚洲四区av| 午夜日韩欧美国产| 丰满的人妻完整版| 国内精品宾馆在线| 欧美国产日韩亚洲一区| netflix在线观看网站| 波野结衣二区三区在线| 欧美日韩国产亚洲二区| 国产在线男女| 久久香蕉精品热| 成人美女网站在线观看视频| 亚洲图色成人| ponron亚洲| 一进一出抽搐gif免费好疼| 床上黄色一级片| 亚洲精品456在线播放app | 色视频www国产| 亚洲成人免费电影在线观看| 欧美一区二区国产精品久久精品| 久久久久精品国产欧美久久久| 久久久午夜欧美精品| 日本a在线网址| 亚洲人成网站高清观看| 国产高清激情床上av| 好男人在线观看高清免费视频| 色5月婷婷丁香| 亚洲av美国av| 国产av一区在线观看免费| 日本五十路高清| 99久久精品国产国产毛片| 日本熟妇午夜| 亚洲av日韩精品久久久久久密| 亚洲精品乱码久久久v下载方式| 亚洲av中文av极速乱 | 午夜福利高清视频| 日本一二三区视频观看| 国产精品98久久久久久宅男小说| 日本爱情动作片www.在线观看 | 国产高清视频在线播放一区| 18禁裸乳无遮挡免费网站照片| 国产伦在线观看视频一区| 国产亚洲91精品色在线| 精品久久久久久久久久久久久| 国产免费一级a男人的天堂| 亚洲成人中文字幕在线播放| 免费av毛片视频| 国内精品宾馆在线| 国产白丝娇喘喷水9色精品| 欧美日韩中文字幕国产精品一区二区三区| 国产精品一区二区免费欧美| 黄色女人牲交| 极品教师在线视频| 村上凉子中文字幕在线| 三级毛片av免费| 亚洲电影在线观看av| 亚洲av熟女| 免费av观看视频| 亚洲人成网站在线播放欧美日韩| 午夜精品在线福利| videossex国产| 18禁黄网站禁片午夜丰满| 欧美中文日本在线观看视频| 中文字幕久久专区| 色综合婷婷激情| 老熟妇乱子伦视频在线观看| 身体一侧抽搐| 草草在线视频免费看| 亚洲精品国产成人久久av| 嫩草影院精品99| 一区二区三区免费毛片| 最新在线观看一区二区三区| 天堂网av新在线| 精品福利观看| 欧美日本亚洲视频在线播放| 搡老岳熟女国产| 五月伊人婷婷丁香| 国产免费av片在线观看野外av| 日韩中字成人| 高清日韩中文字幕在线| 美女xxoo啪啪120秒动态图| 国模一区二区三区四区视频| 91精品国产九色| 中文字幕久久专区| 久久久成人免费电影| 女人被狂操c到高潮| 九九在线视频观看精品| 99riav亚洲国产免费| 人妻制服诱惑在线中文字幕| 在线观看美女被高潮喷水网站| av专区在线播放| 亚洲av美国av| 亚洲av成人精品一区久久| 草草在线视频免费看| 欧美成人免费av一区二区三区| 嫩草影视91久久| 精品一区二区三区视频在线| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 三级男女做爰猛烈吃奶摸视频| 亚洲七黄色美女视频| 18+在线观看网站| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美| 欧美bdsm另类| 亚洲av不卡在线观看| 2021天堂中文幕一二区在线观| 乱系列少妇在线播放| 永久网站在线| 99在线视频只有这里精品首页| 国产精品亚洲一级av第二区| 97热精品久久久久久| 国产毛片a区久久久久| 国内毛片毛片毛片毛片毛片| 中国美白少妇内射xxxbb| 亚洲无线在线观看| 亚洲中文日韩欧美视频| 欧美一区二区国产精品久久精品| 国产在线男女| 最近视频中文字幕2019在线8| 国产欧美日韩精品一区二区| 国产精品三级大全| 午夜激情福利司机影院| 九色国产91popny在线| 亚洲国产日韩欧美精品在线观看| 精品一区二区三区视频在线观看免费| 99国产极品粉嫩在线观看| 丰满乱子伦码专区| 国产亚洲av嫩草精品影院| 亚洲第一电影网av| 欧美+日韩+精品| 美女免费视频网站| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 国产高潮美女av| 亚洲av成人av| 男插女下体视频免费在线播放| 久久6这里有精品| 黄色视频,在线免费观看| 国产免费av片在线观看野外av| 日本黄色视频三级网站网址| 国产精品亚洲一级av第二区| 欧美日本亚洲视频在线播放| 69av精品久久久久久| 蜜桃久久精品国产亚洲av| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 人妻少妇偷人精品九色| 日日摸夜夜添夜夜添av毛片 | 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| xxxwww97欧美| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆 | 国产在线男女| 午夜影院日韩av| 一个人免费在线观看电影| 久久久国产成人精品二区| 欧美丝袜亚洲另类 | 亚洲欧美精品综合久久99| 最近在线观看免费完整版| 岛国在线免费视频观看| 国产一区二区在线av高清观看| 搡老岳熟女国产| 中文字幕av成人在线电影| 麻豆成人av在线观看| 尾随美女入室| 大又大粗又爽又黄少妇毛片口| 精品日产1卡2卡| 精品人妻熟女av久视频| 亚洲国产精品成人综合色| 丰满乱子伦码专区| 深夜精品福利| 国产精品av视频在线免费观看| 亚洲精品一区av在线观看| 欧美日韩黄片免| 婷婷亚洲欧美| 亚洲无线观看免费| 淫妇啪啪啪对白视频| 亚洲avbb在线观看| 亚洲人成伊人成综合网2020| 成年人黄色毛片网站| 欧美zozozo另类| 亚洲性夜色夜夜综合| 长腿黑丝高跟| 一进一出好大好爽视频| 18禁黄网站禁片免费观看直播| 国产av在哪里看| 亚洲内射少妇av| www.www免费av| 国产精品久久久久久久久免| 日韩欧美在线乱码| 久久久久久久午夜电影| 中国美女看黄片| 精品午夜福利视频在线观看一区| 人人妻人人看人人澡| 午夜福利在线观看免费完整高清在 | 欧美潮喷喷水| 久久精品91蜜桃| 国产伦精品一区二区三区视频9| 在线观看美女被高潮喷水网站| 狂野欧美白嫩少妇大欣赏| 国产成人a区在线观看| 国产精品1区2区在线观看.| 一级a爱片免费观看的视频| 最近视频中文字幕2019在线8| 亚洲国产色片| 精品一区二区三区av网在线观看| 国产高清不卡午夜福利| 久久精品国产自在天天线| 日韩欧美免费精品| 午夜激情福利司机影院| 日日摸夜夜添夜夜添小说| 不卡一级毛片| 我的女老师完整版在线观看| 国产精品久久久久久av不卡| 91精品国产九色| 国产精品99久久久久久久久| av天堂在线播放| 久久久精品欧美日韩精品| 国产成人av教育| 真人做人爱边吃奶动态| 亚洲成人久久性| 免费高清视频大片| 别揉我奶头~嗯~啊~动态视频| 亚洲av成人精品一区久久| 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 午夜免费激情av| 老师上课跳d突然被开到最大视频| 网址你懂的国产日韩在线| 午夜福利欧美成人| 亚洲黑人精品在线| 亚洲美女搞黄在线观看 | 国产成人a区在线观看| 日本黄大片高清| 亚洲熟妇中文字幕五十中出| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 精品久久久久久久久av| 成人av在线播放网站| 日韩大尺度精品在线看网址| 亚洲成人久久性| a级毛片免费高清观看在线播放| bbb黄色大片| 91在线观看av| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 一级av片app| 欧美不卡视频在线免费观看| 久久这里只有精品中国| 69人妻影院| 欧美色欧美亚洲另类二区| 91狼人影院| 少妇被粗大猛烈的视频| 国产精品久久视频播放| 在线播放国产精品三级| 九九在线视频观看精品| 国产欧美日韩精品亚洲av| 最近在线观看免费完整版| 小蜜桃在线观看免费完整版高清| 国产精品福利在线免费观看| 少妇裸体淫交视频免费看高清| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮喷水抽搐中文字幕| 简卡轻食公司| 国内精品美女久久久久久| 好男人在线观看高清免费视频| 色哟哟哟哟哟哟| 乱系列少妇在线播放| 亚洲国产高清在线一区二区三| 欧美日韩乱码在线| 午夜视频国产福利| 国产私拍福利视频在线观看| 久久草成人影院| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 在线观看66精品国产| 中亚洲国语对白在线视频| 99精品在免费线老司机午夜| 午夜福利18| 最近最新免费中文字幕在线| 又黄又爽又刺激的免费视频.| av天堂中文字幕网| 九色成人免费人妻av| 亚洲一区高清亚洲精品| 亚洲av二区三区四区| 国产成人福利小说| 少妇人妻精品综合一区二区 | av视频在线观看入口| 观看免费一级毛片| 日韩精品青青久久久久久| 久久久久久久精品吃奶| 成人综合一区亚洲| 精华霜和精华液先用哪个| 日韩亚洲欧美综合| 国产午夜福利久久久久久| 国产亚洲精品久久久com| 一区二区三区高清视频在线| 国产人妻一区二区三区在| 亚洲一区二区三区色噜噜| 国产成人影院久久av| 国产黄片美女视频| 男女之事视频高清在线观看| 国产亚洲精品av在线| 久久久久久久午夜电影| 免费观看精品视频网站| 免费不卡的大黄色大毛片视频在线观看 | 极品教师在线视频| 国产免费一级a男人的天堂| 在线免费十八禁| 99国产极品粉嫩在线观看| 亚洲精品456在线播放app | 五月玫瑰六月丁香| 欧美日韩乱码在线| 欧美日韩瑟瑟在线播放| 一个人观看的视频www高清免费观看| 亚洲最大成人中文| 精品久久久久久久末码| 亚洲国产高清在线一区二区三| 国产真实乱freesex| 国内精品美女久久久久久| 毛片女人毛片| 成人毛片a级毛片在线播放| 在线观看午夜福利视频| 国产精品久久久久久久电影| 99久久无色码亚洲精品果冻| 国产极品精品免费视频能看的| 国产日本99.免费观看| 一区福利在线观看| 国产在视频线在精品| 丰满乱子伦码专区| 国产伦一二天堂av在线观看| 国产精品久久视频播放| 久久精品人妻少妇| 亚洲精品456在线播放app | bbb黄色大片| 午夜福利欧美成人| 人妻丰满熟妇av一区二区三区| 免费大片18禁| .国产精品久久| 亚洲av免费高清在线观看| .国产精品久久| 成年人黄色毛片网站| av在线观看视频网站免费| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美一区二区三区在线观看| 精品久久久久久久久久免费视频| 有码 亚洲区| 欧美日韩国产亚洲二区| 毛片一级片免费看久久久久 | 亚洲av美国av| 午夜免费男女啪啪视频观看 | 午夜老司机福利剧场| 国产一级毛片七仙女欲春2| 久久精品国产亚洲网站| www日本黄色视频网| 日日摸夜夜添夜夜添小说| www.www免费av| 无遮挡黄片免费观看| 亚洲三级黄色毛片| 国产精品久久久久久av不卡| 婷婷精品国产亚洲av在线| 最近最新中文字幕大全电影3| 天美传媒精品一区二区| 国产精品综合久久久久久久免费|