• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    TSCL-SQL:Two-Stage Curriculum Learning Framework for Text-to-SQL

    2023-09-22 14:30:46YINFengCHENGLuyi程路易WANGQiuyue王秋月WANGZhijun王志軍DUMingXUBo
    關鍵詞:王志軍路易

    YIN Feng(尹 楓), CHENG Luyi (程路易), WANG Qiuyue(王秋月), WANG Zhijun(王志軍), DU Ming(杜 明), XU Bo(徐 波)

    School of Computer Science and Technology, Donghua University, Shanghai 201620, China

    Abstract:Text-to-SQL is the task of translating a natural language query into a structured query language. Existing text-to-SQL approaches focus on improving the model’s architecture while ignoring the relationship between queries and table schemas and the differences in difficulty between examples in the dataset. To tackle these challenges, a two-stage curriculum learning framework for text-to-SQL(TSCL-SQL) is proposed in this paper. To exploit the relationship between the queries and the table schemas, a schema identification pre-training task is proposed to make the model choose the correct table schema from a set of candidates for a specific query. To leverage the differences in difficulty between examples, curriculum learning is applied to the text-to-SQL task, accompanied by an automatic curriculum learning solution, including a difficulty scorer and a training scheduler. Experiments show that the framework proposed in this paper is effective.

    Key words:text-to-SQL; curriculum learning; semantic parsing

    Introduction

    Text-to-SQL is the task of mapping a natural language query to a structured query language, which enables general users to query relational databases with natural languages. Limited by the scale of the dataset, early work can only complete the task on a single database with a few tables[1]. Recently, the release of the WikiSQL[2]dataset, which consists of more than 20 000 tables and about 80 000 natural language queries, presents a new challenge. The model is required to be generalized to unseen table schemas[2]and different kinds of queries.

    To tackle this challenge, existing text-to-SQL approaches cast the problem as a slot-filling[3]task. Xuetal.[4]utilized a multi-task model to fill the predicted values into a pre-defined grammar template. Heetal.[5]and Lyuetal.[6]further improved the model architecture and achieved better performance. However, the current text-to-SQL models still suffer from two challenges.

    The first challenge is that current approaches do not leverage the differences in difficulty between examples in the dataset. As shown in Fig.1(a), a simple query is related to fewer columns in the table, and the names of all related columns are mentioned in the query. In the simple example, the Winner and Runner-up columns are directly mentioned in the query. A complex query is shown in Fig.1(b). It is related to more columns, and some of the columns’ names are not mentioned in the query. In this complex example, the query is related to the Goals, Matches, Average and Team columns. However, the Team column is not mentioned in the query. The model must infer the column name from potential cell values. It makes sense that we can use the differences in difficulty to guide the training process.

    The second challenge is that current approaches do not utilize the relationship between queries and table schemas. As shown in Fig.1, a column name might be mentioned directly or indirectly in the query. The model is required to ground these potential mentions to the table schema. However, existing methods only consider the query’s corresponding table schema, which makes it difficult for the model to learn query-schema alignment.

    To address these shortcomings, a two-stage curriculum learning framework for text-to-SQL is proposed. Specifically, to leverage the differences in difficulty between examples, curriculum learning[7]is applied to the text-to-SQL task and an automatic curriculum learning solution is designed, including a difficulty scorer and a training scheduler. To exploit the relationship between queries and table schemas, a schema identification pre-training task is proposed to make the model choose the correct table schema from a set of candidates for a specific query. Experiments, including comprehensive ablation studies conducted on the WikiSQL dataset would demonstrate the effectiveness of the proposed method.

    Fig.1 Examples of text-to-SQL task:(a) simple example; (b) complex example

    1 Framework Overview

    In this section, the text-to-SQL problem is formulated and the two-stage curriculum learning framework for the text-to-SQL problem is introduced.

    1.1 Problem formulation

    Given a natural language queryQand a table schemaS=, the text-to-SQL task aims to output the corresponding SQL query. The table schema consists of the names of the columnsC={c1,c2, ,cn} and their corresponding typesT={t1,t2, ,tn}.

    1.2 Overall architecture

    As shown in Fig.2, the TSCL-SQL framework split the training process of the text-to-SQL task into two stages. Firstly, the query-schema alignment model was built at the pre-training stage. Specifically, a schema identification task was designed to retrieve the table schema for a specific natural language query. Based on the cross-encoder[8]with an in-batch negative[9]sampling strategy, the model chose the most similar table schema from the candidates for a specific query. Secondly, the curriculum learning was adopted, and the training process of the text-to-SQL task was re-designed with a difficulty scorer and a training scheduler at the curriculum learning stage. The difficulty scorer scored the difficulty of each training sample. The training scheduler organized training samples according to the score, from simple to complex, and split them into buckets to guide the optimization process.

    Fig.2 TSCL-SQL framework:(a) pre-training stage; (b) curriculum learning stage

    2 Pre-training Stage

    The objective of the pre-training stage is to enhance the encoder for the text-to-SQL task by establishing a strong alignment between the natural language query and the table schema. In order to build the alignment, a novel schema identification task is proposed to retrieve the relevant table schema for a given query. To facilitate this task, a dataset specifically designed for schema identification is constructed based on the WikiSQL dataset. The schema identification task is completed using a cross-encoder approach with an in-batch negative sampling strategy, effectively leveraging the power of the model to accurately identify and match query-table schema pairs.

    2.1 Dataset construction

    As shown in Table 1, the dataset mainly consists of the query and the table schema’s meta information. Since Wikipedia is the data source of the WikiSQL dataset, the corresponding table ID, article title, and section title from Wikipedia are concatenated as descriptions for each table schema. Figure 3 shows an example of the data source.

    Table 1 Information of schema identification dataset

    Fig.3 Data source of descriptions for a table schema

    2.2 Query-schema alignment model

    The query-schema alignment model aims to build a better encoder representation for the text-to-SQL task. A retrieval-based schema identification task of selecting the most similar table schema from a set of candidates for the given query is proposed. Figure 4 shows the architecture of the query-schema alignment model. It took the query and the description of the table schema as input and output a score representing the semantic consistency between the query and the table schema. The one with the highest score was chosen as the query’s corresponding table schema.

    sim(Qi,Di)=Linear(red(Encoder

    ([CLS]Qi[SEP]Di[SEP]))),

    (1)

    whereEncoder(·) represents the encoder of a pre-trained language model based on transformers[10];red(·) is a function that takes the representation of the first token from the last layer of the encoder;Linear(·) is a fully connected layer; [CLS] and [SEP] are special tokens.

    Fig.4 Architecture of query-schema alignment model

    (2)

    3 Curriculum Learning Stage

    The curriculum learning stage aims to use a curriculum learning framework to train a text-to-SQL model. A curriculum learning framework for the text-to-SQL task is introduced. Then, the implementation of two core components of the framework is described in detail.

    3.1 Curriculum learning framework

    The curriculum learning framework consists of a difficulty scorer and a training scheduler. The difficulty of each training sample is measured by an automatic difficulty scorer to avoid the uncertainty of hand-crafted rules and consider more about the feedback from the model. The overall process is as follows.

    Firstly, the difficulty scorer scores the samples and sorts them from easy to complex. Secondly, the training scheduler initializes an empty subset of the training set as a training stage starts. Sorted samples are split into buckets. For each training stage, a new bucket is added to the subset according to the difficulty. If the training on the subset is converged, the scheduler moves to the next stage until all the buckets are trained. Finally, the full training set is used for training for another few epochs.

    3.2 Difficulty scorer

    The difficulty scorer aims to score every training sample based on its difficulty. Due to the lack of existing information about which training samples are more difficult, instead of hand-craft rules, the model’s training loss is used as a measurement of the difficulties. A higher loss indicates that the sample is more complex and difficult.

    (3)

    Fig.5 Template used for slot-filling task

    3.3 Training scheduler

    The training scheduler aims to arrange the scored training samples for curriculum learning. As shown in Fig.6, the scheduler first sorts the training samples from easy to difficult and splits them intoNbuckets. Then it starts training with the easiest one. If the training process reaches convergence or a pre-defined number of epochs, a more difficult bucket will be merged. The scheduler will shuffle the data in the bucket and start training. After all the bucket is merged, it will train for several extra epochs on the complete training set.

    Fig.6 Training scheduler

    4 Experiments

    4.1 Dataset and metrics

    The proposed framework is evaluated on the WikiSQL dataset. It consists of tables from Wikipedia, natural language queries and their corresponding SQL statements. The basic characteristic of the WikiSQL dataset is shown in Table 2.

    Table 2 Basic characteristics of WikiSQL dataset

    Specifically, the natural language queries and their corresponding SQL statements are stored with JavaScript object notation. The tables are managed with SQLite database. Figure 7 shows an example of the training set.

    Fig.7 Example of training sample

    In Fig.7, table_id represents the corresponding table of a query; question is the natural language query, sql is the annotated SQL statement; agg and sel represent the column name and the aggregate function of the SELECT statement, respectively; conds are triplets (column-name, operator, value) of the WHERE statement.

    Logic form accuracyAccland execution accuracyAcceare used to evaluate the performance. Logic form accuracy considers whether the predicted SQL statement matches the ground truth. Execution accuracy considers if the execution result of the predicted SQL statement is the same as the execution result of the ground truth one. The formulas are as follows.

    (4)

    (5)

    (6)

    (7)

    whereNdenotes the size of a specific split of the dataset;SQL′ andSQLdenote the predicted SQL statement and the ground truth one, respectively;Y′ andYrepresent the execution result of the predicted SQL statement and the ground truth one, respectively.

    4.2 Execution-guided decoding

    Execution-guided decoding[11]uses beam search to expand the search space of candidate SQL statements and uses the execution result to filter the candidates. The main idea of execution-guided decoding is as follows. If the execution result of the predicted SQL statement is empty or the SQL parser cannot parse the statement, it is believed that the predicted SQL statement is wrong and another SQL statement will be selected from the candidates. In the following experiments, execution-guided decoding is used to further improve the performance.

    4.3 Parameter settings

    All the experiments were conducted on an entry-level server. Hardware and software configurations are shown in Table 3.

    Table 3 Hardware and software configurations

    Due to the limitation of the hardware, the implementation is based on RoBERTabase[13]. At the pre-training stage, the encoder was trained for three epochs. The initial learning rate was 3×10-6. At the curriculum learning stage, the model was first trained on the full training set for two epochs to get the difficulty scorer. Then the scored training samples were split into four buckets. After that the model was trained for three epochs for each training stage until all buckets were trained. Finally, the model was further trained on the full training set until converge.

    4.4 Baselines

    In order to establish a comprehensive performance comparison, multiple baseline methods for the text-to-SQL task are implemented and evaluated.

    1) HydraNet:HydraNet[6]proposes a hybrid ranking network, which casts the text-to-SQL problem as a column-wise ranking and decoding problem. It uses RoBERTa[12]as the encoder.

    2) HydraNet+Pt:the query-schema alignment pre-training method is implemented on that of the original HydraNet.

    3) HydraNet+CL:curriculum learning is applied to the original HydraNet.

    4) TSCL-SQL:the proposed method utilizes both query-schema alignment pre-training and curriculum learning.

    4.5 Results and analyses

    The results are shown in Tables 4 and 5, which demonstrate the framework’s performance under two scenarios, namely with execution-guided decoding (EG) and without EG.

    1) When EG is not applied, the logic form accuracy and the execution accuracy of the re-produced HydraNet model on the test set are 80.8% and 86.4%, respectively. The proposed model, TSCL-SQL, improves performance by 1.5% and 1.4%, respectively.

    2) When EG is applied, although the execution accuracy on the test set is already 91.0%, TSCL-SQL still improves the logic form accuracy and the execution accuracy by 0.9% and 0.5%, respectively.

    3) Ablation studies are conducted to investigate the effectiveness of the pre-training stage and the curriculum learning stage. If the pre-training stage is removed, the logic form accuracy and the execution accuracy will drop 0.5% and 0.6%, respectively, on the test set when EG is not applied. When EG is applied, there is still a slight decrease on the logic form and the execution accuracy if the pre-training stage is removed. It demonstrates that the pre-training stage would help the model initialize a better representation.

    Table 4 Performance of TSCL-SQL framework without EG

    Table 5 Performance of TSCL-SQL framework with EG

    Tables 6 and 7 show the performance comparison on all sub-tasks. TSCL-SQL achieves a performance improvement of 0.4% on the S-AGG sub-task compared to the baseline on the test set. On the other sub-tasks, the performance is still comparable. Therefore, TSCL-SQL is effective.

    Table 6 Development accuracy and test accuracy of various sub-tasks on Wiki SQL dataset without EG

    Table 7 Development accuracy and test accuracy of various sub-tasks on Wiki SQL dataset with EG

    Through analysis, it is found that both the pre-training stage and the curriculum learning stage are important. The pre-training stage provides a better representation for downstream tasks. The curriculum learning stage lets the model learn from easy tasks to complex tasks. It is beneficial for the model to approach the global minimum gradually and smoothly.

    5 Conclusions

    In this paper, a two-stage curriculum learning framework for text-to-SQL (TSCL-SQL) is proposed. At the pre-training stage, a schema identification pre-training task is proposed to build an alignment between queries and schemas. At the curriculum learning stage, an automatic curriculum learning solution is proposed for the text-to-SQL task. Experimental results demonstrate the effectiveness of the framework proposed in this paper.

    猜你喜歡
    王志軍路易
    國畫:慕思春雨
    當代作家(2024年3期)2024-06-29 22:18:20
    Effect of interface anisotropy on tilted growth of eutectics:A phase field study
    臭臭的路易
    王志軍 油畫作品
    真情本無語
    故事會(2018年3期)2018-02-07 15:28:22
    每個小孩都能說出天使一樣的句子
    最佳維權(quán)
    最佳維權(quán)
    愛你(2016年19期)2016-04-12 07:25:00
    對腎病患者的臨終關懷(短篇小說)
    南方文學(2015年3期)2015-07-15 08:03:15
    Numerical Simulation on New Perforator
    99国产综合亚洲精品| 啦啦啦在线免费观看视频4| av一本久久久久| 亚洲熟女精品中文字幕| 国产不卡av网站在线观看| 国产精品影院久久| 老司机亚洲免费影院| 国产精品永久免费网站| 国内久久婷婷六月综合欲色啪| 女人被狂操c到高潮| 91麻豆av在线| www.熟女人妻精品国产| 日日爽夜夜爽网站| 国产成人免费无遮挡视频| 久久人人爽av亚洲精品天堂| 最近最新中文字幕大全电影3 | 国产在线观看jvid| 一a级毛片在线观看| 久久国产精品大桥未久av| 久久九九热精品免费| 亚洲国产中文字幕在线视频| 757午夜福利合集在线观看| 新久久久久国产一级毛片| 老汉色av国产亚洲站长工具| 国产精品偷伦视频观看了| 国产精品 欧美亚洲| 老司机深夜福利视频在线观看| av线在线观看网站| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 成人精品一区二区免费| 精品亚洲成a人片在线观看| 人人妻人人澡人人爽人人夜夜| 午夜精品久久久久久毛片777| 国产精品一区二区免费欧美| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人爽人人夜夜| 热99re8久久精品国产| 人人妻人人添人人爽欧美一区卜| 欧美成人午夜精品| 国产精品久久久人人做人人爽| xxxhd国产人妻xxx| 一区二区三区激情视频| 国产91精品成人一区二区三区| 日韩人妻精品一区2区三区| 热99re8久久精品国产| 人人妻人人澡人人看| 色94色欧美一区二区| 精品久久久久久,| videos熟女内射| 久久久国产欧美日韩av| 国产又爽黄色视频| av视频免费观看在线观看| 99国产综合亚洲精品| 国产精品成人在线| 99久久综合精品五月天人人| 国产免费男女视频| 在线观看一区二区三区激情| 99精国产麻豆久久婷婷| 午夜老司机福利片| 国产激情欧美一区二区| 亚洲av成人不卡在线观看播放网| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| 丰满饥渴人妻一区二区三| 亚洲熟女毛片儿| 成年版毛片免费区| 欧美精品啪啪一区二区三区| av网站免费在线观看视频| 亚洲熟妇中文字幕五十中出 | 国产一区二区三区综合在线观看| 中文字幕人妻丝袜制服| 亚洲aⅴ乱码一区二区在线播放 | 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美网| 婷婷成人精品国产| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 色播在线永久视频| 国产日韩欧美亚洲二区| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 999久久久精品免费观看国产| 99re6热这里在线精品视频| 欧美成狂野欧美在线观看| 91大片在线观看| 成人特级黄色片久久久久久久| 国产不卡av网站在线观看| 久久精品成人免费网站| 国产精品永久免费网站| 黄色 视频免费看| 91精品三级在线观看| 久久九九热精品免费| av天堂久久9| 黄网站色视频无遮挡免费观看| 国产91精品成人一区二区三区| 大香蕉久久成人网| 成人精品一区二区免费| 精品国产一区二区三区四区第35| 久久久久久久精品吃奶| av天堂久久9| 不卡一级毛片| 俄罗斯特黄特色一大片| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 一a级毛片在线观看| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 岛国在线观看网站| 在线免费观看的www视频| 大香蕉久久成人网| 黄色毛片三级朝国网站| 91成人精品电影| 18禁美女被吸乳视频| 中文字幕色久视频| 色老头精品视频在线观看| 一区二区日韩欧美中文字幕| 超色免费av| 国产精品永久免费网站| 精品电影一区二区在线| 香蕉丝袜av| 久久久久视频综合| 热re99久久国产66热| 怎么达到女性高潮| 好看av亚洲va欧美ⅴa在| 99久久99久久久精品蜜桃| 日日爽夜夜爽网站| 国精品久久久久久国模美| 咕卡用的链子| 精品久久久精品久久久| 十八禁高潮呻吟视频| 露出奶头的视频| 免费在线观看亚洲国产| 韩国av一区二区三区四区| 成人永久免费在线观看视频| 欧美精品啪啪一区二区三区| 精品福利观看| 日韩中文字幕欧美一区二区| 国产野战对白在线观看| 在线天堂中文资源库| 中国美女看黄片| 搡老乐熟女国产| 亚洲精品在线美女| 久久久久久久午夜电影 | 91老司机精品| 91字幕亚洲| 中文字幕另类日韩欧美亚洲嫩草| 夫妻午夜视频| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 无人区码免费观看不卡| 又大又爽又粗| 欧美日韩精品网址| 欧美日韩瑟瑟在线播放| 不卡av一区二区三区| 中亚洲国语对白在线视频| 久久久精品国产亚洲av高清涩受| 曰老女人黄片| 日本黄色日本黄色录像| x7x7x7水蜜桃| 大片电影免费在线观看免费| 人妻一区二区av| 午夜91福利影院| 咕卡用的链子| 日本黄色视频三级网站网址 | 久久这里只有精品19| 国产成+人综合+亚洲专区| 精品一区二区三卡| 国产av又大| 一本综合久久免费| 日韩欧美一区视频在线观看| 日韩有码中文字幕| 国产在视频线精品| 免费在线观看完整版高清| 国产成人一区二区三区免费视频网站| 欧美成人午夜精品| 18禁美女被吸乳视频| 国产片内射在线| 18禁国产床啪视频网站| 日本一区二区免费在线视频| 老司机亚洲免费影院| 在线免费观看的www视频| 久99久视频精品免费| 中文字幕高清在线视频| 亚洲片人在线观看| 久久香蕉激情| 韩国av一区二区三区四区| 亚洲片人在线观看| 欧美人与性动交α欧美精品济南到| 亚洲一区二区三区不卡视频| 午夜视频精品福利| 久久香蕉精品热| 动漫黄色视频在线观看| 97人妻天天添夜夜摸| 国产男靠女视频免费网站| 国产又色又爽无遮挡免费看| 欧美激情极品国产一区二区三区| 性色av乱码一区二区三区2| 桃红色精品国产亚洲av| 成年女人毛片免费观看观看9 | av在线播放免费不卡| 久久精品亚洲av国产电影网| 久久 成人 亚洲| 日本欧美视频一区| 女人久久www免费人成看片| 中文字幕另类日韩欧美亚洲嫩草| 香蕉国产在线看| 波多野结衣一区麻豆| 久久午夜亚洲精品久久| 久久久国产一区二区| 欧美乱码精品一区二区三区| 午夜福利欧美成人| 久久久精品国产亚洲av高清涩受| 曰老女人黄片| av有码第一页| 久久久久精品国产欧美久久久| 精品电影一区二区在线| 色精品久久人妻99蜜桃| 成人永久免费在线观看视频| 国产一区二区三区综合在线观看| 777米奇影视久久| 国产99白浆流出| 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| 久久狼人影院| 黄色片一级片一级黄色片| 成年版毛片免费区| 欧美日韩亚洲综合一区二区三区_| 很黄的视频免费| 一级黄色大片毛片| 黄频高清免费视频| 99久久99久久久精品蜜桃| 亚洲片人在线观看| 亚洲成a人片在线一区二区| 黄网站色视频无遮挡免费观看| 亚洲九九香蕉| 亚洲欧美日韩高清在线视频| 日韩欧美一区视频在线观看| 亚洲五月婷婷丁香| 免费日韩欧美在线观看| 亚洲av日韩精品久久久久久密| 国产精品欧美亚洲77777| 精品电影一区二区在线| 香蕉国产在线看| 亚洲一区中文字幕在线| 成人亚洲精品一区在线观看| 国内久久婷婷六月综合欲色啪| 纯流量卡能插随身wifi吗| 亚洲七黄色美女视频| 国产在线精品亚洲第一网站| 精品一品国产午夜福利视频| 成年女人毛片免费观看观看9 | 亚洲av日韩在线播放| 脱女人内裤的视频| 丁香欧美五月| 久99久视频精品免费| 亚洲色图av天堂| 久久久国产精品麻豆| www.精华液| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 日日夜夜操网爽| 国产不卡一卡二| 中文字幕人妻熟女乱码| 精品少妇一区二区三区视频日本电影| videosex国产| 国产aⅴ精品一区二区三区波| 国产精品影院久久| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 亚洲第一av免费看| 美女 人体艺术 gogo| 九色亚洲精品在线播放| www.999成人在线观看| 亚洲免费av在线视频| 一二三四在线观看免费中文在| 五月开心婷婷网| 91麻豆av在线| 国产野战对白在线观看| 中文欧美无线码| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 亚洲专区中文字幕在线| 亚洲视频免费观看视频| 亚洲av熟女| 国产亚洲欧美精品永久| 丁香六月欧美| 久久香蕉精品热| 精品乱码久久久久久99久播| 制服诱惑二区| 欧美另类亚洲清纯唯美| 高清欧美精品videossex| 自线自在国产av| 国产一区二区三区在线臀色熟女 | 夫妻午夜视频| 国产淫语在线视频| 91麻豆av在线| 啦啦啦免费观看视频1| x7x7x7水蜜桃| 亚洲中文字幕日韩| 色94色欧美一区二区| a级片在线免费高清观看视频| 9191精品国产免费久久| 麻豆成人av在线观看| 欧美午夜高清在线| 在线av久久热| 婷婷精品国产亚洲av在线 | 91字幕亚洲| 香蕉国产在线看| 亚洲专区国产一区二区| 人成视频在线观看免费观看| a级毛片黄视频| 狠狠婷婷综合久久久久久88av| 精品一区二区三区av网在线观看| 国产高清激情床上av| 精品国产一区二区久久| 好看av亚洲va欧美ⅴa在| 乱人伦中国视频| 国产精品免费大片| 国产激情欧美一区二区| 少妇粗大呻吟视频| 亚洲久久久国产精品| 欧美成狂野欧美在线观看| 国产1区2区3区精品| 午夜福利视频在线观看免费| 18禁美女被吸乳视频| svipshipincom国产片| 亚洲三区欧美一区| 宅男免费午夜| 天天操日日干夜夜撸| 人人妻人人添人人爽欧美一区卜| 国产精品综合久久久久久久免费 | 90打野战视频偷拍视频| 成人手机av| 人妻丰满熟妇av一区二区三区 | 19禁男女啪啪无遮挡网站| 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 另类亚洲欧美激情| 18在线观看网站| 久久影院123| 免费在线观看影片大全网站| 免费黄频网站在线观看国产| 亚洲精品国产精品久久久不卡| 麻豆国产av国片精品| 国精品久久久久久国模美| av中文乱码字幕在线| 99riav亚洲国产免费| 手机成人av网站| 99精国产麻豆久久婷婷| 久久国产亚洲av麻豆专区| 亚洲视频免费观看视频| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 婷婷成人精品国产| videosex国产| 欧美另类亚洲清纯唯美| 日本黄色视频三级网站网址 | 十八禁人妻一区二区| 在线观看免费高清a一片| 成人av一区二区三区在线看| 免费高清在线观看日韩| 高清av免费在线| 黄色 视频免费看| 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 国产亚洲一区二区精品| 日本黄色日本黄色录像| av片东京热男人的天堂| 欧美国产精品va在线观看不卡| 亚洲成人国产一区在线观看| 午夜老司机福利片| 国产精品98久久久久久宅男小说| 黄色视频不卡| 亚洲精品乱久久久久久| 亚洲三区欧美一区| 天天添夜夜摸| 国产精品永久免费网站| 天天影视国产精品| 国产成人啪精品午夜网站| 精品一区二区三卡| 亚洲精品国产色婷婷电影| 热99久久久久精品小说推荐| 久久国产精品人妻蜜桃| 欧美老熟妇乱子伦牲交| xxx96com| 国产欧美亚洲国产| 看免费av毛片| 成人亚洲精品一区在线观看| 一本综合久久免费| 在线看a的网站| 中文字幕精品免费在线观看视频| 51午夜福利影视在线观看| 亚洲国产精品合色在线| 国产成人精品无人区| 国产精品久久久久成人av| 亚洲七黄色美女视频| 欧美性长视频在线观看| 99国产精品一区二区蜜桃av | 久久亚洲真实| 777久久人妻少妇嫩草av网站| 久久久久久久精品吃奶| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久人妻精品电影| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 日韩免费高清中文字幕av| 天天添夜夜摸| av不卡在线播放| 欧美在线一区亚洲| 侵犯人妻中文字幕一二三四区| 99riav亚洲国产免费| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 乱人伦中国视频| 免费在线观看亚洲国产| 亚洲成人免费av在线播放| 亚洲精品乱久久久久久| 国产淫语在线视频| 国产人伦9x9x在线观看| 久久中文看片网| 黄片播放在线免费| 大香蕉久久网| 91九色精品人成在线观看| 天天添夜夜摸| 免费在线观看视频国产中文字幕亚洲| 国产伦人伦偷精品视频| 亚洲色图av天堂| 麻豆av在线久日| 麻豆乱淫一区二区| 两性夫妻黄色片| 飞空精品影院首页| 亚洲欧美激情综合另类| 亚洲第一av免费看| 国产精品永久免费网站| 美女高潮喷水抽搐中文字幕| 精品少妇久久久久久888优播| 十八禁网站免费在线| 啦啦啦在线免费观看视频4| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| x7x7x7水蜜桃| av中文乱码字幕在线| 老司机午夜福利在线观看视频| 国产不卡一卡二| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| 人人妻人人澡人人爽人人夜夜| 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久| 岛国在线观看网站| 视频在线观看一区二区三区| 国产亚洲一区二区精品| 午夜精品久久久久久毛片777| 18禁观看日本| 欧美丝袜亚洲另类 | 免费久久久久久久精品成人欧美视频| 女性被躁到高潮视频| 亚洲自偷自拍图片 自拍| 亚洲精品粉嫩美女一区| 中文字幕最新亚洲高清| 午夜福利欧美成人| 操出白浆在线播放| 国产亚洲精品第一综合不卡| 免费av中文字幕在线| 黄片小视频在线播放| 黄色毛片三级朝国网站| 亚洲av第一区精品v没综合| 久久精品国产清高在天天线| 成人18禁高潮啪啪吃奶动态图| 日韩欧美三级三区| 99国产精品99久久久久| 亚洲av日韩在线播放| 日本黄色视频三级网站网址 | 老汉色∧v一级毛片| 热99re8久久精品国产| 国产一区在线观看成人免费| 国产aⅴ精品一区二区三区波| 黄色视频不卡| 欧美国产精品va在线观看不卡| 免费看十八禁软件| 丝瓜视频免费看黄片| 可以免费在线观看a视频的电影网站| 另类亚洲欧美激情| 少妇猛男粗大的猛烈进出视频| 狠狠婷婷综合久久久久久88av| 久久国产精品影院| 一级作爱视频免费观看| 国产真人三级小视频在线观看| 国产片内射在线| 美女高潮到喷水免费观看| 欧美人与性动交α欧美软件| 免费看十八禁软件| www.自偷自拍.com| 久久久国产一区二区| 男女床上黄色一级片免费看| 无限看片的www在线观看| 久久久久国内视频| 国产在线一区二区三区精| 午夜成年电影在线免费观看| 91精品三级在线观看| 香蕉久久夜色| 麻豆av在线久日| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx| 国产精品免费一区二区三区在线 | 高清视频免费观看一区二区| 亚洲一区二区三区不卡视频| 一边摸一边抽搐一进一小说 | 亚洲综合色网址| 精品乱码久久久久久99久播| 国产亚洲精品一区二区www | 国产精品影院久久| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品粉嫩美女一区| 国产精品乱码一区二三区的特点 | 夜夜爽天天搞| 精品电影一区二区在线| 免费久久久久久久精品成人欧美视频| 亚洲精品粉嫩美女一区| 亚洲一区中文字幕在线| av福利片在线| 国产高清激情床上av| 国产成人免费无遮挡视频| 国产成人精品无人区| 国产无遮挡羞羞视频在线观看| 欧美丝袜亚洲另类 | 亚洲精品久久成人aⅴ小说| 久久青草综合色| 欧美激情高清一区二区三区| 午夜两性在线视频| 国产成人一区二区三区免费视频网站| avwww免费| av国产精品久久久久影院| 国产伦人伦偷精品视频| 天堂俺去俺来也www色官网| 亚洲成a人片在线一区二区| 1024香蕉在线观看| 亚洲午夜理论影院| 1024视频免费在线观看| 欧美日韩亚洲高清精品| 大码成人一级视频| 精品人妻熟女毛片av久久网站| 久久精品亚洲熟妇少妇任你| 欧美成狂野欧美在线观看| av中文乱码字幕在线| 欧美大码av| 国产男女超爽视频在线观看| 变态另类成人亚洲欧美熟女 | 视频在线观看一区二区三区| 纯流量卡能插随身wifi吗| 国产激情久久老熟女| 成人免费观看视频高清| 水蜜桃什么品种好| 99久久国产精品久久久| 久热这里只有精品99| 91精品国产国语对白视频| 精品福利永久在线观看| 久久精品国产a三级三级三级| 中文字幕最新亚洲高清| 国产亚洲精品久久久久5区| 亚洲精品中文字幕在线视频| 久久久久国产一级毛片高清牌| 欧美黄色片欧美黄色片| 老司机深夜福利视频在线观看| 69精品国产乱码久久久| 国产av一区二区精品久久| 精品卡一卡二卡四卡免费| 国产精品偷伦视频观看了| 免费少妇av软件| av国产精品久久久久影院| 老鸭窝网址在线观看| av天堂在线播放| 精品第一国产精品| 在线看a的网站| www.自偷自拍.com| 久久热在线av| 国产成人精品无人区| www.自偷自拍.com| 久久热在线av| 欧美在线一区亚洲| av天堂在线播放| 50天的宝宝边吃奶边哭怎么回事| 交换朋友夫妻互换小说| 亚洲精品在线观看二区| 最近最新中文字幕大全电影3 | 精品国产国语对白av| 91国产中文字幕| 久久狼人影院| 午夜91福利影院| 麻豆国产av国片精品| 黄色女人牲交| 美国免费a级毛片| 在线观看日韩欧美| 80岁老熟妇乱子伦牲交| 久久精品亚洲精品国产色婷小说| 后天国语完整版免费观看| 成年动漫av网址| 亚洲国产欧美网| 亚洲熟女精品中文字幕| 黄色女人牲交| 中文字幕精品免费在线观看视频| 欧美色视频一区免费| 久久精品国产亚洲av香蕉五月 | 丝袜人妻中文字幕| 国产成人系列免费观看| 亚洲精品av麻豆狂野| 18禁裸乳无遮挡免费网站照片 | 亚洲五月婷婷丁香| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕av电影在线播放|