• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complex Dynamics Analysis of Generalized Tullock Contest

    2023-09-22 14:30:06YANGXinZHOUWei

    YANG Xin(楊 欣), ZHOU Wei(周 偉)

    School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China

    Abstract:The generalized dynamic Tullock contest model with two homogeneous participants is established, in which both players have the same valuation of winning rewards and losing rewards. Firstly, the unique symmetric equilibrium point of the system is obtained by calculation and its local stability condition is given based on the Jury criterion. Then, two paths of the system from stability to chaos, namely flip bifurcation and Neimark-Sacker bifurcation, are analyzed by using the two-dimensional parametric bifurcation diagram. Meanwhile, the abundant Arnold tongues in the two-dimensional parametric bifurcation diagram are analyzed. Finally, the phenomenon of multistability of the system is illustrated through the basin of attraction, and the contact bifurcation occurs during the evolution of the basin of attraction with varying parameters.

    Key words:Tullock contest; Arnold tongue; contact bifurcation; chaos; coexistence of attractor

    0 Introduction

    Contest theory is the study of situations in which two or more players compete through expending effort to win a reward or avoid punishment. Many phenomena in the real world can be studied within the framework of contest theory, such as election campaigns, lobbying, rent-seeking, sports, examinations, competitions for technological development, relative punishments within corporations, arms races between nations and wars. Tullock proposed the concept of contest success function (CSF)[1], which referred to the corresponding relationship between players’ efforts and their probability of winning. According to the CSF, the contest can be divided into all-pay auctions, Tullock contests and Lazear-Rosen contests. A generalized Tullock dynamic contest model based on the Tullock contest theory is established in this paper.

    Scholars at home and abroad have done a lot of research on the Tullock contest model from static and dynamic aspects. For static models, the existing literature focused on the existence and characteristics of Nash equilibrium. Peréz-Castrilloetal.[2]reflected on the basic mode of “efficient rent-seeking” and gave a complete description of pure strategy equilibrium. Nti[3-4]considered the Tullock rent-seeking game under the condition of asymmetric valuation and established the sufficient and necessary conditions of the unique pure strategy Nash equilibrium. Alcaldeetal.[5]proved the existence of mixed strategy equilibrium. Fengetal.[6]provided a different method to establish the uniqueness of the equilibrium between two players with an asymmetric valuation in the Tullock contest with discriminatory power between 1 and 2. However, the study of the static model has some limitations. In the actual economic environment, factors such as market demand and market supply, are constantly changing, leading to dynamic changes in the overall market environment. Therefore, the use of the dynamic model to simulate the Tullock contest has attracted the attention of some scholars. Xuetal.[7]studied the asymptotic stability of equilibrium in dynamic rent-seeking games. Bischietal.[8]studied the dynamic rent-seeking game with two bounded rational participants and analyzed the basin of attraction with a special structure generated by the focus. Schmidt[9]established a model extending to asymmetric bonus valuation and endogenous reward and studied the local stability of Nash equilibrium in adjustment speed and reward level. Zhangetal.[10]studied the dynamic behavior of asymmetric competition models with bounded rationality. By studying the local stability and bifurcation of the equilibrium point, the stability conditions are given, and it is proved that the asymmetric competition model inherently generates two paths to chaos:flip bifurcation and Neimark-Sacker bifurcation. Yuetal.[11]considered a dynamic rent-seeking game involving the decision-maker’s cost and competitive intensity. The local asymptotic stability of the Nash equilibrium is proved under political conditions and rent-seekers with incomplete information sets.

    However, most of the existing literature focused on the Tullock rent-seeking game or the standard Tullock contest model. Compared with the reward mechanism, the punishment mechanism has received less attention. In addition, most of the literature focused on the local stability of equilibrium points, lacking characterization of complex dynamic behaviors that may exist in dynamic models, such as the coexistence of attractors[12]and global bifurcation[13]. Therefore, the punishment mechanism is introduced in this paper, and the generalized dynamic Tullock contest model which is more consistent with the actual contest market environment is established. The unique equilibrium point of the system is obtained through calculation, and its local stability is analyzed by utilizing nonlinear dynamics theory and Jury criterion[14]. The effects of adjustment speed and contest cost on the stability of the system and the evolution process of the system under the change of parameters are analyzed by one-dimensional and two-dimensional parametric bifurcation diagrams. Finally, the global dynamic behavior of the system is analyzed by means of the basin of attraction.

    1 Modeling

    We consider a Tullock contest involving two players, in which players compete against each other by expending irreversible effort to win a reward or avoid punishment. Assuming that two players have the same valuation of the winning reward and the losing reward,i.e., they are symmetric, the two players are represented byi(i=1, 2).The winning reward isW, andW>0; the losing reward isL, andL∈R.The winning reward is higher than the losing reward,i.e.W>L.The CSFpifor a Tullock contest withnplayers[15]is

    (1)

    wherexiis the effort spent by the player;ris called discriminatory power and it measures the effectiveness of the player’s effort in determining the probability of winning,i.e., the accuracy of the contest itself. Whenr→∞,the Tullock contest is infinitely close to an all-pay auction. Asrincreases, the accuracy of the contest increases. To simplify the calculation, the discriminatory powerris supposed to be 1, so the CSF adopted in this paper is

    (2)

    It is assumed that the cost function of both players is a linear function of expenditure, and the unit cost of the two players participating in the competition is equal, that is, the players are homogeneous, but the cost of each player is different when the contest succeeds or fails. Therefore, the cost function can be expressed by

    (3)

    Therefore, the payoff of playeriis

    (4)

    wherec1andc2respectively represent the cost of success and failure in a contest. In order to ensure that the player does not have the motivation to spend infinite effort, we set such conditions:the player’s efforts have a direct negative impact on his reward for winning and a non-positive direct impact on his reward for failure, that isc1>0 andc2≥0.Based on the CSF and the reward the player receives, we can further calculate the expected revenue of the player as

    Πi(x1,x2)=pi(W-c1xi)+(1-pi)(L-c2xi).

    (5)

    Thus, the marginal revenues of the two players are

    (6)

    It is difficult for two players to obtain complete information about the market, so both players are assumed to be bounded rational. Based on the gradient adjustment mechanism[16], each player uses the local estimate of marginal expectation to update his effort expenditure at timet, so the following dynamic contest model can be established.

    (7)

    wherek1(>0) andk2(>0) represent the adjustment speeds of player 1 and player 2 respectively.

    2 Equilibrium Point and Local Stability

    The following equations can be obtained by settingxi(t+1)=xi(t) (i=1, 2) in system (7).

    As system (7) is not defined in (0, 0), the unique equilibrium point is

    Because (W-L)/(3c1+c2)>0,((W-L)/(3c1+c2), (W-L)/(3c1+c2)) is an internal equilibrium, also known as the Nash equilibrium.

    In order to study the stability of the Nash equilibrium, the Jacobian matrix[17]Jof system (7) is given as

    where

    Substituting the Nash equilibrium pointE*into the Jacobian matrix, we can get

    The trace and determinant of the Jacobian matrixJ(E*) can be obtained as

    T=(1-c1k1)+(1-c1k2)=2-c1(k1+k2),

    When and only when the eigenvalues of the Jacobian matrix are inside the unit circle of the complex plane, the Nash equilibrium point is in a stable state. Therefore, the following Jury’s conditions are satisfied:

    Proposition1The Neimark-Sacker bifurcation does not occur at the Nash equilibrium pointE*.

    ProofIt is easy to know that the characteristic equation of the Jacobian matrix corresponding toE*is

    F(λ)=λ2-λT+D.

    The discriminant of the characteristic equation can be written as

    Ask1>0,k2>0, obviously Δ>0, which means that the system has two mutually distinct real eigenvalues at the Nash equilibrium pointE*and does not produce complex eigenvalues. Therefore, the Neimark-Sacker bifurcation does not occur in the system.

    Proposition2The Nash equilibrium pointE*is locally stable as long as the system parameters satisfy the following condition

    ProofTo make the equilibrium point stable, the three conditions of the Jury criterion should be satisfied. A simple calculation shows that to make the three conditions hold at the same time, the above inequality should be satisfied.

    3 Numerical Simulation and Complexity Analysis

    3.1 Bifurcation analysis

    We study the complex dynamic behavior of the system by numerical simulation. In the two-dimensional parametric bifurcation diagram shown in Fig. 1(a), the multi-dimensional parameters in the system are fixed asW=10.369 3,L=1.420 3,c1=0.837 5 andc2=1.796 0. In Fig.1(a), the color bar on the right indicates the number of different periods, and black is used to indicate aperiodic motion (chaotic and quasi-periodic), represented by the number 30. The olive-green area in the lower left corner represents the stable area of the system under this set of parameters, and it can be found that the system can enter chaos by means of flip bifurcation. When other parameters are fixed, the system loses stability as the adjustment speedk1increases, which means that within a certain range, a smaller adjustment speed is more conducive to maintaining the stability of the system. To further analyze the influence of parameters on the stability region, stability curves corresponding to different values of the parameterc1are drawn on the plane (k1,k2).The values of the parameterc1are 0.837 5, 0.937 5 and 1.000 0 respectively as shown in Fig. 1(b). It was found that the stability region of the system would gradually decrease with the increase of the parameterc1.

    As shown in Fig. 2(a),W=13.258 0,L= -3.510 1,c1=0.167 6 andc2=1.502 2. It can be observed that a large number of V-shaped isoperiodic structures are embedded in the aperiodic motion indicated by black. These V-shaped periodic islands are also called Arnold tongue[18], and they are adjacent to the Neimark-Sacker bifurcation line[19](the olive green-black boundary). Aperiodic solute ions and periodic solutions appear alternately with the increase of adjustment speeds. In addition, Fig. 2(b) is a local enlargement of the region [1.8, 4.3]×[3.5, 5.6] in Fig.2(a), and the number of cycles increases to 100. As can be seen from Fig. 2(b), the area of these Arnold tongues increases with the increase of adjustment speed, resulting in a wider interval of mode-locked. When the threshold value is reached, these tongues overlap and intertwine together, leading to chaos eventually.

    Fig.1 Stability analysis:(a) two-dimensional parameter bifurcation diagram; (b) stability curves at different c1

    Fig.2 Two-dimensional parametric bifurcation diagram:(a) bifurcation diagram of k1-k2 plane; (b) local enlargement diagram of Fig.2(a)

    Figure 3 shows the one-dimensional parametric bifurcation diagrams of the system changing with the adjustment speedk1.Figure 3(a) is obtained by fixingk2=2.603 9 based on Fig. 2(a), which shows that the first bifurcation occurs whenk1=0.480 0, and the system transitions from period-2 state to chaos after flip bifurcation. Figure 3(b) is obtained by fixingk2=5.112 0 based on Fig. 2 (a), it can be seen that Neimark-Sacker bifurcation occurs atk1=0.840 0, and the system directly enters chaos from the stable period-1. The chaos continues untilk1=1.852 0, a 7-period lock is generated. By increasingk1further, the system enters chaos again and returns to a periodic state through inverse Neimark-Sacker bifurcation atk1=2.865 0, and then enters chaos again through period-doubling bifurcation. This means that after the economic system gets out of the cyclical behavior, if the players do not reduce the adjustment speeds in time and let them continue increasing, both players will be directly forced to exit from the market in such a chaotic market.

    Fig.3 Bifurcation diagrams of k1 at different k2:(a)k2=2.603 9; (b)k2=5.112 0

    3.2 Basin of attraction and multistability

    The local stability analysis given above only focuses on a small neighborhood near the equilibrium point and cannot explain the change of model properties when system parameters change. Therefore, to further study the long-term dynamic behavior of the system under given initial conditions, the global analysis of the system is carried out by using the basin of attraction.

    The fixed system parameters areW=25.002 3,L=15.258 0,c1=0.384 8,c2=1.061 4 andk2=3.631 6. Figure 4 shows the evolution of the basins of attraction with the change of the adjustment speedk1.The cyan region is the region of attraction of the black attractor, representing the bounded trajectory region. Any initial condition taken in this region can converge to the black attracting set after several iterations, while the dark blue region is the escape region, representing the divergent trajectory (or negative trajectory) region, and any initial condition taken in this region can become divergent. This means that we can use the above analysis to roughly predict the future of the system.

    Fig. 4 Evolutionary process of basins of attraction under different adjustment speeds when W=25.002 3, L=15.258 0, c1=0.384 8, c2=1.061 4 and k2=3.631 6:(a) k1=3.762 4; (b)k1=3.831 3; (c)k1=4.008 7; (d)k1=4.359 4; (e)k1=4.534 0; (f)k1=4.535 4

    In Fig. 4(a),k1=3.762 4, there are two weak attractors in the Milnor sense[20], the main region of the attraction domain is approximately in the shape of a rounded triangle, and the basin of attraction is symmetric about diagonal. In Fig. 4(b),k1increases to 3.831 3, two weak attractors evolve into period-2 attractors, and the main region of the attractors is accompanied by the appearance of the “hole”, the basin of attraction loses symmetry. Ask1increases to 4.008 7, period-2 attractors evolve into period-4 attractors through period-doubling bifurcation, and the area of the “hole” increases as shown in Fig. 4(c). In Fig. 4(d),k1=4.359 4, then the period-4 attractor evolves into two pieces of chaotic attractors. In Fig. 4(e),k1further increases to 4.534 0, and the two chaotic attractors expand and fuse into a piece of chaotic attractors which almost touches the boundary of the domain of attractors, and a contact bifurcation may occur. In Fig. 4 (f),k1=4.535 4, contact bifurcation happens, so the chaotic attractor is destroyed, and the feasible region is full of “ghosts” of the “just died” chaotic attractor.

    Figure 5 shows a set of basins of attraction containing the coexistence of attractors with the change of adjustment speedk1.Black and red represent different attractors and the parameters are fixed asW=25.175 3,L=5.271 0,c1=0.186 6,c2=1.781 1 andk2=3.587 4. In Fig. 5(a),k1=2.518 0, an invariant cycle coexists with an annular chaotic attractor formed by the Neimark-Sacker bifurcation. In Fig. 5(b),k1=3.172 0, the invariant cycle evolves into ten pieces of chaotic attractors in the shape of “fireworks” and the annular chaotic attractor evolves into a piece of chaotic attractors with the increase ofk1.In Fig. 5(c),k1=3.548 0, the chaotic attractor evolves into a piece of chaotic attractors, while the red attractor hardly changes. Because two chaotic attractors are in contact with their own boundary of the domain of attraction, contact bifurcation occurs in the system at this time, resulting in the unclear boundary of the domain of attraction of the two groups of coexisting attractors, and the blue region and light blue region infiltrate each other. In Fig. 5(d),k1continues to increase to 3.588 9, and both two pieces of chaotic attractors split into eight pieces of chaotic attractors. It can be seen from the above analysis that the changes in initial conditions and parameters make the system present different dynamic behaviors. Although the change of initial conditions and parameters leads to different dynamic behaviors of the system, we can still roughly predict the future of the system through the above analysis. Economically, players can make corresponding strategy adjustments to achieve their long-term stability and benefit from it.

    Fig. 5 Evolutionary process of basins of attraction under different adjustment speeds when W=25.175 3, L=5.271 0, c1=0.186 6, c2=1.781 1 and k2=3.587 4:(a)k1=2.518 0; (b)k1=3.172 0; (c)k1=3.548 0; (d) k1=3.588 9

    4 Conclusions

    In this paper, to maximize the expected benefits of players, the symmetric dynamic Tullock contest model is discussed and the existence and stability of equilibrium points are analyzed. One-dimensional parametric bifurcation diagrams and two-dimensional parametric bifurcation diagrams are used to study the system’s path into chaos and the influence of parameters on the stability of the system. The results show that the system has two paths into chaos, namely flip bifurcation and Neimark-Sacker bifurcation, and the smaller the adjustment speed and contest cost, the more stable the system. This means that to ensure the long-term stability of the market, players should choose the smaller adjustment speed and contest cost. Finally, the global dynamic behavior of the system is studied, and it is found that contact bifurcation occurs when the parameters exceed the threshold values, and the system can present different kinds of attractor coexistence phenomena.

    一夜夜www| 俺也久久电影网| 国产人伦9x9x在线观看| 午夜福利在线在线| 男人舔女人的私密视频| 日韩三级视频一区二区三区| 欧美三级亚洲精品| 一进一出好大好爽视频| 精品午夜福利视频在线观看一区| 久久精品91无色码中文字幕| 国产真人三级小视频在线观看| 国产精品一区二区精品视频观看| x7x7x7水蜜桃| 精品久久久久久久人妻蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 久久精品91无色码中文字幕| 国内久久婷婷六月综合欲色啪| 一边摸一边做爽爽视频免费| 欧美日韩亚洲国产一区二区在线观看| 色精品久久人妻99蜜桃| cao死你这个sao货| 亚洲av成人av| 90打野战视频偷拍视频| 丝袜美腿诱惑在线| 国内毛片毛片毛片毛片毛片| 丝袜美腿诱惑在线| 91成年电影在线观看| 哪里可以看免费的av片| 亚洲成人国产一区在线观看| 亚洲熟女毛片儿| 老司机在亚洲福利影院| 亚洲电影在线观看av| www.自偷自拍.com| 日韩欧美一区二区三区在线观看| 色综合站精品国产| 麻豆av在线久日| 制服诱惑二区| 久久久久性生活片| 99热这里只有是精品50| 亚洲天堂国产精品一区在线| 国产亚洲精品av在线| 日本黄大片高清| 成人av一区二区三区在线看| 日韩欧美精品v在线| 亚洲av美国av| 男人舔女人下体高潮全视频| 中文字幕人成人乱码亚洲影| 午夜免费观看网址| 国产精品一区二区三区四区久久| 国产成年人精品一区二区| 丰满人妻一区二区三区视频av | 黄色丝袜av网址大全| 欧美日韩亚洲综合一区二区三区_| 亚洲av电影不卡..在线观看| 久久久国产成人免费| 亚洲五月天丁香| 色播亚洲综合网| 国产亚洲精品久久久久5区| 午夜福利欧美成人| 中国美女看黄片| 欧美黑人欧美精品刺激| 久久精品国产亚洲av香蕉五月| 国产精品久久久人人做人人爽| av国产免费在线观看| 老司机在亚洲福利影院| 亚洲精品在线观看二区| 曰老女人黄片| 日本熟妇午夜| 老司机在亚洲福利影院| 手机成人av网站| 成人永久免费在线观看视频| 久久 成人 亚洲| 久久精品影院6| 亚洲美女黄片视频| 久久久久久人人人人人| 老熟妇乱子伦视频在线观看| 黄色成人免费大全| 在线十欧美十亚洲十日本专区| 久久 成人 亚洲| www.精华液| 熟女少妇亚洲综合色aaa.| 欧美日韩亚洲国产一区二区在线观看| 欧美最黄视频在线播放免费| 国产99久久九九免费精品| 国产精品电影一区二区三区| 免费观看精品视频网站| 亚洲成av人片在线播放无| 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| 亚洲成人免费电影在线观看| 曰老女人黄片| 久久亚洲真实| 男人舔奶头视频| 一进一出抽搐gif免费好疼| 在线a可以看的网站| 香蕉久久夜色| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 看片在线看免费视频| 一级毛片女人18水好多| 在线国产一区二区在线| 午夜福利成人在线免费观看| 两人在一起打扑克的视频| videosex国产| 久久久水蜜桃国产精品网| 黄色视频不卡| 亚洲精品国产精品久久久不卡| 夜夜爽天天搞| 亚洲成人久久爱视频| 成年女人毛片免费观看观看9| 国产单亲对白刺激| 真人一进一出gif抽搐免费| 伊人久久大香线蕉亚洲五| av中文乱码字幕在线| 日韩欧美精品v在线| 老司机靠b影院| 久久久久久久久中文| 亚洲成av人片在线播放无| 国产黄片美女视频| 变态另类成人亚洲欧美熟女| 久久久久久九九精品二区国产 | 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 国产成人精品无人区| 欧美日韩亚洲综合一区二区三区_| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 在线免费观看的www视频| 午夜福利高清视频| 欧美日韩黄片免| 亚洲精品一卡2卡三卡4卡5卡| 成人精品一区二区免费| 亚洲国产精品久久男人天堂| 婷婷丁香在线五月| 很黄的视频免费| 一夜夜www| 一区二区三区高清视频在线| 日本a在线网址| 岛国在线免费视频观看| 日韩大码丰满熟妇| 欧美成人一区二区免费高清观看 | 欧美日本视频| 最近最新中文字幕大全免费视频| a在线观看视频网站| 在线观看免费午夜福利视频| 欧美乱妇无乱码| e午夜精品久久久久久久| 中文字幕精品亚洲无线码一区| 别揉我奶头~嗯~啊~动态视频| 最近在线观看免费完整版| 好男人在线观看高清免费视频| 香蕉国产在线看| 日韩高清综合在线| 后天国语完整版免费观看| 一本久久中文字幕| 国产视频内射| 很黄的视频免费| www国产在线视频色| 国产探花在线观看一区二区| 91在线观看av| 国产午夜福利久久久久久| 好男人电影高清在线观看| 婷婷精品国产亚洲av| 亚洲欧美一区二区三区黑人| 欧美日韩中文字幕国产精品一区二区三区| 国产av不卡久久| 国产精品,欧美在线| 男人舔奶头视频| 欧美成人午夜精品| aaaaa片日本免费| 欧美极品一区二区三区四区| 天堂av国产一区二区熟女人妻 | 白带黄色成豆腐渣| 97碰自拍视频| 午夜激情av网站| 久久久国产欧美日韩av| 宅男免费午夜| 我要搜黄色片| 后天国语完整版免费观看| 亚洲色图 男人天堂 中文字幕| 日本三级黄在线观看| 欧美中文综合在线视频| 99热这里只有是精品50| 欧美日本视频| 91字幕亚洲| 女同久久另类99精品国产91| 男人舔奶头视频| 草草在线视频免费看| 麻豆国产97在线/欧美 | 国产亚洲av嫩草精品影院| bbb黄色大片| 99热这里只有精品一区 | 国产av又大| 最近最新中文字幕大全电影3| 在线a可以看的网站| 国产精品香港三级国产av潘金莲| 91成年电影在线观看| 亚洲一区二区三区不卡视频| 在线看三级毛片| 最近最新免费中文字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕av在线有码专区| 亚洲自偷自拍图片 自拍| 国产探花在线观看一区二区| 高潮久久久久久久久久久不卡| 日韩大尺度精品在线看网址| 国产亚洲精品一区二区www| 欧美精品亚洲一区二区| 国产男靠女视频免费网站| 国产av麻豆久久久久久久| 欧美高清成人免费视频www| 一二三四在线观看免费中文在| 丰满的人妻完整版| 国产蜜桃级精品一区二区三区| or卡值多少钱| 免费看十八禁软件| 午夜精品久久久久久毛片777| 久久热在线av| 亚洲最大成人中文| 成人特级黄色片久久久久久久| 琪琪午夜伦伦电影理论片6080| 国产av一区在线观看免费| 久久久国产欧美日韩av| 国内揄拍国产精品人妻在线| 国产精品免费一区二区三区在线| 色精品久久人妻99蜜桃| 性欧美人与动物交配| 亚洲精品av麻豆狂野| 国产精品1区2区在线观看.| 欧美性长视频在线观看| 91成年电影在线观看| 久久久久久久久久黄片| 国产高清有码在线观看视频 | 久久精品综合一区二区三区| 国产成人精品无人区| 国产区一区二久久| 久久人人精品亚洲av| 老司机在亚洲福利影院| 伊人久久大香线蕉亚洲五| 欧美黑人欧美精品刺激| 亚洲精品久久国产高清桃花| av片东京热男人的天堂| 精品国内亚洲2022精品成人| 国产黄片美女视频| av国产免费在线观看| 日本免费a在线| 99久久国产精品久久久| 两个人视频免费观看高清| 久久中文字幕人妻熟女| 99久久精品国产亚洲精品| 啪啪无遮挡十八禁网站| 久久精品aⅴ一区二区三区四区| 男女做爰动态图高潮gif福利片| 亚洲一码二码三码区别大吗| 国产熟女午夜一区二区三区| 国产熟女午夜一区二区三区| www.熟女人妻精品国产| 女人高潮潮喷娇喘18禁视频| 老熟妇仑乱视频hdxx| 亚洲自拍偷在线| 99在线人妻在线中文字幕| 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久久久久电影 | 三级男女做爰猛烈吃奶摸视频| 亚洲免费av在线视频| 久久九九热精品免费| 特大巨黑吊av在线直播| 日日爽夜夜爽网站| 欧美日韩瑟瑟在线播放| 我的老师免费观看完整版| 1024香蕉在线观看| 99精品久久久久人妻精品| 一区二区三区国产精品乱码| 日韩成人在线观看一区二区三区| 亚洲欧美一区二区三区黑人| 欧洲精品卡2卡3卡4卡5卡区| 成人国产综合亚洲| 香蕉av资源在线| 91国产中文字幕| 免费在线观看日本一区| 国产精品久久久久久亚洲av鲁大| 亚洲人成77777在线视频| 精品午夜福利视频在线观看一区| 国产亚洲精品av在线| 久久国产乱子伦精品免费另类| 亚洲成人国产一区在线观看| 欧美成人性av电影在线观看| 成人亚洲精品av一区二区| 日本熟妇午夜| 手机成人av网站| 可以免费在线观看a视频的电影网站| 成熟少妇高潮喷水视频| 亚洲自偷自拍图片 自拍| 99国产极品粉嫩在线观看| 亚洲人成77777在线视频| 性欧美人与动物交配| 亚洲自偷自拍图片 自拍| 色在线成人网| 精品福利观看| 国产精品一区二区免费欧美| 熟女电影av网| 波多野结衣高清作品| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片高清免费大全| 精品人妻1区二区| 亚洲狠狠婷婷综合久久图片| 51午夜福利影视在线观看| avwww免费| 亚洲乱码一区二区免费版| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区| 国内精品久久久久精免费| 日韩欧美免费精品| 一级作爱视频免费观看| 色老头精品视频在线观看| АⅤ资源中文在线天堂| 桃色一区二区三区在线观看| 女同久久另类99精品国产91| 波多野结衣高清作品| 国产黄色小视频在线观看| 亚洲第一欧美日韩一区二区三区| 熟女电影av网| 99国产综合亚洲精品| 日本三级黄在线观看| 村上凉子中文字幕在线| 国产成人影院久久av| 韩国av一区二区三区四区| 宅男免费午夜| 女人被狂操c到高潮| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲| 国产成人av教育| 久久 成人 亚洲| 三级国产精品欧美在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 两个人的视频大全免费| 黄频高清免费视频| 正在播放国产对白刺激| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文av在线| 校园春色视频在线观看| 妹子高潮喷水视频| 90打野战视频偷拍视频| 人妻久久中文字幕网| 日韩中文字幕欧美一区二区| 淫秽高清视频在线观看| 亚洲avbb在线观看| 麻豆久久精品国产亚洲av| 久久中文字幕人妻熟女| 午夜久久久久精精品| 亚洲全国av大片| 国产成人精品久久二区二区91| 啦啦啦韩国在线观看视频| 午夜免费成人在线视频| 免费看十八禁软件| 亚洲国产欧美网| 午夜视频精品福利| 亚洲av电影在线进入| 国产久久久一区二区三区| 啦啦啦免费观看视频1| 久久久久国产一级毛片高清牌| 男女午夜视频在线观看| 国产v大片淫在线免费观看| 国产在线观看jvid| 老司机福利观看| 国产一区二区在线观看日韩 | 亚洲一码二码三码区别大吗| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 亚洲精品一卡2卡三卡4卡5卡| a级毛片在线看网站| 成人高潮视频无遮挡免费网站| 视频区欧美日本亚洲| 午夜久久久久精精品| 国产亚洲精品第一综合不卡| 中文字幕熟女人妻在线| 国产成人一区二区三区免费视频网站| 69av精品久久久久久| 香蕉av资源在线| 国产精品 国内视频| 亚洲第一电影网av| 两个人的视频大全免费| 久久中文字幕一级| 亚洲欧美激情综合另类| 激情在线观看视频在线高清| 午夜福利免费观看在线| 蜜桃久久精品国产亚洲av| 亚洲国产欧美网| 美女免费视频网站| 99在线视频只有这里精品首页| 免费观看精品视频网站| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| 免费观看精品视频网站| 成人午夜高清在线视频| 久久亚洲真实| 成人精品一区二区免费| 中文字幕人妻丝袜一区二区| 欧美丝袜亚洲另类 | 18美女黄网站色大片免费观看| 国产日本99.免费观看| 国产区一区二久久| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 国产区一区二久久| 12—13女人毛片做爰片一| 中文字幕熟女人妻在线| 又粗又爽又猛毛片免费看| 午夜免费成人在线视频| 亚洲黑人精品在线| 日日爽夜夜爽网站| 国产精品影院久久| 麻豆av在线久日| 久久中文看片网| 这个男人来自地球电影免费观看| 久久人妻av系列| 成人高潮视频无遮挡免费网站| 日本黄大片高清| 亚洲aⅴ乱码一区二区在线播放 | 午夜激情福利司机影院| 国产精品电影一区二区三区| 精品国产美女av久久久久小说| 精品久久蜜臀av无| 少妇人妻一区二区三区视频| 在线观看免费午夜福利视频| 欧美不卡视频在线免费观看 | 国产成人精品久久二区二区免费| 波多野结衣高清作品| 亚洲一区高清亚洲精品| 日韩精品青青久久久久久| 一进一出抽搐动态| 精品少妇一区二区三区视频日本电影| 日本a在线网址| 日韩国内少妇激情av| 听说在线观看完整版免费高清| 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 法律面前人人平等表现在哪些方面| 国产午夜福利久久久久久| 免费搜索国产男女视频| 亚洲av片天天在线观看| 成人高潮视频无遮挡免费网站| 国产欧美日韩一区二区精品| 亚洲av片天天在线观看| 巨乳人妻的诱惑在线观看| 亚洲人成电影免费在线| 精品不卡国产一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产人伦9x9x在线观看| 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| 久久久精品欧美日韩精品| 国产欧美日韩一区二区精品| 久久久精品大字幕| 国产一区二区在线观看日韩 | 在线十欧美十亚洲十日本专区| 我的老师免费观看完整版| 欧美黑人巨大hd| 国产午夜精品论理片| 国产精品爽爽va在线观看网站| 中文字幕久久专区| 久久精品国产清高在天天线| 国产成人一区二区三区免费视频网站| 一二三四在线观看免费中文在| 亚洲国产精品成人综合色| 亚洲va日本ⅴa欧美va伊人久久| 久久中文字幕一级| 国产伦在线观看视频一区| 午夜福利免费观看在线| 在线国产一区二区在线| www.999成人在线观看| 一本精品99久久精品77| avwww免费| svipshipincom国产片| 他把我摸到了高潮在线观看| 九色国产91popny在线| 免费在线观看完整版高清| 精品日产1卡2卡| 亚洲精品久久成人aⅴ小说| 国产精品久久电影中文字幕| 久久精品aⅴ一区二区三区四区| 99久久综合精品五月天人人| 日本五十路高清| 久99久视频精品免费| 悠悠久久av| 久99久视频精品免费| 国产精品影院久久| 欧美人与性动交α欧美精品济南到| 欧美性长视频在线观看| 国产精品综合久久久久久久免费| 黄片大片在线免费观看| 欧美日韩瑟瑟在线播放| 欧美性猛交黑人性爽| av超薄肉色丝袜交足视频| 精品国内亚洲2022精品成人| 亚洲中文av在线| 国产精品野战在线观看| 19禁男女啪啪无遮挡网站| 99热这里只有是精品50| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲av高清不卡| 亚洲av电影在线进入| 久久精品国产综合久久久| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 男人舔女人下体高潮全视频| x7x7x7水蜜桃| 国产男靠女视频免费网站| x7x7x7水蜜桃| 男人舔奶头视频| 久9热在线精品视频| 少妇粗大呻吟视频| 国产av又大| 欧美日韩黄片免| 免费看十八禁软件| 欧美日韩精品网址| 人成视频在线观看免费观看| 日本熟妇午夜| 精品免费久久久久久久清纯| 亚洲自偷自拍图片 自拍| 日日干狠狠操夜夜爽| 国产精品亚洲美女久久久| 91av网站免费观看| 亚洲专区字幕在线| 日日干狠狠操夜夜爽| 老司机深夜福利视频在线观看| 精品免费久久久久久久清纯| 国产成人精品久久二区二区免费| 久久久精品欧美日韩精品| 亚洲午夜理论影院| 亚洲无线在线观看| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 国产又色又爽无遮挡免费看| 成人av在线播放网站| 嫩草影视91久久| 欧美中文日本在线观看视频| av国产免费在线观看| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 成人三级做爰电影| 国产一区二区在线观看日韩 | 国产精品久久久久久久电影 | 黄色a级毛片大全视频| 亚洲男人天堂网一区| 国产精品电影一区二区三区| 久久香蕉国产精品| 黄色丝袜av网址大全| 色尼玛亚洲综合影院| 99国产极品粉嫩在线观看| 久久久久久亚洲精品国产蜜桃av| 巨乳人妻的诱惑在线观看| 99久久综合精品五月天人人| 婷婷六月久久综合丁香| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 九色国产91popny在线| 色综合站精品国产| 脱女人内裤的视频| 久久香蕉国产精品| 久久久久久久久中文| 日韩欧美免费精品| 亚洲色图av天堂| 日本免费a在线| 成人高潮视频无遮挡免费网站| 色播亚洲综合网| 亚洲中文字幕日韩| 日本一二三区视频观看| 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 国产三级在线视频| 中文字幕精品亚洲无线码一区| 久久精品人妻少妇| 最新在线观看一区二区三区| 亚洲专区中文字幕在线| 最近视频中文字幕2019在线8| 国产成人影院久久av| 久久精品亚洲精品国产色婷小说| 色综合站精品国产| 天天一区二区日本电影三级| 一个人免费在线观看电影 | 黄色a级毛片大全视频| 亚洲国产欧洲综合997久久,| 午夜精品一区二区三区免费看| 色综合站精品国产| 国产成人精品久久二区二区免费| 狠狠狠狠99中文字幕| 亚洲午夜精品一区,二区,三区| 久久精品91无色码中文字幕| 又紧又爽又黄一区二区| 欧美人与性动交α欧美精品济南到| 国产高清视频在线播放一区| 国产精华一区二区三区| 精品熟女少妇八av免费久了| 国内少妇人妻偷人精品xxx网站 | 午夜福利在线观看吧| 国产一区二区三区视频了| 中文字幕精品亚洲无线码一区| 此物有八面人人有两片| www国产在线视频色| 久久天堂一区二区三区四区| 人妻丰满熟妇av一区二区三区| 一个人免费在线观看的高清视频| 欧美绝顶高潮抽搐喷水| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久,|