• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unifying Convolution and Transformer Decoder for Textile Fiber Identification

    2023-09-22 14:30:34XULuoli許羅力LIFenying李粉英CHANGShan

    XU Luoli(許羅力), LI Fenying(李粉英), CHANG Shan(常 姍)*

    1 College of Computer Science and Technology, Donghua University, Shanghai 201620, China 2 Silicon Engineer Group, ZEKU Technology (Shanghai), Shanghai 201203, China

    Abstract:At present, convolutional neural networks (CNNs) and transformers surpass humans in many situations (such as face recognition and object classification), but do not work well in identifying fibers in textile surface images. Hence, this paper proposes an architecture named FiberCT which takes advantages of the feature extraction capability of CNNs and the long-range modeling capability of transformer decoders to adaptively extract multiple types of fiber features. Firstly, the convolution module extracts fiber features from the input textile surface images. Secondly, these features are sent into the transformer decoder module where label embeddings are compared with the features of each type of fibers through multi-head cross-attention and the desired features are pooled adaptively. Finally, an asymmetric loss further purifies the extracted fiber representations. Experiments show that FiberCT can more effectively extract the representations of various types of fibers and improve fiber identification accuracy than state-of-the-art multi-label classification approaches.

    Key words:non-destructive textile fiber identification; transformer decoder; asymmetric loss

    0 Introduction

    Apparel is one of the necessities in people’s daily life. The type and the content of fibers have a significant impact on clothing comfort, warmth, and perspiration conduction, and other factors[1-3]. Therefore, worldwide countries stipulate that textiles on the market must be clearly marked with fiber types and contents. However, some producers deliberately label cheap fibers as superior fibers to make profits, significantly harming the interests of consumers. Hence, the identification of fibers is one of the major concerns of market regulators and consumers. The commonly employed fiber identification approaches[4-10], such as burning fibers, fiber solubility, and microscopic observation, rely mostly on manual operation which is inefficient, time-consuming, costly, and susceptible to operator conditions. The above methods are not suitable for large-scale rapid test by regulators and for the convenient use by ordinary consumers. Therefore, it is an inevitable trend to develop automatic identification technology for textile fibers[8-13]. Infrared automatic identification technology, which was introduced into the field of fiber identification without breaking textiles[8-10], was once very popular with fiber testing agencies, research institutes and customs. However, this method requires prior knowledge of the fiber type of the tested clothes and can only detect a few types of fibers. In addition, the equipment is expensive. Automatic fiber identification using images of textile surfaces has become a new topic thanks to advancements in camera technology and the ability of neural networks to extract features[12-13]. Fengetal.[12]proposed a DenseNet-based multi-branch recognition framework to transform fiber identification into a multi-label classification task. Ohietal.[13]presented an ensemble architecture based on the lightweight network Xception, and it required fewer training parameters and achieved higher accuracy for single-component fiber identification than previous models[12].

    In fact, a large number of textiles are made of two or more types of fibers. The previous works are all based on convolutional neural networks (CNNs) which have excellent performance in single-label image classification. However, the inherent shortcomings of CNNs in multi-label classification, for example, poor recognition of small objects[14], make these studies unsatisfactory when it comes to identifying fine and blended fibers in clothing. Recently, a lot of work has been done to improve the image multi-label recognition ability of CNNs, such as jointly mining label dependency or semantic dependency with recurrent neural networks (RNNs)[14-16]and catching label relevance of multi-label image recognition with graph convolutional networks (GCNs)[17-20]. Textile fibers are very fine (e.g., about 20 μm in diameter for wool fibers, 10 μm for cotton fibers and several micrometers for chemical fibers), which makes it difficult to achieve desired results with the aforementioned methods.

    Different from CNNs that utilize convolutional kernels to extract object features, the transformer network[21-23]employs attention mechanisms to obtain global contextual information and extract target features, and has achieved great success in natural language processing tasks. Dosovitskiyetal.[24]introduced the transformer to computer vision tasks. They split an image into a number of patches and fed each patch as a word in natural language processing into a stacked transformer encoder architecture for image classification. Since then, numerous improved transformer encoder architectures have been applied to image recognition tasks[25-27]. Nevertheless, when an input image is split into multiple patches, the above transformer-based frameworks do not take into account the peculiarities of fiber shapes in fabrics, such as fiber curls, overlaps, and tangles, which aggravates the imbalance of fiber types during modeling and leads to low accuracy in fiber identification.

    To handle the above problems, this work proposes a model that unifies CNNs and transformer decoders for textile fiber identification, called FiberCT. FiberCT utilizes CNNs to gradually extract fiber features with more advanced semantic information and then sends them to the transformer decoders. The multi-head self-attention mechanism is used to extract label features, and the multi-head cross-attention mechanism is utilized to locate the fiber features of each label to adaptively extract the desired features from the data to identify each type of fibers in the image. The contributions are as follows.

    1) A framework for identifying fibers in textile surface images called FiberCT is presented. FiberCT takes advantages of CNN feature extraction and transformer multi-head attention mechanisms to effectively solve the problems of sample imbalance and small sample sizes. It is the first application of the transformer decoder architecture to fiber identification without tearing textiles.

    2) A dataset of textile surface images with accurate labeling information, such as textile categories and fiber types, is collected.

    3) It is discovered in experiments that the transformer decoder’s cross-attention module can greatly increase fiber identification accuracy.

    1 Proposed Method

    Each type of fibers has its own unique surface characteristics. In the process of weaving, only physical blending and entanglement occur, so the unique surface characteristics of various fibers in blended textiles have not fundamentally changed. By deeply mining the visual features of various fibers, the accuracy of fiber identification can be improved in the case of small samples. Hence, FiberCT for image-based non-destructive textile fiber identification is proposed, which absorbs the aforementioned ideas and significantly addresses sample imbalance and small sample size challenges. As shown in Figs. 1(a) and 1(b), the overall framework of FiberCT is very simple. It contains a CNN backbone for the fiber spatial feature extraction module (FSFE-Module) and a set of transformer decoders for the fiber component decoding module (FCD-Module). The representations extracted by CNNs usually contain features from different fibers. Multi-head cross-attention operations in the transformer decoder in Fig.1(c) automatically learn the fiber features of each label through continuous querying[28-29], thereby reducing the blending between representations of different fiber types. In addition, an asymmetric loss[30]is introduced to further purify the extracted representations.

    Fig.1 FiberCT framework:(a) FSFE-Module; (b) FCD-Module; (c) transformer decoder architecture

    1.1 Fiber feature extraction

    The FSFE-Module adopts a standard CNN backbone[31](ResNet50 by default) to extract fiber spatial features as shown in Fig.1(a). Given a textile fiber imageI∈RH×W×3as input, we extract its spatial featuresFs∈Rh×w×c0through the CNN backbone, whereHandWare the height and the width of input images,handware the height and the width of feature maps, andc0is the dimension of features. The features are then projected from dimensionc0to dimensioncin the linear projection layer to match the desired query dimension, and the projected features are reshaped toF∈Rh×w×c.They are sent to transformer decoders as keys and values along with queries (label embeddings)Q0∈RK×cand then perform cross-attention to pool type-related features, whereKis the number of fiber types.

    1.2 Fiber component decoding

    (1)

    (2)

    MH(Q,K,V)=Concat(A1,A2, ,Ah)WO,

    (3)

    whereQ,KandVare the query, the key and the value, respectively;CKis the dimension of the key;Ahis theh-th attention function;WOdenotes the weight parameter.

    (4)

    Subsequently, each label embedding gets better class-related features and updates itself according to

    (5)

    whereW1andW2are learnable weight parameters;b1andb2are bias parameters.

    The label embeddingQ0∈RK×cis a learnable parameter that is updated layer by layer and gradually gets contextual information related to the input fiber images through multi-head cross-attention, thus implicitly establishing a relationship with the data.

    At the last layer (layerL) of the transformer decoder, the queried feature vectorQL∈RK×cforKtypes of fibers is acquired, and then the feature of each type of fibersQL,k∈Rc,k= 1, 2, ,K, is projected to a logit value using a linear projection layer[29]followed by

    (6)

    whereWkandbkare parameters in the linear layer;P=[P1,P2, ,Pk]T∈RKrepresents the predicted probabilities of fiber types.

    1.3 Loss function

    The multi-head cross-attention in transformer decoders has been able to identify fiber types well, but the imbalanced fiber features in each image and small sample problems may interfere with the fiber classification effect. In order to better deal with the above problems, a simplified asymmetric loss is introduced, which has a good effect on alleviating the distribution of long-tail data in multi-label classification[30].

    Given a textile fiber image as input, our model predicts its fiber type probabilitiesP=[P1,P2, ,Pk]T∈RK.Then, the loss for each training sample is calculated by

    (7)

    whereykis a binary label to indicate if the image has labelk;γ+andγ-are hyperparameters with default values,γ+=0 andγ-=1.The total loss is calculated by averaging this loss over all samples in the training dataset.

    2 Experiments

    To evaluate the proposed approach, FiberCT was compared to a number of state-of-the-art multi-label image classification architectures, including CU-Net and FabricNet for fiber identification in textile surface images. The average precision (AP) on each type of fibers and the mean average precision (mAP) over all types were adopted for evaluation. To better demonstrate the performance of the model, the overall precision (OP), the overall recall (OR), and the overall F1 measurement (OF1) were presented for further comparison, as well as the per-type precision (CP), the per-type recall (CR) and the per-type F1 measurement (CF1). In general, CF1, OF1 and mAP are comprehensive and hence are the most important metrics among all the above[12-13]. Since different thresholds might affect the experimental results, the threshold was set to be 0.5 in all experiments for comparison.

    2.1 Implementation details

    2.1.1Dataset

    In the experiments, fabric surface images were taken by optical magnifiers at many clothes stores. A total of 26 types of fibers and 173 textile categories (fabrics with different blending ratios of the same types of fibers were one category) were collected. Figure 2 shows the statistical distribution of fabric components.

    Fig.2 Statistics on fabric component dataset

    In practice, only one fabric from the same brand and series was sampled to maximize the diversity of data. Five images at different points on each fabric were collected using commercially available optical magnifiers with a magnification of 50 times, and the magnifiers were connected to mobile devices via WIFI as shown in Fig.3.

    Fig.3 Equipment and sampling procedures for collecting textile surface images:(a) a magnifier; (b) a magnifier connected to mobile devices via WIFI

    Each time an image of a fabric was taken, the magnifier was rotated randomly to reduce the influence of textile textures, colors, pattern sizes and pattern directions on fiber identification. Figure 4 shows samples of three different fabrics. Label information of fabrics including fiber types and contents was also collected.

    2.1.2Experimentalsetup

    The proposed method FiberCT was evaluated on the fabric image dataset described in the previous subsection. In the experiment, 80% of the dataset was randomly selected from each fabric for training and 20% for validation. All images were resized to 224×224 as the input resolution and the size of the output feature from ResNet50 was 7×7×2 048. In the experiment,c=c0=2 048, so the size of the final output features in the FSFE-Module was 7×7×2 048. The extracted fiber features were fed into the FCD-Module after adding positional encodings and reshaping. For the FCD-Module, two transformer decoder layers were utilized for label feature updating. Following the last transformer decoder, a linear projection layer was added to calculate logit predictions for all fiber types. In the multi-head attention function,his 4. Flipping, brightness change, contrast change and zooming were used for data augmentation. All tested models were initialized with ImageNet trained weights, and they were further trained on the fabric image dataset. The model was trained 100 times using the Adam[33]optimizer with a batch size of 128, a true weight decay of 0.01, hyperparametersβ1of 0.9 andβ2of 0.999 9, and a learning rate of 0.000 1.

    2.2 Fiber identification performance

    Table 1 compares the performances of different multi-label image classification models, and the best results are shown in bold. The first three models (SSGRL[18], ML-GCN[19]and MS-CMA[34]) are GCN-based frameworks, while the next three models(C-Trans[35], TDRG[36]and M3TR[37]) are transformer encoder-based frameworks, and CU-Net[12]and FabricNet[13]are fiber identification models without breaking fabrics.

    Table 1 Comparison of FiberCT and state-of-the-art methods on fabric image dataset

    FiberCT consistently outperforms previous approaches on most major metrics (except CR and OR), demonstrating that FiberCT is more suitable for non-destructive textile fiber identification. Furthermore, it is noted that GCN-based networks surpass transformer encoder-based models in terms of fiber identification accuracy. This could be due to fiber entanglements, occlusions, and deformations during the textile weaving process. The variety of these changes and the small sample lead to unsatisfactory accuracy for all models, and transformer encoder-based models may exacerbate these adverse effects when the image is split into patches.

    2.3 Ablation studies

    To demonstrate the effectiveness of different components of FiberCT on textile fiber identification, ablation experiments were performed as shown in Table 2. FiberCT consists of an FSFE-Module (default ResNet50) and an FCD-Module (transformer decoder). Additionally, an asymmetric loss function (ASL) is incorporated into the framework. FiberCT ? FCD is the FiberCT without the FCD-Module. FiberCT ?ASL is the FiberCT without the ASL.

    Table 2 Performance of FiberCT with various backbones and components

    FiberCT performs marginally better (an increase in mAP of approximately 0.7%) in fiber recognition than FiberCT?ASL, implying that the ASL can further purify the extracted fiber representation as mentioned above. This effect is also demonstrated by the comparison of FiberCT?FCD and the baseline. FiberCT?ASL outperforms the baseline and FiberCT?FCD with an increase in mAP of 13.5% and 12.6%, respectively, demonstrating that the FCD-Module based on the transformer decoder can efficiently identify different types of fibers.

    3 Conclusions

    In this paper, a framework named FiberCT is proposed for textile fiber identification without breaking textiles. FiberCT employs convolutions to extract spatial features of fibers in the textile surface image and multi-head cross-attention modules in the transformer to adaptively decode different types of fabric components. Experiments demonstrate that the multi-head cross-attention modules in the transformer utilize label embeddings to query the existence of a type of fiber label and pool fiber type-related characteristics, which is extremely useful for textile fiber identification. Furthermore, the ASL can help FiberCT perform even better.

    你懂的网址亚洲精品在线观看| 90打野战视频偷拍视频| 性色av一级| 亚洲精品国产av成人精品| 亚洲国产精品一区三区| 国产精品一区二区在线不卡| 国产成人精品婷婷| 亚洲精品中文字幕在线视频| 久久人人爽av亚洲精品天堂| 人人澡人人妻人| 亚洲 欧美一区二区三区| 伦理电影免费视频| 国产亚洲午夜精品一区二区久久| 有码 亚洲区| 久久人人爽人人爽人人片va| 丰满迷人的少妇在线观看| 久久热在线av| 亚洲高清免费不卡视频| 亚洲av免费高清在线观看| 建设人人有责人人尽责人人享有的| 国产在线一区二区三区精| a级片在线免费高清观看视频| 亚洲精品aⅴ在线观看| 亚洲精品色激情综合| 性色avwww在线观看| 日韩制服丝袜自拍偷拍| 色网站视频免费| 国产国语露脸激情在线看| 日本av手机在线免费观看| 2021少妇久久久久久久久久久| 国产在线一区二区三区精| 看十八女毛片水多多多| 日韩伦理黄色片| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 欧美+日韩+精品| 国产黄频视频在线观看| 久久久久久久精品精品| 成人二区视频| 久久精品人人爽人人爽视色| 女人精品久久久久毛片| 丰满少妇做爰视频| 巨乳人妻的诱惑在线观看| 你懂的网址亚洲精品在线观看| 国产成人免费观看mmmm| 一本久久精品| 成年女人在线观看亚洲视频| 这个男人来自地球电影免费观看 | 成年动漫av网址| 亚洲国产精品一区二区三区在线| 色吧在线观看| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 黄片播放在线免费| 自线自在国产av| 久久久久久久久久久免费av| 色吧在线观看| 国产成人aa在线观看| 国产av一区二区精品久久| 国产永久视频网站| 国产精品欧美亚洲77777| 欧美丝袜亚洲另类| 久久久欧美国产精品| 91午夜精品亚洲一区二区三区| 色哟哟·www| 欧美日韩av久久| 久久这里有精品视频免费| 人成视频在线观看免费观看| 一边亲一边摸免费视频| 麻豆精品久久久久久蜜桃| 国产毛片在线视频| 人人妻人人澡人人看| 午夜福利视频精品| 天天影视国产精品| 亚洲av国产av综合av卡| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 国产白丝娇喘喷水9色精品| 一区二区av电影网| 人妻人人澡人人爽人人| 久久久精品免费免费高清| 日韩人妻精品一区2区三区| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 精品一区二区免费观看| 精品一区二区三区视频在线| 高清在线视频一区二区三区| 天天影视国产精品| 咕卡用的链子| 精品国产国语对白av| 在线观看免费高清a一片| 亚洲国产精品成人久久小说| 国产深夜福利视频在线观看| 亚洲,欧美精品.| 成年美女黄网站色视频大全免费| av免费观看日本| 2018国产大陆天天弄谢| 美女内射精品一级片tv| 国产精品一二三区在线看| 欧美97在线视频| 大陆偷拍与自拍| 日本与韩国留学比较| 国产亚洲欧美精品永久| 国产免费一区二区三区四区乱码| 建设人人有责人人尽责人人享有的| 久久国产精品男人的天堂亚洲 | 一级片'在线观看视频| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡 | 天堂俺去俺来也www色官网| 免费看光身美女| 亚洲美女视频黄频| 水蜜桃什么品种好| 大香蕉久久网| 色婷婷av一区二区三区视频| 国产成人aa在线观看| 人妻一区二区av| 99香蕉大伊视频| 美女内射精品一级片tv| 一区二区日韩欧美中文字幕 | 亚洲欧美中文字幕日韩二区| 97超碰精品成人国产| 制服诱惑二区| 一级毛片我不卡| 国产又爽黄色视频| 国产精品成人在线| 性色avwww在线观看| 久久精品熟女亚洲av麻豆精品| 2022亚洲国产成人精品| 久久午夜福利片| 天天影视国产精品| av免费观看日本| 欧美日韩国产mv在线观看视频| 亚洲av在线观看美女高潮| 全区人妻精品视频| 黑人欧美特级aaaaaa片| 涩涩av久久男人的天堂| 免费高清在线观看视频在线观看| 99九九在线精品视频| 欧美精品高潮呻吟av久久| 日韩一本色道免费dvd| 久久久久久久精品精品| 国产成人精品一,二区| 国产精品 国内视频| 国产片内射在线| 久热久热在线精品观看| 午夜福利网站1000一区二区三区| 久久青草综合色| 亚洲少妇的诱惑av| 男女边摸边吃奶| 日本爱情动作片www.在线观看| 国产深夜福利视频在线观看| 午夜福利网站1000一区二区三区| 中文字幕av电影在线播放| 免费黄频网站在线观看国产| 汤姆久久久久久久影院中文字幕| 黄色毛片三级朝国网站| 在线观看一区二区三区激情| 国产精品一国产av| 国产精品熟女久久久久浪| 日韩在线高清观看一区二区三区| 桃花免费在线播放| 久久精品久久久久久久性| 亚洲av电影在线进入| 亚洲av福利一区| 久久99热6这里只有精品| 久久女婷五月综合色啪小说| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 国产精品久久久久久久电影| 人人妻人人添人人爽欧美一区卜| 少妇精品久久久久久久| 国产 一区精品| 99九九在线精品视频| 久久久精品免费免费高清| 中文字幕人妻熟女乱码| 一二三四在线观看免费中文在 | 在线观看国产h片| 亚洲国产成人一精品久久久| 国产精品 国内视频| 中文字幕av电影在线播放| 夜夜爽夜夜爽视频| 免费在线观看黄色视频的| 一本大道久久a久久精品| 午夜免费男女啪啪视频观看| 中国三级夫妇交换| 18禁动态无遮挡网站| 亚洲欧美一区二区三区黑人 | 亚洲精品456在线播放app| 全区人妻精品视频| 日日摸夜夜添夜夜爱| 亚洲国产看品久久| 精品一区二区三区四区五区乱码 | 亚洲人成77777在线视频| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 夫妻性生交免费视频一级片| 免费大片18禁| 亚洲精品久久成人aⅴ小说| 哪个播放器可以免费观看大片| 99九九在线精品视频| 18禁国产床啪视频网站| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美中文字幕日韩二区| 亚洲av电影在线进入| 夫妻午夜视频| 在线观看一区二区三区激情| 亚洲美女视频黄频| 婷婷成人精品国产| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 国产探花极品一区二区| 成人国语在线视频| 一本大道久久a久久精品| 晚上一个人看的免费电影| 久久青草综合色| 精品卡一卡二卡四卡免费| 精品亚洲成a人片在线观看| 香蕉丝袜av| 又粗又硬又长又爽又黄的视频| 亚洲精品日本国产第一区| 天天影视国产精品| 欧美变态另类bdsm刘玥| 日本-黄色视频高清免费观看| 国产福利在线免费观看视频| 免费人成在线观看视频色| 成年人免费黄色播放视频| 午夜福利网站1000一区二区三区| 亚洲经典国产精华液单| 少妇人妻久久综合中文| 国产免费一区二区三区四区乱码| 亚洲少妇的诱惑av| 国产熟女欧美一区二区| 七月丁香在线播放| 丝袜美足系列| 少妇熟女欧美另类| 99re6热这里在线精品视频| 国产黄频视频在线观看| 日日爽夜夜爽网站| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 大码成人一级视频| 欧美精品亚洲一区二区| 午夜福利,免费看| 国产极品粉嫩免费观看在线| 午夜91福利影院| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 欧美另类一区| 在线观看www视频免费| 国产在线视频一区二区| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 国产精品不卡视频一区二区| 哪个播放器可以免费观看大片| 国产综合精华液| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| av一本久久久久| 十八禁高潮呻吟视频| 永久网站在线| 精品第一国产精品| 日韩不卡一区二区三区视频在线| 人人澡人人妻人| 国产精品久久久久久久久免| 黄色配什么色好看| 成年人免费黄色播放视频| 男女下面插进去视频免费观看 | 国产精品久久久久久久久免| 久久国产精品大桥未久av| 亚洲国产欧美在线一区| 黑人欧美特级aaaaaa片| 熟妇人妻不卡中文字幕| 国产精品久久久久久久电影| 夫妻午夜视频| 美女视频免费永久观看网站| 久久女婷五月综合色啪小说| 欧美精品国产亚洲| 少妇熟女欧美另类| 亚洲中文av在线| 黑人高潮一二区| 一级黄片播放器| 久久久久国产网址| 成人国产av品久久久| 九草在线视频观看| 女人精品久久久久毛片| 九色亚洲精品在线播放| 捣出白浆h1v1| 桃花免费在线播放| 亚洲欧美中文字幕日韩二区| 亚洲成av片中文字幕在线观看 | 高清视频免费观看一区二区| 在线看a的网站| 亚洲av福利一区| 在线观看www视频免费| 欧美最新免费一区二区三区| 久久人人爽人人爽人人片va| 欧美丝袜亚洲另类| 大陆偷拍与自拍| 黑人猛操日本美女一级片| 国产精品蜜桃在线观看| 国产av码专区亚洲av| 精品久久国产蜜桃| 久热久热在线精品观看| 狠狠婷婷综合久久久久久88av| 国产视频首页在线观看| 久久人人97超碰香蕉20202| 永久网站在线| 欧美日韩视频高清一区二区三区二| 久久精品国产亚洲av天美| 久久99一区二区三区| 黑人欧美特级aaaaaa片| av在线app专区| 亚洲av中文av极速乱| 国产1区2区3区精品| 青春草视频在线免费观看| 国产 一区精品| 高清欧美精品videossex| 18禁国产床啪视频网站| 色吧在线观看| 一二三四在线观看免费中文在 | 一级片免费观看大全| av一本久久久久| 亚洲少妇的诱惑av| 2022亚洲国产成人精品| 少妇猛男粗大的猛烈进出视频| 巨乳人妻的诱惑在线观看| 国产精品 国内视频| 午夜91福利影院| 另类亚洲欧美激情| 国产永久视频网站| 久久99热这里只频精品6学生| 久久久久久久国产电影| 男女免费视频国产| 亚洲情色 制服丝袜| 精品国产一区二区三区四区第35| 黄片无遮挡物在线观看| videossex国产| h视频一区二区三区| 久久精品国产自在天天线| av不卡在线播放| 亚洲国产精品999| 亚洲av.av天堂| 日韩一区二区三区影片| 色网站视频免费| 中国国产av一级| 日本91视频免费播放| 国产精品成人在线| 日韩免费高清中文字幕av| a级片在线免费高清观看视频| 最近最新中文字幕免费大全7| a级毛色黄片| 日本-黄色视频高清免费观看| 国产日韩一区二区三区精品不卡| 国产在线一区二区三区精| 欧美日韩成人在线一区二区| 国产精品嫩草影院av在线观看| 成年人免费黄色播放视频| 午夜久久久在线观看| 欧美国产精品一级二级三级| 久久免费观看电影| 一级片'在线观看视频| 热re99久久精品国产66热6| 国产成人精品在线电影| 久久影院123| 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 一本久久精品| 欧美97在线视频| 男人舔女人的私密视频| 欧美最新免费一区二区三区| 亚洲内射少妇av| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| av国产精品久久久久影院| 亚洲国产看品久久| 国产国语露脸激情在线看| 水蜜桃什么品种好| 亚洲人成77777在线视频| 亚洲国产精品一区三区| 老女人水多毛片| 日产精品乱码卡一卡2卡三| 一级毛片我不卡| 在线精品无人区一区二区三| 精品久久国产蜜桃| 男女午夜视频在线观看 | 啦啦啦视频在线资源免费观看| 热99久久久久精品小说推荐| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美| 天天操日日干夜夜撸| 美女内射精品一级片tv| 中国美白少妇内射xxxbb| 99热网站在线观看| 婷婷成人精品国产| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 尾随美女入室| √禁漫天堂资源中文www| 老女人水多毛片| 99热网站在线观看| 日日啪夜夜爽| 日本wwww免费看| 少妇熟女欧美另类| 久久人妻熟女aⅴ| av卡一久久| 亚洲国产精品999| √禁漫天堂资源中文www| 国产色爽女视频免费观看| 成人综合一区亚洲| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 中文字幕另类日韩欧美亚洲嫩草| 美女内射精品一级片tv| 国产精品一二三区在线看| 一级,二级,三级黄色视频| 国产成人aa在线观看| 国产成人精品久久久久久| 搡老乐熟女国产| 男人添女人高潮全过程视频| 最新中文字幕久久久久| 亚洲五月色婷婷综合| 大话2 男鬼变身卡| 精品久久久精品久久久| 黄色一级大片看看| av一本久久久久| 三上悠亚av全集在线观看| 亚洲少妇的诱惑av| 看非洲黑人一级黄片| 少妇熟女欧美另类| 在线看a的网站| 美女福利国产在线| 久久久久精品人妻al黑| 国产综合精华液| 在线精品无人区一区二区三| 免费在线观看黄色视频的| 麻豆精品久久久久久蜜桃| 纵有疾风起免费观看全集完整版| 夜夜骑夜夜射夜夜干| 美女脱内裤让男人舔精品视频| 精品少妇内射三级| www.av在线官网国产| 国产视频首页在线观看| 美女视频免费永久观看网站| 永久免费av网站大全| 日韩欧美精品免费久久| 80岁老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 国产精品久久久久久久久免| 国产一区二区三区av在线| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 在线观看国产h片| 久久婷婷青草| 搡女人真爽免费视频火全软件| 国产精品国产三级国产专区5o| 97超碰精品成人国产| 欧美精品国产亚洲| 欧美97在线视频| 亚洲成国产人片在线观看| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 日本av手机在线免费观看| 国产毛片在线视频| 男女高潮啪啪啪动态图| 秋霞伦理黄片| 有码 亚洲区| 国产免费又黄又爽又色| 我的女老师完整版在线观看| av线在线观看网站| 日韩伦理黄色片| 国产精品久久久久久久久免| 两性夫妻黄色片 | 国产午夜精品一二区理论片| 女人精品久久久久毛片| 日日啪夜夜爽| 色婷婷av一区二区三区视频| 内地一区二区视频在线| 久久久久精品久久久久真实原创| 建设人人有责人人尽责人人享有的| 26uuu在线亚洲综合色| 国产精品久久久av美女十八| 黑人欧美特级aaaaaa片| 插逼视频在线观看| 一边摸一边做爽爽视频免费| 成人国产麻豆网| 亚洲国产看品久久| 免费观看性生交大片5| 插逼视频在线观看| 一边摸一边做爽爽视频免费| 精品一区二区三区四区五区乱码 | 女人精品久久久久毛片| 国产不卡av网站在线观看| 亚洲,一卡二卡三卡| 在线天堂最新版资源| 热99国产精品久久久久久7| 大话2 男鬼变身卡| kizo精华| 午夜久久久在线观看| 日韩精品免费视频一区二区三区 | 高清不卡的av网站| 国产av国产精品国产| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 少妇精品久久久久久久| 男人操女人黄网站| 免费黄色在线免费观看| 黑丝袜美女国产一区| 久久99蜜桃精品久久| 在线免费观看不下载黄p国产| 母亲3免费完整高清在线观看 | 视频在线观看一区二区三区| 9热在线视频观看99| 男女啪啪激烈高潮av片| 三级国产精品片| 成人手机av| 免费看av在线观看网站| 日本黄大片高清| 99九九在线精品视频| 波野结衣二区三区在线| av在线播放精品| 看十八女毛片水多多多| 中文字幕av电影在线播放| 亚洲国产日韩一区二区| 国产男女内射视频| 两个人免费观看高清视频| 国产视频首页在线观看| 少妇被粗大的猛进出69影院 | 亚洲精品成人av观看孕妇| 精品福利永久在线观看| 亚洲精品第二区| freevideosex欧美| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 七月丁香在线播放| 亚洲精品中文字幕在线视频| 亚洲色图 男人天堂 中文字幕 | 国产毛片在线视频| 亚洲精品久久午夜乱码| 深夜精品福利| 亚洲精品av麻豆狂野| videosex国产| 一本久久精品| 天天操日日干夜夜撸| 最近的中文字幕免费完整| 日本与韩国留学比较| 飞空精品影院首页| 肉色欧美久久久久久久蜜桃| 一本色道久久久久久精品综合| 男人添女人高潮全过程视频| 成人国产麻豆网| 亚洲成人一二三区av| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 哪个播放器可以免费观看大片| 黄色 视频免费看| 日韩伦理黄色片| 国产精品久久久久久久久免| 超色免费av| 欧美3d第一页| 如日韩欧美国产精品一区二区三区| 欧美日韩av久久| 人成视频在线观看免费观看| 97精品久久久久久久久久精品| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美| 国产成人91sexporn| 在线观看一区二区三区激情| 午夜久久久在线观看| 人妻一区二区av| 亚洲 欧美一区二区三区| 成人亚洲欧美一区二区av| 女性被躁到高潮视频| 亚洲精品自拍成人| 国产亚洲一区二区精品| 69精品国产乱码久久久| 老熟女久久久| 午夜激情久久久久久久| 亚洲精华国产精华液的使用体验| 日本爱情动作片www.在线观看| 久久久久久久久久人人人人人人| 热99国产精品久久久久久7| 亚洲一区二区三区欧美精品| 香蕉精品网在线| 亚洲av男天堂| 久久久精品免费免费高清| 啦啦啦中文免费视频观看日本| 熟女电影av网| 亚洲五月色婷婷综合| 国产欧美日韩综合在线一区二区| 一个人免费看片子| av天堂久久9| 夫妻性生交免费视频一级片| 国内精品宾馆在线| av在线观看视频网站免费| 国产精品一二三区在线看| 欧美精品国产亚洲| 夫妻性生交免费视频一级片| 婷婷色av中文字幕| 色哟哟·www| 全区人妻精品视频| 久久久久久久国产电影| 亚洲av电影在线观看一区二区三区| 男女免费视频国产| 99久久人妻综合| 国产成人av激情在线播放| 22中文网久久字幕| 国产亚洲精品第一综合不卡 | kizo精华| 中文乱码字字幕精品一区二区三区| 国产麻豆69| 欧美+日韩+精品| 最近2019中文字幕mv第一页|