• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A MODIFIED TIKHONOV REGULARIZATION METHOD FOR THE CAUCHY PROBLEM OF LAPLACE EQUATION?

    2015-02-10 08:37:04FanYANG楊帆ChuliFU傅初黎iXiaoxiaoLI李曉曉
    關鍵詞:楊帆

    Fan YANG(楊帆)Chuli FU(傅初黎i)Xiaoxiao LI(李曉曉)

    1.School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    2.School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China

    E-mail:yfggd114@163.com;fuchuli@lzu.edu.cn;lixiaoxiaogood@126.com

    A MODIFIED TIKHONOV REGULARIZATION METHOD FOR THE CAUCHY PROBLEM OF LAPLACE EQUATION?

    Fan YANG(楊帆)1,2?Chuli FU(傅初黎i)2Xiaoxiao LI(李曉曉)1

    1.School of Science,Lanzhou University of Technology,Lanzhou 730050,China

    2.School of Mathematics and Statistics,Lanzhou University,Lanzhou 730000,China

    E-mail:yfggd114@163.com;fuchuli@lzu.edu.cn;lixiaoxiaogood@126.com

    In this paper,we consider the Cauchy problem for the Laplace equation,which is severely ill-posed in the sense that the solution does not depend continuously on the data.A modifed Tikhonov regularization method is proposed to solve this problem.An error estimate for the a priori parameter choice between the exact solution and its regularized approximation is obtained.Moreover,an a posteriori parameter choice rule is proposed and a stable error estimate is also obtained.Numerical examples illustrate the validity and efectiveness of this method.

    Cauchy problem for Laplace equation;ill-posed problem;a posteriori parameter choice;error estimate

    2010 MR Subject Classifcation35R25;47A52;35R30

    1 Introduction

    The Cauchy problem for the Laplace equation has been extensively investigated in many practical areas.For example,some problems related to the geophysics[1,2],plasma physics[3], cardiology[4],bioelectric feld problems[5]and non-destructive testing[6].In the Hadamard’s famous paper[7],this problem is frstly introduced as a classical example of ill-posed problems, which shows that any small change of the data may cause dramatically large errors in the solution.Thus,it is impossible to solve this problem using classical numerical methods and requires special techniques,e.g.,regularization.There have been many papers devoted to this subject,such as the Fourier method[8],the central diference method[9],the quasi-reversibility method[10-13],the Tikhonov regularization method[14],the conjugate gradient method[15], the moment method[16-18],the wavelet method[19-20],the mollifcation method[21],the fundamental solutions[22],and etc.

    In this paper,we consider the following Cauchy problem for the Laplace equation in a strip domain[23]:

    the solution u(x,y)for 0<x<1 will be determined from the noisy data φδ(y)which satisfes

    Problem(1.1)is severely ill-posed.However,to our knowledge,there are few papers devoted to the error estimates of regularization methods.In this paper,we will consider not just the a priori choice of the regularization parameter for the modifed Tikhononv regularization method, but also the a posteriori choice of the regularization parameter will be given for problem(1.1).

    The modifed Tikhonov regularization was based on the Tikhonov regularization method. Skillfully modifed the penalty term of the Tikhonov functional,a better flter which flters the high frequencies of the measured data was obtained.This idea initially came from Carasso,who modifed the flter gained by the Tikhonov regularization method,and the order optimal error estimate was obtained in[24].By this method,Zhao[25]considered backward heat equation,Fu [26]considered the inverse heat conduction problem on a general sideways parabolic equation. Feng[27]used this method to consider the Cauchy problem for the Helmholtz equation.Cheng [28,29]used this method to consider the spherically symmetric inverse problem.Yang[30,31] used this method to consider the identifcation unknown source.

    The plan of this paper is as follows.In Section 2 we simply analyze the ill-posedness of the Cauchy problem for Laplace equation and propose the modifed Tikhonov regularization method.In Section 3 we provide some stability and convergence estimates for the Cauchy problem.In Section 4,some numerical examples are proposed to show the efectiveness of this method.Section 5 puts an end to this paper with a brief conclusion.

    2 Preliminaries

    In this section,we give some auxiliary results which is needed in next section.For g(y)∈L2(R),?g(ξ)denotes its Fourier transform defned by

    Let‖·‖denote the norm in L2(R).Then there holds the Parseval formula:

    The application of the Fourier transform technique to problem(1.1)with respect to the variable y yields the following problem in frequency space:

    It is easy to obtain that the solution of problem(2.3)is

    whereμis the regularization parameter.It can be verifed that φμ,δ(x)is the solution of the following equation[32]:

    From(2.5),we can see that T1:L2(R)→L2(R)is linear,compact and one-to one.From(2.5), we can also fnd

    Due to Parseral formula,we have

    From(2.8),we obtain

    Note(2.11)and(2.12),we obtain

    Due to(2.7),we know

    Note(2.13),we obtain

    Thus,the approximate solution of problem(1.1)can be given by

    In this paper,we always assume that there holds the following the a priori bound:

    where E is a positive constant.

    3 Choice of Regularization Parameter and Convergence Results

    In this section,we consider the a priori and a posteriori choice rule of regularization parameter,respectively,the corresponding convergence estimates are also obtained.We frst give some useful Lemmas.

    Lemma 3.2For 0<x<1,we have

    ProofUsing Parseval formula,the H¨older inequality and Lemma 3.1,we have

    3.1 The a priori choice of the regularization parameter and the error estimate for problem(1.1)

    Assume the conditions(1.2),(2.16)hold,take

    then we have

    Theorem 3.3Let u(x,y)given by(2.5)be exact solution of(1.1)and uμ,δ(x,y)given by (2.16)be the modifed Tikhonov regularized approximation of u(x,y).Let φδ(y)be measureddata at x=0 satisfying(1.2)and the a priori condition(2.17)holds.Then there holds the following error estimate:

    ProofBecause φμ1,δ(x)is the minimizer of functional(2.6)and note(3.2),we obtain

    Due to(1.2),(3.4),(2.17)and(3.5),we have

    Combining(3.6),(3.7)with Lemma 3.2,we obtain the fnal estimate:

    3.2 The a posteriori choice rule

    In this section,Morozov’s discrepancy principle is used as a posteriori choice rule of the regularization parameter,i.e.,choosingμ=μ2as the solution of

    To establish existence and uniqueness of solution for equation(3.8),we need the following lemma and remark:

    Lemma 3.4Let(μ):=‖φμ,δ-φδ‖,then for δ>0,there hold

    (a)(μ)is a continuous function;

    (d)(μ)is a strictly increasing function.

    Remark 3.5To establish existence and uniqueness of solution for equation(3.8),we always suppose 0<δ<‖φδ‖.

    Theorem 3.6Assume the conditions(1.2),(2.17)hold and take the solutionμ=μ2of Eq.(3.8)as the regularization parameter,then there holds the following error estimate:

    ProofSince φμ2,δ(x)is the minimizer of functional(2.6),we have

    Due to(3.10),(2.17)and(1.2),we obtain

    Due to(3.8)and(1.2),we get

    By Lemma 3.2,(3.12)and(3.13),we obtain

    The proof of Theorem 3.6.is completed.

    4 Several Numerical Examples

    In this section,we employ several examples to test the properties of problems(1.1).The regularized solution was computed by the Fast Fourier Transform(FFT)and IFFT techniques. We always fx 0≤x≤1,-10≤y≤10.For the exact data function,its discrete noisy version is

    The function“randn(·)”generates arrays of random numbers whose elements are normally distributed with mean 0,variance σ2=1,and standard deviation σ=1,“randn(size(φ))”returns an array of random entries that is the same size as φ.In our computations,we always take N=101.The bisection method is used to solve the Equations(3.8).In order to investigate the algorithm,we evaluate the relative error defned by

    Example 1It is easy to verify that the function u(x,y)=ex2-y2sin(2xy)is the exact solution of problem(1.1).The exact data functions u(0,y)=0 and φ(x)=ux(0,y)=2ye-y2.

    Figs.1-3 give the numerical results computed by both a priori and a posteriori modifed Tikhonov regularization method at x=0.1,0.5,0.8 with ε=0.01,0.05 for Example 1.From these Figures,we can see that the smaller the x,the better the computed approximations.Inadditional,it can be clearly seen that the smaller the perturbation ε,the better the results. Finally,we can see that the a posteriori modifed Tikhonov regularization methods also work well for problem(1.1).

    Example 2The function u(x,y)=e-|y|sinx is the exact solution of problem(1.1)with weak singularity,it satisfeswhere y=(y1,y2)∈L2(R2).

    As n=2,x=0.2 and ε=0.01,Fig.4 gives the comparison of the exact and regularization solution.These fgures show that the modifed Tikhonov regularization method is also efective for solving problem(1.1)in two dimensional case.

    5 Conclusion

    In this paper,we proposed an efcient regularization method for solving a classical ill-posed problem-the Cauchy problem for the Laplace equation.Two diferent regularization parameter choice rules are used.For a priori choices of the regularization parameter,we obtain the H¨older type error estimates.Using the Morozov’s discrepancy principle,we give the a posteriori parameter choice rule which only depends on the measured data.For a posteriori choices of the regularization parameter,we also obtain the H¨older type error estimate.Meanwhile,several numerical examples verify the efciency and accuracy of the method.

    [1]Tikhonov A N,Arsenin V Y.Solutions of Ill-posed Problems.Washington:Winston and Sons,1977

    [2]Lavrent’v M M,Romanov V G,Shishat·ski?i S P.Ill-posed Problems of Mathematical Physics and Analysis. Providence RI:American Mathematical Society,1986

    [3]Gorenfo R.Funktionentheoretische Bestimmung des Aussenfeldes zu einer zweidimensionalen magnetohydrostatischen Konguration.Z Angew Math Phys,1965,16:279-290

    [4]Colli-Franzone P,Guerri L,Tentoni S,Viganotti C,BarufS,Spaggiari S,Taccardi B.A mathematical procedure for solving the inverse potential problem of electrocardiography.Analysis of the time-space accuracy from in vitro experimental data.Math Biosci,1985,77:353-396

    [5]Johnson C R.Computational and numerical methods for bioelectric feld problems.Crit Rev Biomed Eng, 1997,25:1-81

    [6]Alessandrini G.Stable determination of a crack from boundary measurements.Proc R Soc Edinburgh A, 1993,123:497-516

    [7]Hadamard J.Lecture on the Cauchy Problem in Linear Partial Diferential Equations.New Haven:Yale University Press,1923

    [8]Fu C L,Li H F,Qian Z,Xiong X T.Fourier regularization method for solving a Cauchy problem for the Laplace equation.Inverse Probl Sci Eng,2008,16(2):159-169

    [9]Xiong X T,Fu C L.Central diference regularization method for the Cauchy problem of the Laplace’s equation.Appl Math Comput,2006,181:675-684

    [10]Klibanov M V,Santosa F.A computational quasi-reversibility method for Cauchy problems for Laplace’s equation.SIAM J Appl Math,1991,51:1653-1675

    [11]Latt`es R,Lions J L.The Method of Quasi-reversibility:Applications to Partial Diferential Equations.New York:Elsevier,1969

    [12]Qian Z,Fu C L,Li Z P.Two regularization methods for a Cauchy problem for the Laplace equation.J Math Anal Appl,2008,338:479-489

    [13]Qian Z,Fu C L,Xiong X T.Fourth-order modifed method for the Cauchy problem for the Laplace equation. J Comput Appl Math 2006,192:205-218

    [14]Ang D D,Nghia N H,Tam N C.Regularized solutions of a Cauchy problem for the Laplace equation in an irregular layer:a three-dimensional model.Acta Math Vietnam,1998,23:65-74

    [15]H`ao D N,Lesnic D.The Cauchy problem for Laplace’s equation via the conjugate gradient method.IMA J Appl Math,2000,65:199-217

    [16]Cheng J,Hon Y C,Wei T,Yamamoto M.Numerical computation of a Cauchy problem for Laplace’s equation.ZAMMZ Angew Math Mech,2001,81(10):665-674

    [17]Hon Y C,Wei T.Backus-Gilbert algorithm for the Cauchy problem of the Laplace equation.Inverse Prob, 2001,17:261-271

    [18]Wei T,Hon Y C,Cheng J.Computation for multidimensional Cauchy problem.SIAM J Control Optim, 2003,42(2):381-396

    [19]Vani C,Avudainayagam A.Regularized solution of the Cauchy problem for the Laplace equation using Meyer wavelets.Math Comput Model,2002,36:1151-1159

    [20]Qiu C Y,Fu C L.Wavelets and regularization of the Cauchy problem for the Laplace equation.J Math Anal Appl,2008,338:1440-1447

    [21]Li Z P,Fu C L.A mollifcation method for a Cauchy problem for the Laplace equation.Appl Math Comput, 2011,217:9209-9218

    [22]Wei T,Zhou D Y.Convergence analysis for the Cauchy problem of Laplace’s equation by a regularized method of fundamental solutions.Adv Comput Math,2010,33(4):491-510

    [23]Fu C L,Ma Y J,Cheng H,Zhang Y X.The a posteriori Fourier method for solving the Cauchy problem for the Laplace equation with nonhomogeneous Neumann data.Appl Math Model,2013,37(14/15):7764-7777

    [24]Carasso A.Determining surface temperature from interior observations.SIAM J Appl Math,1982,42: 558-574

    [25]Zhao Z Y,Meng Z H.A modifed Tikhonov regularization method for a backward heat equation.Inverse Probl Sci Eng,2011,19:1175-1182

    [26]Fu C L.Simplifed Tikhonov and Fourier regularization methods on a general sideways parabolic equation. J Comput Appl Math,2004,167:449-463

    [27]Feng X L,Fu C L,Cheng H.A regularization method for solving the Cauchy problem for the Helmholtz equation.Appl Math Model,2011,35:3301-3315

    [28]Cheng W,Fu C L,Qian Z.A modifed Tikhonov regularization method for a spherically symmetric threedimensional inverse heat conduction problem.Math Comput Simul,2007,75:97-112

    [29]Cheng W,Fu C L,Qian Z.Two regularization methods for a spherically symmetric inverse heat conduction problem.Appl Math Model,2008,32:432-442

    [30]Yang F,Fu C L.Two regularization methods for identifcation of the heat source depending only on spatial variable for the heat equation.J Inv Ill-Posed Problems,2009,17:815-830

    [31]Yang F,Fu C L,Li X X.Identifying an unknown source in space-fractional difusion equation.Acta Math Sci,2014,34B(4):1012-1024

    [32]Kirsch A.An Introduction to the Mathematical Theory of Inverse Problems.Berlin:Springer-Verlag,1996

    ?Received August 26,2014;revised January 20,2015.The project is supported by the National Natural Science Foundation of China(11171136,11261032),the Distinguished Young Scholars Fund of Lan Zhou University of Technology(Q201015),the basic scientifc research business expenses of Gansu province college and the Natural Science Foundation of Gansu province(1310RJYA021).

    ?Corresponding author:Fan YANG.

    猜你喜歡
    楊帆
    Band structures of strained kagome lattices
    Effect of short-term plasticity on working memory
    《魚與蓮》
    Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
    Two regularization methods for identifying the source term problem on the time-fractional diffusion equation with a hyper-Bessel operator
    Theory of unconventional superconductivity in nickelate-based materials?
    Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping?
    劫后華夏再楊帆(弋陽腔)
    影劇新作(2020年2期)2020-09-23 03:22:12
    THE QUASI-BOUNDARY VALUE METHOD FOR IDENTIFYING THE INITIAL VALUE OF THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION ?
    假期(劇本)
    a级毛片在线看网站| 能在线免费看毛片的网站| 26uuu在线亚洲综合色| 亚洲久久久国产精品| 亚洲国产成人一精品久久久| 男男h啪啪无遮挡| 在线观看三级黄色| 欧美日韩在线观看h| 三级经典国产精品| 亚洲精品乱码久久久v下载方式| 六月丁香七月| 日韩大片免费观看网站| 欧美bdsm另类| av.在线天堂| 少妇的逼水好多| 男人和女人高潮做爰伦理| 91久久精品国产一区二区三区| 成人黄色视频免费在线看| 亚洲精品视频女| 国产精品不卡视频一区二区| 精品亚洲成国产av| 男男h啪啪无遮挡| 日本猛色少妇xxxxx猛交久久| 国产一区二区三区av在线| 国产永久视频网站| 一级毛片黄色毛片免费观看视频| 国产又色又爽无遮挡免| av国产精品久久久久影院| 搡女人真爽免费视频火全软件| 天堂中文最新版在线下载| 人人妻人人看人人澡| 99久久人妻综合| 人妻少妇偷人精品九色| 久久人人爽av亚洲精品天堂| 视频区图区小说| 欧美最新免费一区二区三区| 秋霞伦理黄片| 午夜精品国产一区二区电影| 春色校园在线视频观看| 男女国产视频网站| 人人妻人人澡人人看| 两个人的视频大全免费| 在线精品无人区一区二区三| 国产亚洲av片在线观看秒播厂| 色视频www国产| av国产精品久久久久影院| 视频区图区小说| 久久99精品国语久久久| 国产免费一级a男人的天堂| 一个人看视频在线观看www免费| 丁香六月天网| 国产91av在线免费观看| 国产精品久久久久久精品电影小说| 国产高清有码在线观看视频| 精品久久国产蜜桃| 色婷婷av一区二区三区视频| 中国国产av一级| 日日撸夜夜添| 一边亲一边摸免费视频| a级毛片免费高清观看在线播放| 青青草视频在线视频观看| 久久 成人 亚洲| 男人和女人高潮做爰伦理| 国产日韩欧美视频二区| 老女人水多毛片| 亚洲成色77777| 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 大香蕉97超碰在线| 日韩电影二区| 高清黄色对白视频在线免费看 | 亚洲av免费高清在线观看| 在线亚洲精品国产二区图片欧美 | 一级,二级,三级黄色视频| 九色成人免费人妻av| 精品少妇内射三级| 99久国产av精品国产电影| 热re99久久精品国产66热6| 成人二区视频| 亚洲精华国产精华液的使用体验| 免费人妻精品一区二区三区视频| 天美传媒精品一区二区| 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| 亚洲国产精品专区欧美| 五月天丁香电影| 国产精品麻豆人妻色哟哟久久| 插逼视频在线观看| 美女国产视频在线观看| 欧美日韩视频高清一区二区三区二| 最后的刺客免费高清国语| 国产av国产精品国产| 在现免费观看毛片| 香蕉精品网在线| 欧美3d第一页| 欧美一级a爱片免费观看看| 色5月婷婷丁香| 国产精品久久久久久久电影| 免费观看a级毛片全部| 中国国产av一级| 另类精品久久| 九九在线视频观看精品| 亚洲美女视频黄频| 国产黄片视频在线免费观看| 久久久久国产精品人妻一区二区| 美女视频免费永久观看网站| 国产av一区二区精品久久| 亚洲成人av在线免费| av免费观看日本| 少妇裸体淫交视频免费看高清| 日韩 亚洲 欧美在线| 亚洲三级黄色毛片| 久久99一区二区三区| 亚洲欧洲国产日韩| 日韩成人av中文字幕在线观看| 国产精品久久久久成人av| 日韩一区二区三区影片| 麻豆乱淫一区二区| 亚洲国产精品国产精品| 秋霞伦理黄片| 99精国产麻豆久久婷婷| 婷婷色麻豆天堂久久| 18禁裸乳无遮挡动漫免费视频| 美女cb高潮喷水在线观看| 中文字幕久久专区| 黄片无遮挡物在线观看| 国产高清有码在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | kizo精华| 日韩制服骚丝袜av| 国产美女午夜福利| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 国产精品一区www在线观看| kizo精华| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久成人av| 午夜福利一区二区在线看| 亚洲人成电影观看| 色播在线永久视频| 精品人妻在线不人妻| 欧美日韩成人在线一区二区| 丁香六月欧美| 国产淫语在线视频| 精品熟女少妇八av免费久了| 欧美精品啪啪一区二区三区 | e午夜精品久久久久久久| 精品少妇内射三级| 老熟妇仑乱视频hdxx| 国产精品九九99| 母亲3免费完整高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 美女国产高潮福利片在线看| 岛国毛片在线播放| 大片电影免费在线观看免费| 婷婷色av中文字幕| 99国产精品一区二区蜜桃av | 成人国语在线视频| 亚洲欧美激情在线| 天天添夜夜摸| 欧美精品av麻豆av| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 欧美大码av| 男人舔女人的私密视频| av超薄肉色丝袜交足视频| 精品一区在线观看国产| 国产在线一区二区三区精| 高清黄色对白视频在线免费看| 国产激情久久老熟女| 动漫黄色视频在线观看| 高清黄色对白视频在线免费看| 国产人伦9x9x在线观看| 丁香六月天网| 亚洲熟女精品中文字幕| 岛国在线观看网站| av有码第一页| 高清av免费在线| 999久久久精品免费观看国产| 国产成人精品在线电影| 国产亚洲午夜精品一区二区久久| 日韩欧美国产一区二区入口| 一级,二级,三级黄色视频| av国产精品久久久久影院| 国产野战对白在线观看| 制服诱惑二区| 国产精品一区二区精品视频观看| 久久国产精品大桥未久av| 欧美另类亚洲清纯唯美| 99国产极品粉嫩在线观看| 最近最新中文字幕大全免费视频| 国产99久久九九免费精品| 日本91视频免费播放| 免费看十八禁软件| 美国免费a级毛片| 宅男免费午夜| 欧美一级毛片孕妇| 亚洲精品国产av蜜桃| 在线看a的网站| 黑人欧美特级aaaaaa片| 精品亚洲乱码少妇综合久久| 欧美亚洲 丝袜 人妻 在线| 啦啦啦视频在线资源免费观看| 午夜影院在线不卡| 欧美亚洲 丝袜 人妻 在线| 亚洲成人手机| 99精品欧美一区二区三区四区| 久久久精品国产亚洲av高清涩受| 一区二区三区激情视频| 伊人亚洲综合成人网| 亚洲精品久久午夜乱码| 久热这里只有精品99| 日韩有码中文字幕| 97精品久久久久久久久久精品| 欧美激情极品国产一区二区三区| 国产成人啪精品午夜网站| 三上悠亚av全集在线观看| 亚洲欧美精品自产自拍| 丁香六月欧美| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 久久国产精品影院| 久久精品国产亚洲av高清一级| 午夜免费鲁丝| 日韩欧美一区视频在线观看| 两人在一起打扑克的视频| 777久久人妻少妇嫩草av网站| 亚洲精品美女久久av网站| 色综合欧美亚洲国产小说| 老司机靠b影院| 亚洲国产精品一区二区三区在线| 午夜福利视频精品| 亚洲成人国产一区在线观看| 国产亚洲欧美精品永久| 精品人妻一区二区三区麻豆| 免费在线观看黄色视频的| a 毛片基地| 日韩,欧美,国产一区二区三区| 少妇的丰满在线观看| 国产精品国产三级国产专区5o| 久久中文字幕一级| 色视频在线一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 99久久国产精品久久久| 黄网站色视频无遮挡免费观看| 国产男女超爽视频在线观看| 久久 成人 亚洲| 免费少妇av软件| 69精品国产乱码久久久| 激情视频va一区二区三区| 亚洲九九香蕉| 亚洲色图综合在线观看| 国产91精品成人一区二区三区 | 高潮久久久久久久久久久不卡| 国产又爽黄色视频| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 叶爱在线成人免费视频播放| 91精品国产国语对白视频| 巨乳人妻的诱惑在线观看| 国产av又大| 曰老女人黄片| 男女之事视频高清在线观看| netflix在线观看网站| 亚洲精品一二三| 成人国语在线视频| 国产深夜福利视频在线观看| 亚洲人成电影观看| 九色亚洲精品在线播放| 欧美精品一区二区大全| 91九色精品人成在线观看| 精品乱码久久久久久99久播| 男女高潮啪啪啪动态图| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 亚洲精品在线美女| 最新的欧美精品一区二区| 国产精品熟女久久久久浪| 国产亚洲欧美在线一区二区| 精品一区二区三区av网在线观看 | 美女高潮喷水抽搐中文字幕| 国产精品欧美亚洲77777| 日本五十路高清| 香蕉国产在线看| 老熟妇乱子伦视频在线观看 | 免费在线观看日本一区| 国产不卡av网站在线观看| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 天堂中文最新版在线下载| 亚洲精品av麻豆狂野| 啦啦啦免费观看视频1| 亚洲欧美成人综合另类久久久| 国产视频一区二区在线看| 91av网站免费观看| 一区二区三区乱码不卡18| 男女床上黄色一级片免费看| 欧美另类一区| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 国产色视频综合| 水蜜桃什么品种好| cao死你这个sao货| 美女国产高潮福利片在线看| 99国产精品免费福利视频| 成人国语在线视频| 9热在线视频观看99| 久久天堂一区二区三区四区| 免费观看a级毛片全部| 久久青草综合色| 黄色 视频免费看| 亚洲av电影在线进入| 一级毛片电影观看| 建设人人有责人人尽责人人享有的| 亚洲精品粉嫩美女一区| 亚洲第一欧美日韩一区二区三区 | 人人澡人人妻人| 建设人人有责人人尽责人人享有的| 国产不卡av网站在线观看| 亚洲激情五月婷婷啪啪| 国产日韩一区二区三区精品不卡| 久久久久久久大尺度免费视频| 久久国产精品大桥未久av| 一级毛片电影观看| 91成人精品电影| 日韩人妻精品一区2区三区| 亚洲国产欧美网| 91麻豆精品激情在线观看国产 | 老汉色av国产亚洲站长工具| 青春草亚洲视频在线观看| h视频一区二区三区| 各种免费的搞黄视频| 久热爱精品视频在线9| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 欧美精品av麻豆av| 亚洲第一青青草原| 91麻豆av在线| 又黄又粗又硬又大视频| 精品亚洲成国产av| 久久精品亚洲av国产电影网| 黄片播放在线免费| 亚洲第一青青草原| 欧美精品av麻豆av| 亚洲国产毛片av蜜桃av| 99久久精品国产亚洲精品| 日韩制服丝袜自拍偷拍| 18禁黄网站禁片午夜丰满| av不卡在线播放| 俄罗斯特黄特色一大片| 国产亚洲精品一区二区www | 欧美激情极品国产一区二区三区| 99国产精品99久久久久| a级片在线免费高清观看视频| 少妇人妻久久综合中文| 一区二区三区激情视频| 亚洲欧美一区二区三区黑人| 精品第一国产精品| av线在线观看网站| 亚洲九九香蕉| 男女高潮啪啪啪动态图| 黄色视频在线播放观看不卡| 午夜两性在线视频| 国产在线一区二区三区精| 久久人妻熟女aⅴ| 国产亚洲午夜精品一区二区久久| 国产成人欧美| 男女免费视频国产| 国产成人啪精品午夜网站| 午夜视频精品福利| 精品久久久久久久毛片微露脸 | 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区| 少妇的丰满在线观看| 婷婷成人精品国产| 日韩欧美免费精品| 欧美久久黑人一区二区| 免费在线观看影片大全网站| 久久久久精品人妻al黑| 日韩中文字幕视频在线看片| 亚洲精品在线美女| 国产亚洲精品久久久久5区| 久久国产精品人妻蜜桃| 亚洲欧美色中文字幕在线| 波多野结衣一区麻豆| 国精品久久久久久国模美| 国产日韩欧美在线精品| 免费观看a级毛片全部| 超碰成人久久| 岛国毛片在线播放| 成人影院久久| 在线观看一区二区三区激情| 日本av免费视频播放| 成年人午夜在线观看视频| 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 亚洲国产看品久久| 爱豆传媒免费全集在线观看| 国产亚洲精品第一综合不卡| 别揉我奶头~嗯~啊~动态视频 | 最近最新中文字幕大全免费视频| 久久久久网色| 中亚洲国语对白在线视频| 日韩一区二区三区影片| 男人操女人黄网站| 日韩欧美国产一区二区入口| 在线av久久热| 人妻 亚洲 视频| 亚洲免费av在线视频| videos熟女内射| 狂野欧美激情性xxxx| 国产又爽黄色视频| 国产精品欧美亚洲77777| 久久中文看片网| 久久热在线av| www.av在线官网国产| 午夜免费鲁丝| 亚洲精品美女久久久久99蜜臀| 中文字幕av电影在线播放| 久久精品人人爽人人爽视色| 亚洲专区字幕在线| 人成视频在线观看免费观看| 精品福利观看| 后天国语完整版免费观看| 亚洲精品第二区| 成年人黄色毛片网站| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 成年av动漫网址| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 午夜激情久久久久久久| 午夜福利一区二区在线看| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 五月天丁香电影| 国产精品久久久久久人妻精品电影 | 少妇人妻久久综合中文| 国产又爽黄色视频| 精品第一国产精品| 国产精品.久久久| 一本久久精品| 国产精品 国内视频| 久热爱精品视频在线9| 制服诱惑二区| 亚洲欧美日韩另类电影网站| 老鸭窝网址在线观看| 国产精品久久久久成人av| 国产男女超爽视频在线观看| 欧美国产精品va在线观看不卡| videosex国产| 久久精品亚洲熟妇少妇任你| 久久天躁狠狠躁夜夜2o2o| 性色av一级| 日本一区二区免费在线视频| 少妇精品久久久久久久| 一级毛片电影观看| 国产精品二区激情视频| 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区久久久樱花| 一本大道久久a久久精品| 大型av网站在线播放| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| 狂野欧美激情性bbbbbb| 国产免费福利视频在线观看| 高潮久久久久久久久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 99久久国产精品久久久| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| 国产在视频线精品| 亚洲男人天堂网一区| 国产人伦9x9x在线观看| 日韩 欧美 亚洲 中文字幕| 日本撒尿小便嘘嘘汇集6| 亚洲国产欧美日韩在线播放| 欧美日韩成人在线一区二区| 久久久久国产精品人妻一区二区| 亚洲一码二码三码区别大吗| 国产成+人综合+亚洲专区| 视频区欧美日本亚洲| 精品少妇内射三级| 一个人免费在线观看的高清视频 | 91字幕亚洲| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 嫁个100分男人电影在线观看| 9热在线视频观看99| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 国产精品免费视频内射| 高清黄色对白视频在线免费看| 亚洲一区中文字幕在线| 久久精品国产亚洲av高清一级| 中文字幕精品免费在线观看视频| 国产一区二区三区在线臀色熟女 | 久久久水蜜桃国产精品网| 国产成人免费无遮挡视频| 亚洲性夜色夜夜综合| 老司机在亚洲福利影院| 精品熟女少妇八av免费久了| 日本欧美视频一区| 我的亚洲天堂| 国产有黄有色有爽视频| 一区二区三区激情视频| 亚洲伊人久久精品综合| 欧美变态另类bdsm刘玥| 久久 成人 亚洲| 国产免费福利视频在线观看| 蜜桃国产av成人99| 国产成人欧美在线观看 | 人妻 亚洲 视频| 久久久久久久久免费视频了| 精品国产乱码久久久久久男人| 少妇 在线观看| 精品国产一区二区久久| av天堂在线播放| 国产精品 欧美亚洲| 亚洲精品国产精品久久久不卡| 我要看黄色一级片免费的| 青草久久国产| 乱人伦中国视频| 国产精品免费大片| 性高湖久久久久久久久免费观看| 曰老女人黄片| av福利片在线| 日韩欧美一区视频在线观看| 黄色怎么调成土黄色| 欧美xxⅹ黑人| 欧美亚洲日本最大视频资源| 亚洲综合色网址| 黄色视频不卡| 国产精品99久久99久久久不卡| 亚洲人成电影免费在线| 久久精品aⅴ一区二区三区四区| 人人澡人人妻人| 欧美日韩中文字幕国产精品一区二区三区 | 天天躁夜夜躁狠狠躁躁| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 中文欧美无线码| 久久久久久久大尺度免费视频| 别揉我奶头~嗯~啊~动态视频 | 免费在线观看黄色视频的| 亚洲精品一区蜜桃| 十分钟在线观看高清视频www| 免费黄频网站在线观看国产| 一本—道久久a久久精品蜜桃钙片| 亚洲国产毛片av蜜桃av| 国产精品免费大片| 欧美午夜高清在线| 高清在线国产一区| 亚洲成人国产一区在线观看| 看免费av毛片| videosex国产| 精品久久久精品久久久| 51午夜福利影视在线观看| 男人爽女人下面视频在线观看| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 波多野结衣一区麻豆| 丝瓜视频免费看黄片| 亚洲免费av在线视频| 日韩欧美一区视频在线观看| 91精品伊人久久大香线蕉| 18在线观看网站| videos熟女内射| 亚洲精品久久午夜乱码| 大型av网站在线播放| 久久久久久人人人人人| 高清在线国产一区| 亚洲性夜色夜夜综合| 欧美日韩黄片免| 亚洲综合色网址| 久久精品人人爽人人爽视色| 亚洲欧美日韩另类电影网站| 国产成人欧美在线观看 | 新久久久久国产一级毛片| 亚洲精品乱久久久久久| avwww免费| 正在播放国产对白刺激| 亚洲久久久国产精品| 国精品久久久久久国模美| 国产免费现黄频在线看| 午夜福利影视在线免费观看| 久久免费观看电影| 亚洲精品在线美女| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| 国产男人的电影天堂91| 欧美变态另类bdsm刘玥| 精品一区二区三区av网在线观看 | h视频一区二区三区| 欧美久久黑人一区二区| 五月开心婷婷网| 国产精品久久久久成人av| 久久久久国内视频| 女人被躁到高潮嗷嗷叫费观| e午夜精品久久久久久久| 日韩精品免费视频一区二区三区| 精品一区二区三区av网在线观看 | 日韩欧美一区视频在线观看| 国产一区二区 视频在线| 成人免费观看视频高清| 午夜福利影视在线免费观看| av超薄肉色丝袜交足视频| 一二三四在线观看免费中文在| 精品国产一区二区久久| 中文字幕人妻丝袜一区二区|