• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    STABILITY OF SOME POSITIVE LINEAR OPERATORS ON COMPACT DISK?

    2015-02-10 08:37:38

    Department of Mathematics,Aligarh Muslim University,Aligarh 202002,India

    E-mail:mursaleenm@gmail.com;ansari.jkhursheed@gmail.com;asifjnu07@gmail.com

    STABILITY OF SOME POSITIVE LINEAR OPERATORS ON COMPACT DISK?

    M.MURSALEENKhursheed J.ANSARIAsif KHAN

    Department of Mathematics,Aligarh Muslim University,Aligarh 202002,India

    E-mail:mursaleenm@gmail.com;ansari.jkhursheed@gmail.com;asifjnu07@gmail.com

    Recently,Popa and Ra?sa[27,28]have shown the(in)stability of some classical operators defned on[0,1]and found best constant when the positive linear operators are stable in the sense of Hyers-Ulam.In this paper we show Hyers-Ulam(in)stability of complex Bernstein-Schurer operators,complex Kantrovich-Schurer operators and Lorentz operators on compact disk.In the case when the operator is stable in the sense of Hyers and Ulam,we fnd the infmum of Hyers-Ulam stability constants for respective operators.

    Hyers-Ulam stability;Bernstein-Schurer operators;Kantrovich-Schurer opera

    tors;Lorentz operators;stability constants

    2010 MR Subject Classifcation39B82;41A35;41A44

    1 Introduction

    The equation of homomorphism is stable if every“approximate”solution can be approximated by a solution of this equation.The problem of stability of a functional equation was formulated by S.M.Ulam[35]in a conference at Wisconsin University,Madison in 1940:“Given a metric group(G,.,ρ),a number ε>0 and a mapping f:G→G which satisfes the inequality ρ(f(xy),f(x)f(y))<ε for all x,y∈G,does there exist a homomorphism a of G and a constant k>0,depending only on G,such that ρ(a(x),f(x))≤kε for all x∈G?”If the answer is afrmative the equation a(xy)=a(x)a(y)of the homomorphism is called stable;see[10,17].The frst answer to Ulam’s problem was given by D.H.Hyers[16]in 1941 for the Cauchy functional equation in Banach spaces,more precisely he proved:“Let X,Y be Banach spaces,ε a nonnegative number,f:X→Y a function satisfying‖f(x+y)-f(x)-f(y)‖≤ε for all x,y∈X, then there exists a unique additive function with the property‖f(x)-a(x)‖≤ε for all x∈X.”Due to the question of Ulam and the result of Hyers this type of stability is called today Hyers-Ulam stability of functional equations.A similar problem was formulated and solved earlier by G.P′olya and G.Szeg¨o in[25]for functions defned on the set of positive integers.After Hyers result a large amount of literature was devoted to study Hyers-Ulam stability for various equations.A new type of stability for functional equations was introduced by T.Aoki[2]and Th.M.Rassias[29]by replacing ε in the Hyers theorem with a function depending on x and y, such that the Cauchy diference can be unbounded.The results of Aoki and Rassias have beencomplemented later in the papers[12]and[7].Moreover,a lot of useful recent information on that type of stability can be found in[6].

    The Hyers-Ulam stability of linear operators was considered for the frst time in the papers by Miura,Takahasi et al.(see[14,15,21]).Similar type of results are obtained in[34]for weighted composition operators on C(X),where X is a compact Hausdorfspace.A result on the stability of a linear composition operator of the second order was given by J.Brzdek and S.M.Jung in[9].

    Recently,Popa and Ra?sa obtained[26]a result on Hyers-Ulam stability of the Bernstein-Schnabl operators using a new approach to the Fr′echet functional equation,and in[27,28], they have shown the(in)stability of some classical operators defned on[0,1]and found the best constant for the positive linear operators in the sense of Hyers-Ulam.For other results on the Hyers-Ulam stability of functional equations one can refer to[22,23].

    Motivated by their work,in this paper,we show the(in)stability of some complex positive linear operators on compact disk in the sense of Hyers-Ulam.We fnd the infmum of the Hyers-Ulam stability constants for complex Bernstein-Schurer operators and complex Kantrovich-Schurer operators on compact disk.Further we show that Lorentz polynomials are not stable in the sense of Hyers-Ulam on a compact disk.Issues considered in this paper are strictly connected with the problems of stability of the equation of fxed point investigated in[30]. Also,some related results have been obtained in[4,5,24,31,32,36]and[8].

    2 The Hyers-Ulam Stability Property of Operators

    In this section,we recall some basic defnitions and results on Hyers-Ulam stability property which form the background of our main results.

    Defnition 2.1(see[34])Let A and B be normed spaces and T a mapping from A into B.We say that T has the Hyers-Ulam stability property(briefy,T is HU-stable)if there exists a constant K such that:

    (i)for any g∈T(A),ε>0 and f∈A with‖Tf-g‖≤ε,there exists an f0∈A such that Tf0=g and‖f-f0‖≤Kε.The number K is called a HUS constant of T,and the infmum of all HUS constants of T is denoted by KT.Generally,KTis not a HUS constant of T(see [14]and[15]).

    Theorem 2.2(see[34])Let A and B be Banach spaces and T:A→B be a bounded linear operator.Then the following statements are equivalent:

    (a)T is HU-stable;

    (b)R(T)is closed;

    Remark 2.3(1)Condition(i)of Defnition 2.1 expresses the Hyers-Ulam stability of the equation Tf=g,where g∈R(T)is given and f∈A is unknown.

    (2)If T:A→B is a bounded linear operator,then(i)is equivalent to:

    (ii)for any f∈A with‖Tf‖≤1 there exists an f0∈N(T)such that‖f-f0‖≤K(see [13]).

    The main results used in our approach for obtaining,in some concrete cases,the explicit value of KTare the formula given above and a result by Lubinsky and Ziegler[19]concerning coefcient bounds in the Lorentz representation of a polynomial.Let P∈Πn,where Πnis the set of all polynomials of degree at most n with real coefcients.

    A Lorentz representation of a polynomial P(x),is a representation of the form

    where ck∈R,k=0,1,···,n.While it is not unique in general-for example

    -it becomes unique if we insist in(2.1)that n equals the degree of P.

    Note that,in fact,it is a representation in Bernstein-B′ezier basis.Let Tndenote the usual n-th degree Chebyshev polynomial of the frst kind.From the expressions given in([11],p.34), one readily derives the representation:

    where

    It is proved in[27]that

    Therefore

    Theorem 2.4(Lubinsky and Ziegler[19])Let P(x)have the representation(2.1),and let 0≤k≤n.Let dn,kbe defned by(2.3).Then

    with equality if and only if P(x)is a constant multiple of Tn(2x-1),where

    As in[19],we observe that

    Let A be the Banach space and M the closed subspace of A,then by A/M,we denote the quotient space with the usual norm

    For more details,one can refer to[14].

    Let C[0,1]be the space of all continuous,real-valued functions defned on[0,1],and CB[0,+∞)the space of all continuous,bounded,real-valued functions on[0,+∞).Endowed with the supremum norm,they are Banach spaces.

    Popa and Ra?sa have shown the Hyers-Ulam stability of the following operators:

    (i)Bernstein operators[27]

    For each integer n≥1,the sequence of classical Bernstein operators Bn:C[0,1]→C[0,1] is defned by(see[1])

    They are stable in the Hyers-Ulam sense and the best Hyers-Ulam stability constant is given by

    (ii)Sz′asz-Mirakjan operators[27]

    The nth Sz′asz-Mirakjan operator Ln:Cb[0,+∞)→Cb[0,+∞)defned by(see[1],pp. 338)

    is not HU-stable for each n≥1.

    (iii)Beta operators[27]

    For each n≥1,the Beta operator Bn:C[0,1]→C[0,1]defned by[20]

    is not stable in the sense of Hyers-Ulam.

    (iv)Stancu operators[28]

    Let C[0,1]be the linear space of all continuous functions f:[0,1]→R,endowed with the supremum norm denoted by‖.‖,and a,b real numbers,0≤a≤b.The Stancu operator[33] Sn:C[0,1]→Πnis defned by

    (v)Kantorovich operators[28]

    Let X={f:[0,1]→R:where f is bounded and Riemann integrable}be endowed with the supremum norm denoted by‖.‖.The Kantorovich operators defned by

    3 Main Results

    In this section,we show the Hyers-Ulam stability of some other operators.Let DRdenote the compact disk having radius R,i.e.,DR={z∈C:|z|≤R}.

    (i)Bernstein-Schurer Operators

    Let XDR={f:DR→C|f is analytic in DR}be the collection of all analytic functions endowed with the supremum norm denoted by‖.‖for f∈XDR.The supremum norm is not over the whole space(as it is usually understood)and that the dimension of Πn+mis over reals. The complex Bernstein-Schurer operator Sn,m:XDR→Πn+mis defned by(see[3])

    Theorem 3.1For n≥1,the Hyers-Ulam stability best constant(by Defnition 2.1 and Theorem 2.2)is given by

    ProofLet p(z)∈Πn+mand‖p‖≤1.The Lorentz representation of p(z)is given by

    Consider the constant function fp∈XDRdefned by

    Hence using the above equality,we have

    On the other hand,let r(z)=Tn(2z-1),|z|≤R.Then‖r‖=1 and|ck(r)|=dn+m,k, 0≤k≤n+m,according to Theorem 2.4.Consequently by(3.1),we have

    and so by(3.2)and(3.3),we obtain

    This completes the proof of the theorem.

    (ii)Kantrovich-Schurer Operators

    Let XDR={f:DR→C is analytic in DR}be the collection of all analytic functions endowed with the supremum norm denoted by‖.‖.The complex Kantrovich-Schurer operator [3]Kn,m:XDR→Πn+mis defned by

    We have

    The operators Kn,mare Hyers-Ulam stable since their ranges are fnite dimensional spaces.

    Theorem 3.2For n≥1

    ProofLet p(z)∈Πn+m,‖p‖≤1,and its Lorentz representation

    Consider the constant function fp∈XDRdefned by

    On the other hand,let r(z)=Tn(2z-1),|z|≤R.Then‖r‖=1 and|ck(r)|=dn+m,k, 0≤k≤n+m,according to Theorem 2.4.Consequently by(3.4),we have

    and so by(3.5)and(3.6),we can conclude

    This completes the proof of the theorem.

    (iii)Lorentz Operators

    The complex Lorentz polynomial[13]attached to any analytic function f in a domain containing the origin is given by

    Theorem 3.3For each n≥1,the Lorentz polynomial on compact disk is not stable in the sense of Hyers and Ulam.

    ProofTo prove this theorem,we use the approach used in[27,Theorem 4.1].Let us denote ej(z)=zj,then from Lorentz operators we can easily obtain that Ln(e0)(z)=1, Ln(e1)(z)=e1(z);and for all j,n∈N,j≥2,we have

    Also an easy computation shows that

    This completes the proof of the theorem.

    [1]Altomare F,Campiti M.Korovkin-Type Approximation Theory and its Applications.Berlin,New York: W de Gruyter,1994

    [2]Aoki T.On the stability of linear transformation in Banach spaces.J Math Soc Japan,1950,2:64-66

    [3]Anastassiou G A,Gal S G.Approximation by complex Bernstein-Schurer and Kantorovich-Schurer polynomials in compact disks.Comput Math Appl,2009,58:734-743

    [4]Bota M,Karapinnar E,Mle?snit?e O.Ulam-Hyers stability results for fxed point problems via α-ψ-contractive mapping in(b)-metric space.Abstr Appl Anal,2013,Art ID 825293

    [5]Bota M,Petru T P,Petru?sel G.Hyers-Ulam stability and applications in guage spaces.Miskolc Math Notes, 2013,14(1):41-47

    [6]Brillou¨et-Belluot N,Brzd?ek J,Ciepli′nski K.On some recent developments in Ulam’s type stability.Abstr Appl Anal,2012,2012:Article ID 716936

    [7]Brzd?ek J.Hyperstability of the Cauchy equation on resticted domains.Acta Math Hungar,2013,141: 58-67

    [8]Brzd?ek J,C?adariu L,Ciepli′nski K.Fixed point theory and the Ulam stability.J Function Spaces,2014, 2014:Article ID 829419

    [9]Brzd?ek J,Jung S M.A note on stability of an operator linear equation of the second order.Abstr Appl Anal,2011,15:Article ID 602713

    [10]Brzd?ek J,Rassias Th M.Functional Equations in Mathematical Analysis.Springer,2011

    [11]Freud G.Orthogonal Polynomials.Budapest:Akademiai Kiado/Pergamon Press,1966

    [12]Gajda Z.On stability of additive mappings.Int J Math Math Sci,1991,14:431-434

    [13]Gal S G.Approximation by complex Lorentz polynomials.Math Commun,2011,16:67-75

    [14]Hatori O,Kobayasi K,Miura T,Takagi H,Takahasi S E.On the best constant of Hyers-Ulam stability.J Nonlinear Convex Anal,2004,5:387-393

    [15]Hirasawa G,Miura T.Hyers-Ulam stability of a closed operator in a Hilbert space.Bull Korean Math Soc, 2006,43:107-117

    [16]Hyers D H.On the stability of the linear functional equation.Proc Natl Acad Sci,1941,27:222-224

    [17]Hyers D H,Isac G,Rassias Th M.Stability of Functional Equation in Several Variables.Basel:Birkh¨auser, 1998

    [18]Lorentz G G.Bernstein Polynomials.2nd ed.New York:Chelsea Publ,1986

    [19]Lubinsky D S,Ziegler Z.Coefcients bounds in the Lorentz representation of a polynomial.Canad Math Bull,1990,33:197-206

    [20]Lupa?s A.Die Folge der Betaoperatoren[D].Univ Stuttgart,1972

    [21]Miura T,Miyajima M,Takahasi S E.Hyers-Ulam stability of linear diferential operator with constant coefcients.Math Nachr,2003,258:90-96

    [22]Mohiuddine S A,Mursaleen M,Ansari K J.On the stability of fuzzy set-valued functional equations. Scientifc World J,2014,Article ID 392943

    [23]Mursaleen M,Ansari K J.Stability results in intuitionistic fuzzy normed spaces for a cubic functional equation.Appl Math Inform Sci,2013,7(5):1685-1692

    [24]Petru?sel A,Petru?sel G,Urs C.Vector-valued metrics,fxed points and coupled fxed points for nonlinear operators.Fixed Point Theory Appl,2013,2013:218

    [25]P′olya G,Szeg¨o G.Aufgaben und Lehrs¨atze aus der Analysis,I.Berlin:Springer,1925

    [26]Popa D,Ra?sa I.The Fr′echet functional equation with applications to the stability of certain operators.J Approx Theory,2012,164(1):138-144

    [27]Popa D,Ra?sa I.On the stability of some classical operators from approximation theory.Expo Math,2013, 31:205-214

    [28]Popa D,Ra?sa I.On the best constant in Hyers-Ulam stability of some positive linear operators.J Math Anal Appl,2014,412:103-108

    [29]Rassias Th M.On the stability of the linear mappings in Banach spaces.Proc Amer Math Soc,1978,72: 297-300

    [30]Rus I A.Remarks on Ulam stability of the operatorial equations.Fixed Point Theory,2009,10:305-320 [31]Rus I A.Ulam stability of operatorial equations//Functional Equations in Mathematical Analysis.New York:Springer,2012:287-305

    [32]Sintunavarat W.Genaralized Hyers-Ulam stability,well-posedness,and limit showding of fxed point problems for α-β-contraction mapping in metric spaces.Scientifc World J,2014,Article ID 569174

    [33]Stancu D D.Asupra unei generaliz?ari a polinoamelor lui Bernstein.Stud Univ Babe?s-Bolyai,1969,14: 31-45

    [34]Takagi H,Miura T,Takahasi S E.Essential norms and stability constants of weighted composition operators on C(X).Bull Korean Math Soc,2003,40:583-591

    [35]Ulam S M.A Collection of Mathematical Problems.New York:Interscience,1960

    [36]Urs C.Ulam-Hyers stability for coupled fxed points of cntractive type operators.J Nonlinear Sci Appl, 2013,6(2):124-136

    ?Received May 8,2014;revised October 2,2014.

    精品久久久久久久人妻蜜臀av| 亚洲最大成人中文| 在线免费十八禁| 国产不卡一卡二| 成年版毛片免费区| 日韩国内少妇激情av| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av天美| 久久精品国产99精品国产亚洲性色| 69av精品久久久久久| 热99在线观看视频| 国产乱人视频| 日本熟妇午夜| 亚洲va日本ⅴa欧美va伊人久久| 精品久久久久久久久久免费视频| 精品99又大又爽又粗少妇毛片 | 亚洲三级黄色毛片| 亚洲三级黄色毛片| 赤兔流量卡办理| 国产精品野战在线观看| 人人妻人人看人人澡| 伦精品一区二区三区| 亚洲三级黄色毛片| 又黄又爽又刺激的免费视频.| 亚洲男人的天堂狠狠| 成年女人毛片免费观看观看9| 无人区码免费观看不卡| 久久久色成人| 毛片女人毛片| 成人av在线播放网站| 婷婷丁香在线五月| 九九爱精品视频在线观看| 色尼玛亚洲综合影院| 免费观看精品视频网站| 国产亚洲精品av在线| 亚洲国产精品合色在线| 亚洲人成网站在线播放欧美日韩| 麻豆成人av在线观看| 国产伦在线观看视频一区| 精品国内亚洲2022精品成人| 中文字幕av在线有码专区| x7x7x7水蜜桃| 午夜免费激情av| 国产亚洲91精品色在线| 人人妻,人人澡人人爽秒播| 成人av一区二区三区在线看| 在线观看66精品国产| 亚洲狠狠婷婷综合久久图片| 亚洲无线观看免费| 精品国内亚洲2022精品成人| 成人一区二区视频在线观看| 精品久久久噜噜| 久久久久精品国产欧美久久久| 中文在线观看免费www的网站| 久久精品国产亚洲av天美| a级一级毛片免费在线观看| 亚洲午夜理论影院| 最近最新中文字幕大全电影3| 十八禁国产超污无遮挡网站| 欧美日韩国产亚洲二区| 变态另类成人亚洲欧美熟女| 小说图片视频综合网站| 网址你懂的国产日韩在线| 亚洲欧美日韩东京热| 中国美白少妇内射xxxbb| 99久久精品一区二区三区| 午夜福利成人在线免费观看| 国产一区二区三区av在线 | 国内毛片毛片毛片毛片毛片| 亚洲国产欧美人成| 美女大奶头视频| 又粗又爽又猛毛片免费看| 免费av不卡在线播放| 99久久久亚洲精品蜜臀av| 成人三级黄色视频| 日韩中字成人| 久久久久久久久久黄片| 俄罗斯特黄特色一大片| 99久久无色码亚洲精品果冻| 简卡轻食公司| 国内精品宾馆在线| 欧美成人a在线观看| 最后的刺客免费高清国语| 在线免费观看不下载黄p国产 | 村上凉子中文字幕在线| 日韩欧美一区二区三区在线观看| 国产国拍精品亚洲av在线观看| 69人妻影院| 国模一区二区三区四区视频| 国产成人aa在线观看| 午夜激情欧美在线| 别揉我奶头 嗯啊视频| 精品国内亚洲2022精品成人| 成年版毛片免费区| 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| 国内揄拍国产精品人妻在线| 亚洲狠狠婷婷综合久久图片| 亚洲一区二区三区色噜噜| 男人舔奶头视频| 精品一区二区免费观看| 亚洲美女视频黄频| 亚洲一级一片aⅴ在线观看| 亚洲七黄色美女视频| 久99久视频精品免费| 欧美性猛交╳xxx乱大交人| 久久午夜福利片| 麻豆国产av国片精品| 久久精品国产亚洲网站| 午夜福利成人在线免费观看| 色综合婷婷激情| 国产免费男女视频| 亚洲成av人片在线播放无| 日韩欧美国产在线观看| 亚洲成a人片在线一区二区| 99在线视频只有这里精品首页| 国产麻豆成人av免费视频| 蜜桃亚洲精品一区二区三区| 男女那种视频在线观看| 国产精品电影一区二区三区| av在线老鸭窝| 色视频www国产| eeuss影院久久| 在线观看一区二区三区| avwww免费| 他把我摸到了高潮在线观看| 欧美一区二区国产精品久久精品| 波多野结衣高清作品| 亚州av有码| 美女高潮喷水抽搐中文字幕| 色综合亚洲欧美另类图片| 国产一区二区三区在线臀色熟女| 亚洲欧美清纯卡通| xxxwww97欧美| 国产色爽女视频免费观看| 尾随美女入室| 91狼人影院| 变态另类丝袜制服| 国产高清视频在线播放一区| 日日啪夜夜撸| 国产真实伦视频高清在线观看 | 桃红色精品国产亚洲av| 欧美成人免费av一区二区三区| 91狼人影院| 免费在线观看影片大全网站| 免费av毛片视频| 亚洲熟妇熟女久久| 波多野结衣高清作品| 久久久久久国产a免费观看| 黄色视频,在线免费观看| 欧美成人a在线观看| 51国产日韩欧美| 精品人妻一区二区三区麻豆 | 国产精品久久久久久久久免| av在线老鸭窝| 国内精品一区二区在线观看| 午夜影院日韩av| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 免费在线观看成人毛片| 亚洲图色成人| 免费人成在线观看视频色| 久久久久国产精品人妻aⅴ院| 亚洲电影在线观看av| 精品一区二区免费观看| 乱人视频在线观看| 欧美xxxx性猛交bbbb| 一本精品99久久精品77| 欧美高清成人免费视频www| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 中亚洲国语对白在线视频| 超碰av人人做人人爽久久| 18禁裸乳无遮挡免费网站照片| 精品日产1卡2卡| 精品久久久噜噜| 日日干狠狠操夜夜爽| 国产91精品成人一区二区三区| 久久人人爽人人爽人人片va| 日本免费a在线| 毛片女人毛片| 中文字幕久久专区| 日韩欧美 国产精品| 变态另类丝袜制服| 在现免费观看毛片| 成人综合一区亚洲| 日本黄色视频三级网站网址| 亚洲精品一区av在线观看| 国产成年人精品一区二区| 亚洲四区av| 联通29元200g的流量卡| 在线观看av片永久免费下载| 长腿黑丝高跟| 嫩草影院入口| 村上凉子中文字幕在线| 国产精品三级大全| 成人性生交大片免费视频hd| 久久久精品大字幕| 91久久精品电影网| 精品久久久久久久久av| 在线免费十八禁| 尾随美女入室| 人人妻人人澡欧美一区二区| 综合色av麻豆| 精品一区二区三区视频在线| 亚洲五月天丁香| 成人无遮挡网站| 亚洲不卡免费看| 伊人久久精品亚洲午夜| 搡女人真爽免费视频火全软件 | 蜜桃久久精品国产亚洲av| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆| 亚洲七黄色美女视频| 久久草成人影院| 少妇熟女aⅴ在线视频| eeuss影院久久| 国内毛片毛片毛片毛片毛片| 啦啦啦啦在线视频资源| 熟妇人妻久久中文字幕3abv| 久久香蕉精品热| 精华霜和精华液先用哪个| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清专用| 欧美在线一区亚洲| 一级毛片久久久久久久久女| 一夜夜www| 国国产精品蜜臀av免费| 久99久视频精品免费| 中文资源天堂在线| 久久欧美精品欧美久久欧美| 成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 欧美日韩瑟瑟在线播放| 国产高清激情床上av| 色播亚洲综合网| 国产69精品久久久久777片| 久久国产精品人妻蜜桃| 少妇高潮的动态图| 中文字幕av成人在线电影| 国产亚洲91精品色在线| 俺也久久电影网| 久久精品国产亚洲网站| 婷婷亚洲欧美| 少妇熟女aⅴ在线视频| 精品午夜福利视频在线观看一区| 欧美一级a爱片免费观看看| 午夜福利在线观看免费完整高清在 | 午夜福利在线观看免费完整高清在 | 嫩草影院新地址| 女的被弄到高潮叫床怎么办 | av视频在线观看入口| 丰满乱子伦码专区| 国内揄拍国产精品人妻在线| 一夜夜www| 一进一出抽搐动态| 观看免费一级毛片| 白带黄色成豆腐渣| 欧美日韩中文字幕国产精品一区二区三区| 亚洲经典国产精华液单| 久久99热这里只有精品18| 99在线视频只有这里精品首页| 亚洲三级黄色毛片| 嫩草影视91久久| 偷拍熟女少妇极品色| 桃色一区二区三区在线观看| 国产免费男女视频| 国产主播在线观看一区二区| www.www免费av| 大又大粗又爽又黄少妇毛片口| 12—13女人毛片做爰片一| 成人特级av手机在线观看| 91精品国产九色| 欧美日韩综合久久久久久 | 精品国产三级普通话版| 久久6这里有精品| 国产大屁股一区二区在线视频| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 91精品国产九色| 色综合婷婷激情| 成人国产一区最新在线观看| 亚洲最大成人av| 国产麻豆成人av免费视频| 精品久久久久久久久久免费视频| 日日啪夜夜撸| 国产精品女同一区二区软件 | 成人国产麻豆网| 久9热在线精品视频| 国产精品电影一区二区三区| 深夜a级毛片| 成年人黄色毛片网站| 亚洲无线观看免费| 搡老岳熟女国产| 欧美成人一区二区免费高清观看| 亚洲在线自拍视频| 午夜福利在线在线| 99九九线精品视频在线观看视频| 国产精华一区二区三区| 久久久久久国产a免费观看| 一区二区三区高清视频在线| 国产乱人视频| 欧美成人性av电影在线观看| 日本一本二区三区精品| 成人国产一区最新在线观看| 欧美成人性av电影在线观看| 精品日产1卡2卡| 国产精品亚洲一级av第二区| 国产黄a三级三级三级人| 国内精品宾馆在线| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 久久午夜亚洲精品久久| 国产在线男女| 搡女人真爽免费视频火全软件 | 97碰自拍视频| 嫩草影院精品99| 在线播放国产精品三级| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| a级一级毛片免费在线观看| 国产精品久久久久久精品电影| 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 亚洲av成人av| 亚洲精品456在线播放app | 日韩欧美免费精品| 久久人妻av系列| 国产男靠女视频免费网站| 日本一二三区视频观看| 国产亚洲精品综合一区在线观看| 久久久久久伊人网av| 久久精品国产亚洲网站| 久久久久久大精品| 搡老妇女老女人老熟妇| 亚洲图色成人| 日本五十路高清| 毛片女人毛片| 伦理电影大哥的女人| 国产精品,欧美在线| 亚洲精华国产精华精| 国产69精品久久久久777片| 精品久久久久久久久久免费视频| 亚洲精品一区av在线观看| 亚洲七黄色美女视频| 国产aⅴ精品一区二区三区波| 国产高潮美女av| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 久久久久国产精品人妻aⅴ院| 久久这里只有精品中国| 欧美性猛交╳xxx乱大交人| 亚洲欧美精品综合久久99| 91狼人影院| 久久国产乱子免费精品| 一本久久中文字幕| 日日夜夜操网爽| 深夜a级毛片| videossex国产| 又爽又黄a免费视频| 永久网站在线| 淫秽高清视频在线观看| 欧美极品一区二区三区四区| 欧美日韩黄片免| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 亚洲经典国产精华液单| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 亚洲自拍偷在线| 精品一区二区三区视频在线| 色综合色国产| 国产精品自产拍在线观看55亚洲| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 国产亚洲欧美98| 精品一区二区三区视频在线观看免费| 免费搜索国产男女视频| 日本一本二区三区精品| 亚洲美女视频黄频| 欧美丝袜亚洲另类 | 国产一区二区三区av在线 | 国产欧美日韩精品亚洲av| a在线观看视频网站| 人人妻人人看人人澡| 一a级毛片在线观看| 在线免费十八禁| 欧美+日韩+精品| 久久久成人免费电影| 午夜爱爱视频在线播放| 国产精品乱码一区二三区的特点| 久久久成人免费电影| 国产亚洲欧美98| 日本黄色视频三级网站网址| 亚洲性夜色夜夜综合| 久久99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 国产成人福利小说| 麻豆成人午夜福利视频| 男人的好看免费观看在线视频| 18禁黄网站禁片午夜丰满| 色综合色国产| 舔av片在线| 久久久久久久久久久丰满 | 亚洲综合色惰| 国产亚洲av嫩草精品影院| 欧美激情国产日韩精品一区| 国国产精品蜜臀av免费| 久久久久久久亚洲中文字幕| 亚洲国产精品sss在线观看| av女优亚洲男人天堂| 国产精品乱码一区二三区的特点| 舔av片在线| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 欧美中文日本在线观看视频| 国产高清视频在线播放一区| 最近最新免费中文字幕在线| 91在线观看av| 日韩欧美一区二区三区在线观看| 一级黄片播放器| 亚洲人成网站在线播放欧美日韩| 中文字幕熟女人妻在线| 成人一区二区视频在线观看| 99久久精品热视频| 一级av片app| 日韩精品青青久久久久久| 毛片女人毛片| 99视频精品全部免费 在线| 久久6这里有精品| 欧美绝顶高潮抽搐喷水| 免费看美女性在线毛片视频| 看黄色毛片网站| 天堂√8在线中文| 直男gayav资源| 97人妻精品一区二区三区麻豆| 免费在线观看成人毛片| 国产高潮美女av| 国产淫片久久久久久久久| 亚洲电影在线观看av| 日韩av在线大香蕉| 中文字幕av在线有码专区| 成人国产麻豆网| 欧美日韩亚洲国产一区二区在线观看| 亚洲真实伦在线观看| 国产精华一区二区三区| 女同久久另类99精品国产91| 亚洲欧美日韩卡通动漫| 国产在线男女| 有码 亚洲区| 国产在线精品亚洲第一网站| 欧美日韩精品成人综合77777| 简卡轻食公司| 亚洲中文字幕一区二区三区有码在线看| 露出奶头的视频| 桃红色精品国产亚洲av| 九九爱精品视频在线观看| 欧美日本亚洲视频在线播放| 久久久久国内视频| 亚洲av免费高清在线观看| 99热6这里只有精品| 黄色丝袜av网址大全| 男人舔女人下体高潮全视频| 色视频www国产| 日韩精品青青久久久久久| 狂野欧美白嫩少妇大欣赏| 日韩精品青青久久久久久| 久久久久性生活片| 午夜免费成人在线视频| 国产成人av教育| 国产一级毛片七仙女欲春2| 高清毛片免费观看视频网站| 成人特级黄色片久久久久久久| 最后的刺客免费高清国语| 女同久久另类99精品国产91| 性插视频无遮挡在线免费观看| 老熟妇乱子伦视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又免费观看的视频| 久久久久久久精品吃奶| 亚洲av五月六月丁香网| 一区二区三区免费毛片| 在线天堂最新版资源| 久久九九热精品免费| 网址你懂的国产日韩在线| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 狠狠狠狠99中文字幕| 内射极品少妇av片p| 我要看日韩黄色一级片| 真人做人爱边吃奶动态| 国产高清视频在线观看网站| 亚洲第一电影网av| 在线观看一区二区三区| 午夜激情福利司机影院| 1000部很黄的大片| 日韩欧美精品v在线| 别揉我奶头~嗯~啊~动态视频| 国产女主播在线喷水免费视频网站 | 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 成人精品一区二区免费| 床上黄色一级片| 国产伦精品一区二区三区四那| 欧美一区二区国产精品久久精品| 看黄色毛片网站| 制服丝袜大香蕉在线| 搡老熟女国产l中国老女人| 在线观看美女被高潮喷水网站| 久久久久久久久久成人| 69人妻影院| 色综合色国产| 日韩强制内射视频| 中文资源天堂在线| 日本免费a在线| 欧美日韩瑟瑟在线播放| 搡老妇女老女人老熟妇| 看十八女毛片水多多多| 毛片一级片免费看久久久久 | 99久国产av精品| 女同久久另类99精品国产91| 桃红色精品国产亚洲av| 久久精品91蜜桃| 少妇猛男粗大的猛烈进出视频 | 性插视频无遮挡在线免费观看| 又黄又爽又免费观看的视频| 少妇裸体淫交视频免费看高清| 国内精品久久久久精免费| 国产高清视频在线观看网站| 亚洲av中文字字幕乱码综合| 国产欧美日韩精品亚洲av| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 18+在线观看网站| 女生性感内裤真人,穿戴方法视频| 国产精品野战在线观看| 变态另类丝袜制服| 日韩一区二区视频免费看| 国产精品爽爽va在线观看网站| 亚洲欧美日韩高清在线视频| 国产精品,欧美在线| 黄色欧美视频在线观看| 亚洲精品粉嫩美女一区| 人人妻人人看人人澡| 亚洲性夜色夜夜综合| 不卡视频在线观看欧美| 一个人观看的视频www高清免费观看| 亚洲色图av天堂| 免费人成视频x8x8入口观看| 波野结衣二区三区在线| 一边摸一边抽搐一进一小说| 国产精品久久久久久久电影| 久久久色成人| 成人国产一区最新在线观看| 干丝袜人妻中文字幕| 搡老岳熟女国产| 性欧美人与动物交配| 国产精品无大码| 亚洲av电影不卡..在线观看| 男女做爰动态图高潮gif福利片| 亚洲天堂国产精品一区在线| 国产男人的电影天堂91| 看片在线看免费视频| 俄罗斯特黄特色一大片| 国产精品国产高清国产av| 国模一区二区三区四区视频| 亚洲中文字幕一区二区三区有码在线看| 国产成人aa在线观看| 亚洲成人精品中文字幕电影| 99热这里只有精品一区| 99热网站在线观看| 国内精品久久久久精免费| 色综合站精品国产| 国产探花极品一区二区| 亚洲国产精品成人综合色| 九九在线视频观看精品| 欧美色视频一区免费| 波多野结衣高清无吗| 国产精品久久久久久久久免| 男女做爰动态图高潮gif福利片| 国产成人a区在线观看| 丰满乱子伦码专区| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 身体一侧抽搐| 三级毛片av免费| 国产男靠女视频免费网站| 亚洲男人的天堂狠狠| 国产精品,欧美在线| 国产激情偷乱视频一区二区| 我要看日韩黄色一级片| 亚洲欧美日韩东京热| 国产精品久久视频播放| 一区二区三区高清视频在线| 欧美中文日本在线观看视频| 搡女人真爽免费视频火全软件 | 亚洲一区高清亚洲精品| 最新中文字幕久久久久| 九色国产91popny在线| 欧美日韩中文字幕国产精品一区二区三区| 91在线观看av| 嫩草影院入口| 三级国产精品欧美在线观看| 国内精品久久久久久久电影| 3wmmmm亚洲av在线观看| 精品久久久久久久久久免费视频| 综合色av麻豆| 欧美精品啪啪一区二区三区| 午夜老司机福利剧场| 91久久精品电影网| 国产精品伦人一区二区| 国产精品免费一区二区三区在线| 午夜免费男女啪啪视频观看 | 99久久精品国产国产毛片| 亚洲av二区三区四区|