• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BLOWING UP AND MULTIPLICITY OF SOLUTIONS FOR A FOURTH-ORDER EQUATION WITH CRITICAL NONLINEARITY?

    2015-02-10 08:37:42

    Department of mathematics,University of Monastir,Tunisia

    E-mail:siwar ammar84@yahoo.fr

    Mokhles HAMMAMI

    Department of mathematics,Faculty of Sciences of sfax,University of Sfax,Tunisia

    E-mail:Mokhless.Hammami@fss.rnu.tn

    BLOWING UP AND MULTIPLICITY OF SOLUTIONS FOR A FOURTH-ORDER EQUATION WITH CRITICAL NONLINEARITY?

    Siwar AMMAR

    Department of mathematics,University of Monastir,Tunisia

    E-mail:siwar ammar84@yahoo.fr

    Mokhles HAMMAMI

    Department of mathematics,Faculty of Sciences of sfax,University of Sfax,Tunisia

    E-mail:Mokhless.Hammami@fss.rnu.tn

    fourth order elliptic equations;critical Sobolev exponent;blow up solution

    2010 MR Subject Classifcation35J20;35J60

    1 Introduction and Statement of Results

    This paper concerns the concentration phenomena for the following nonlinear equation under the Navier boundary conditions,

    The motivation for investigating(Pμ)comes from its resemblence some geometric equations involving Paneitz operator(see for instance[6,13,17]).

    In the last decades,there have been many works in the study of concentration phenomena for second order elliptic equation with critical Sobolev exponent;see for example[1,4,7,11,12,15,16,21,25-31]and the references therein.In sharp contrast to this,very little is known for fourth order elliptic equations.

    Existence and multiplicity of solutions of(Pμ)have been studied intensively by many authors with the exponents p and q.In[33],Van Der Vorst proved that if q∈[1,p[andμ≤0 then(Pμ)has no solution in starshaped domains Ω?Rn,whereas Ebobisse and Ould Ahmedou proved in[18]that(P0)has a solution provided that some homology group of Ω is nontrivial in the sense Hk(Ω,Z2)/=0 for some integer k.Nevertheless,Gazzola,Grunau and Squassina[19] gave the example of contractible domains on which a solution still exists,showing that both topology and geometry of the domains play a role.

    In case n≥8 and 1≤q<p or n=5,6,7 and(12-n)/(n-4)<q<(n+4)/(n-4),Melo and Santos[24],proved that if Ω has a rich topology,described by its Lusternik-Schnirelmann category,then multiple solutions to problem(Pμ)exist providedμ>0 is sufciently small.The approach used on[24]is diferent to our method.It is based on some analysis on the Nehari manifold associated with the problem(Pμ).

    Note that,the most results are concerning the large dimensions.The purpose of the present paper is to study solutions for(Pμ)for the critical dimensions n=5,6,7 and q∈]4/(n-4),(12-n)/(n-4)[.More precisely,for all positive solutions which concentrate around two points of Ω,we prove that the concentration speeds are of the same order and the distance of the concentration points from each other and from the boundary are bounded.We will also establish the existence of positive solution which concentrate at two points of Ω,where Ω=(Ωa)ais a smooth ringshaped open set and we will prove if Ω has a rich topology,described by its Lusternik-Schnirelmann category,then multiple solutions to problem(Pμ)exist provided μ>0 large enough.We note that the choose of the variableμ(in Theorem 1.4)depends on the remainder termμ-(n-4)(q+1)/(12-n-(n-4)q)which appears in our expansions(see section 5, equation(5.4)).In fact,since we assume that q<(12-n)/(n-4),thenμhas to be large enough to obtain that the previous term is small enough with respect to the principal terms in our expansions.Furthermore,this remainder term gives us an idea on the choose of[24](since in their case q>(12-n)/(n-4)and thenμhas to be small enough).In Theorem 1.2,the remainder term which appears in Proposition 4.4 is ρ(X)(n-4)(q-2)/(12-n-(n-4)q),where ρ(X)is the frst eigenvalue of the Matrix M(X)defned in(1.4),since we assume that q<(12-n)/(n-4) to obtain that the previous term is small enough with respect to the principal terms in our expansions.

    We remarque that our method works also to prove the result of[24].The proof of our resultsis inspired by Rey[28].Compared with the second-order case,further technical problems arise which are overcome by careful and delicate expansions of the Euler functional associated to (Pμ)and its gradient near a neighborhood of highly concentrated functions.In fact,in our case we cannot use,as in the laplacien case,the method of moving planes in order to show that the distances of the blow up points from each other and from the boundary of the domain are bounded.This is due to the fact that the Navier boundary condition is not invariant under the Kelvin transformation of the biharmonic operator.To overcome this difculty,we use the techniques developed by Bahri[2]and Rey[29]in the framework of the theory of critical points at infnity.

    To state our results,we need to introduce some notations.We denote by G the Green’s function of Δ2,that is,for all x∈Ω:

    where δxdenotes the Dirac mass at x and c=(n-4)(n-2)|Sn-1|.We also denote by H the regular part of G,that is,

    and H satisfes

    For λ>0 and x∈Rn,let

    It is well known(see[22])that δ(x,λ)are the only solutions of

    They are also the only minimizers of the Sobolev inequality on the whole space,that is

    The frst part of this paper is devoted to study the solution which concentrate around two points of Ω

    2.d(xi,?Ω)≥d0,for i=1,2.

    3.|x1-x2|≥d0.

    To state the existence result,we need to introduce some notations.

    For X=(x1,x2)∈Ω2Γ,with Γ={(y,y),y∈Ω},we denote by M(X)the matrix defned by

    Let ρ(X)be the least eigenvalue of M(X)and r(X)the eigenvector corresponding to ρ(X) whose norm is 1 and whose components are all strictly positive(see Appendix A of[4]).

    We denote by Ω=(Ωa)a>0is a ringshaped open sets in Rn.More precisely,let f be any smooth function

    which is periodic of period π with respect to the θ1,.,.,θn-2and of period 2π with respect to θn-1.We set

    where(r,θ1,···,θn-1)are the polar coordinates of x.

    For each f we obtain an increasing family of smooth ringshaped open sets.In the following, Ha,Ga,ρadenote the functions H,G,ρ defned on Ωa×Ωa.

    where the xikdenote here the k-th component of xi.

    where η0,λ0,d0,k0are some suitable positive constants.

    Now we state the result.

    Theorem 1.2Let n=5,6 and assume thatμ>0(resp.μ<0).There exist(a0,a1)∈R2,0<a1<a0(resp 0<a0<a1)such that for any a∈[a1,a0[(resp.a∈]a0,a1]),there exists uaa solution of(Pμ)in Ωa,such that

    where v∈EΛ,X,(A,Λ,X,v)∈M and 0<ρ(X)<ρ0(resp.ρ0<ρ(X)<0).

    Concerning the sign-changing solution,we prove that(Pμ)has no sign-changing solutions which blows up at tow points.More precisely,we have

    Theorem 1.3Let Ω be any smooth bounded domain in Rn,n∈{5,6,7}and let A be a fxed positive constant.For each|μ|≤A,the problem(Pμ)has no sign-changing solutions uμwhich satisfes

    Next,we want to state a multiplicity result for problem(Pμ).For this purpose,we say that the category of F?Ω is k,denoted Cat(F,Ω),if F may be covered by k closed sets in Ω,each one contractible in Ω,but not by(k-1)such sets.We call category of Ω the positive integer Cat(Ω,Ω)(see[14]).

    Theorem 1.4Let n=5,6 and Ω be any smooth and bounded domain in Rnof Ljusternik-Schnirelmann category k and let q∈]4/(n-4),(12-n)/(n-4)[.Forμ>0,large enough,there are at least k+1 positive solutions of(Pμ).

    Remark 1.5The dimension n=7 is excluded from Theorems 1.2 and 1.4.The reason is that in some expansions it appears(q-2)on some powers which we need to be positive(see Proposition 4.4).However,for n=7 the variable q∈]4/3,5/3[and this prove(q-2)becomes negative in the case n=7.

    The remainder of the present paper is organized as follows.In the next,we prove Theorems 1.1 and 1.3.In Section 3,we develop the expansion of the functional associated to(Pμ)and its gradient,needed in the proof of Theorems 1.2 and 1.4.Section 4,is devoted to the proof of Theorem 1.2,while Theorem 1.4 is proved in Section 5.Lastly,we give in Appendix some useful estimates.

    2 Proof of Theorems 1.1 and 1.3

    This Section is devoted to the proof of Theorems 1.1 and 1.3.We will us some ideas introduced by Bahri[2]and some technical estimates.

    We assume that there exists solution uμof(Pμ)as in(1.3)and(1.6).Arguing as in[2,3] and[29],we see that,there is a unique way to choose αi,xi,λiand v such that

    where v∈EΛ,X.

    In order to simplify the notations,in the remainder we write δi,Pδiand u instead of δ(xi,λi), Pδ(xi,λi)and uμ.

    As usual in these types of problems,we frst deal with the v-part of u,in order to show that it is negligible with respect to the concentration phenomenon.Namely,we have the following estimate.

    Lemma 2.1The function v defned in(2.1),satisfes the following estimate

    where di:=d(xi,?Ω)for i=1,2.

    ProofSince u=α1Pδ1+γα2Pδ2+v is a solution of(Pμ)and v∈EΛ,X.Multiplying (Pμ)by v and integrating on Ω,we obtain

    Hence,we have

    where

    According to[3]and[6],there exists a positive constant c such that

    Using the Holder’s inequality and the Sobolev embedding theorem,we fnd

    On another hand,for any v∈EΛ,X,we have

    Now,we are able to obtain the following result which is a crucial point in the proof of our Theorems.

    Proposition 2.2Assume that,u=α1Pδ1+γα2Pδ2+v is a solution of(Pμ).We have the following estimate:

    ProofIt sufces to prove the proposition for i=1.Multiplying(Pμ)by Pδ1and integrating on Ω,we obtain

    By Lemma 2.1,we write

    Proof of Theorem 1.3Arguing by contradiction,let us suppose that the problem (Pμ)has a solution u as stated in Theorem 1.3.This solution has to satisfy(2.1),and from Proposition 2.2,we have

    where i=1,2.

    Without loss of generality,we can assume that λ2≥λ1.We distinguish two cases and we will prove that they cannot occur.This implies our theorem.

    which implies that

    Then from(2.10)and(2.12),we get

    Using the fact that

    which gives a contradiction.Hence this case cannot occur.

    Now,using the fact that λ2≥λ1,an easy computation shows that

    Using(2.13),(2.14)and(2.15)we have

    Then we derive a contradiction and therefore this case cannot occur.Hence Theorem 1.3 is proved.?

    Proof of Theorem 1.1Let us assume that problem(Pμ)has a solution u as stated in Theorem 1.1.We will proceed to proof the result in four steps:

    The proof will be by contradiction.Assume that d1/d2→0.In this case,we have

    Using Proposition 2.2,we derive

    We deduce from(2.16)and(2.17)that

    a contradiction.In the same way,we prove that d2/d1/→0.Hence the proof of Claim 1 is completed.

    Assume that λ1/λ2→0.By Claim 1,we have(λ2d2)-1=o((λ1d1)-1).

    Using the fact that λ1≤λ2,we have

    By Proposition 2.2,we have

    Using Claim 1 and(2.19),we derive

    Hence,by(2.20)and Proposition 2.2,we obtain

    We deduce that

    Two cases may occur.

    Using Proposition 2.2,we obtain

    which gives a contradiction in this case.

    a contradiction.

    Claim 4There exist a constant d0such that di=d(xi,?Ω)≥d0,for i=1,2.

    By Claims 1,2 and 3,we know that λ1and λ2are of the same order,|x1-x2|,d1and d2are of the same order.Assume that d1→0 and d1≤d2.Let νibe the outward normal vector at xi.Since d1,d2and|x1-x2|are of the same order,we have(see[4]and[8])

    By Proposition 2.2,

    then(2.22)implies

    Then the Theorem follows for n∈{6,7}.In this case n=5,regarding the estimate of‖v‖,it is of the same order as the principle part of Proposition 2.2.We use an idea due to Rey[32], we have a better estimates of the integrals involving v,namely we write

    where Bi=B(xi,di/4).

    The estimate of Claim 3 in Proposition 2.2,becomes

    Therefore the proof of the theorem follows in this case.

    3 Expansion of the Functional and Its Gradient

    If u is a positive critical point of J,u satisfes on Ω the problem(Pμ).Conversely,we see that any solution of(Pμ)is a critical point of J.

    Let us defne the functional

    where M is defned in(1.5).

    As usual in this types of problems,we frst deal with the v-part of u,in order to show that is negligible with respect to the concentration phenomenon.Namely,we prove the following.

    Moreover,there exists(Bi,Ci,Di)∈R2×R2×(R2)nsuch that

    where the xikis the k-th component of xi.

    ProofK has been defned in(3.2),we write

    Now,we will estimate‖f(A,Λ,X)‖.

    Then using the Holder’s inequality,and the fact that n<12,we have

    According to[3]and[6],there exists a positive constant c such that

    Next,we prove a useful expansion of the derivative of the function K associated to(3.2), with respect to αi,λi,xi.

    ProofTo prove Claim 1,using(2.6),(3.3)and(3.9),we write

    Now,using the fact that,for k/=j

    From(3.14),(3.15),Lemma A.1 and Proposition 3.1,Claim 1 follows.

    Now,we prove Claim 2.As in Claim 1 we have

    Using the fact that|xi-xj|>d0,then

    The Claim 2 follows from(3.14),(3.15),(3.16),(3.17),Lemma A.2 and Proposition 3.1.

    Regarding Claim 3,its proof is similar to Claim 2,so we will omit it.?

    Lemma 3.3Assume that(A,Λ,X,0)∈M,then the following expansion holds

    ProofK has been defned in(3.2),we have

    Now,using Lemma A.1,this lemma follows.

    Now,setting

    Proposition 3.4The coefcients Bi,Ciand Dikwhich occur in Proposition 3.1 satisfy the estimates

    The left side is given by

    By Proposition 3.2,we have

    The solution of the system in Bi,Ci,Dikshows the result.?

    4 Proof of Theorem 1.2

    In Section 3,we minimizes the functional K with respect to v∈EΛ,X.

    Let M1={(A,Λ,X)such that(A,Λ,X,0)∈M}.Our aim in this section is to optimize the C2-map

    with respect to A=(α1,α2)and Λ=(λ1,λ2),i.e.,to fnd,for given X,AXand ΛXsuch that

    For X∈Ω2Γ the matrix M(X)have two eigenvalues ρ(X)<ρ′(X)corresponding respectively to the eigenvectors r(X)=(r1,r2)and r′(X)=(-r2,r1)(see[4]).One can choose r1and r2such that

    Setting

    We prove the following result

    Proposition 4.1Assume thatμ>0.For each d0>0 there exist ρ0>0 and a C1-map

    (i)(S)is satisfed with(A,Λ,X)=(AX,ΛX,X),

    (ii)

    ProofFor X∈M2,we fnd AXand ΛXsuch that

    Taking the derivatives with respect to αiof the equalities

    Using Proposition 3.1,therefore

    On another hand,we write

    In order to estimate ξik,ζikand θikl,we take the scalar product of(4.5)with Pδk,λk?Pδk/?λkand(λk)-1?Pδk/?xkl.On the left side,using the derivative with respect to λiof the equalities (4.3),we obtain

    Therefore

    We have also,

    On the right side we use again(4.6),(4.8),(4.9),(3.21),(3.22),(3.23),(3.24)and from the linear system that we obtain,we derive

    We fnd

    Let us treat now the terms?K/?αiand?K/?λi.Observe that δ′=o(δ)and δ~‖Λ‖as ρ→0.

    With the notation(3.19),(4.1)from Proposition 3.2,we derive

    In the same way we prove that

    Then,from(4.1)and(4.2),we derive

    We have also,

    Then,we set

    with∈,∈′→0.With these notations,taking account of(4.4),(4.11),(4.12),(4.13),(4.14), (4.15),(4.16),(4.17)then(S1)may be written under the form

    Where V′s and W′s are C1-functions which satisfy

    Proposition 4.2The points(AX,ΛX)which occurs in Proposition 4.1 is a non degenerate critical point of the map w.

    ProofNow,we will proof that the point(AX,ΛX)is a non-degenerate critical point of the map w.

    Then we need to prove that the determinant Δ of the matrix is nonzero for(A,Λ)=(AX,ΛX).

    We have

    On the other hand,we have

    Replacing(4.25),(4.26),(4.27),(4.28)and(4.29)in equality(4.24),we obtain

    Finally,we have

    Thus,using(4.5),(4.10),(3.21),(3.22),(3.23),(3.24)and(4.31),we fnd

    In the same way we prove that

    We derive(4.23)with respect to αi,we obtain

    and

    Lastly,let us write

    with wij∈EΛ,X.

    On the left side we fnd

    We deduce fnally that

    Coming back to(C2),the terms that we still have to estimate is the second derivatives of K with respect to αi’s and λi’s.The computations give us

    where δijis the Kronecker symbol.

    Then,equations(4.36)-(4.39)become,for(A,Λ)=(AX,ΛX)

    Then we can compute the determinant△and we obtain

    hence the result follows.

    Now,we consider the following map defned by

    where

    ρ0being small enough in function of d0.

    To complete the proof of this theorem we need to optimize K with respect to X.Each critical point X∈M2of K provides us with a critical point of J,hence a solution of(Pμ)if the function

    is positive.In order to fnd such a critical point,we are going to use a min-max method based upon the special shape and properties of the domains Ωa.We will need the following Proposition.

    Proposition 4.3We have the following expansions

    ProofUsing Proposition 3.1,Lemma 3.3 and the fact that η=(η1,η2)=(α1-1,α2-1), we have

    From(4.1)and Proposition 4.1,we derive

    We get fnally

    Hence,Proposition 4.3 follows.

    Proposition 4.4We have the following expansions

    Using(2.19),we obtain

    On another hand,(2.20)becomes

    Using the Holder’s inequality and the Sobolev embedding theorem,we obtain

    So that fnally,

    Note that,we have

    where

    On another hand,diferentiating ρ with respect to x1k,we fnd

    Thus,we see that

    and we have the same expression for?ρ/?x2kintroverting the indices.Then,taking account of (4.1),we can write

    We have also,

    Since

    On the right hand side we use(3.21),(3.22),(3.23)and(3.24)and solving a linear system wefnd

    From(3.4)we derive

    Note that for(A,Λ)=(AX,ΛX),we have

    so that,using(3.21),(3.22),(3.23),(3.24)to solve the linear system that we obtain by taking the scalar product of(3.4)with Pδi,?K/?λi,and(λi)-1?K/?xik,we get

    Then,using again(3.21),(3.22),(3.23)and(3.24),we obtain the result.?

    Thus,setting

    where c is a positive constant.

    We denote by σathe embedding

    Finally,we set

    Let us frst state some results about m.We already know that

    m has also the following properties:

    ii)if m(a)<c,then m is continuous at a,

    The proof of this proposition is done in page 836 of[28].

    We need the following lemma to proof that the vector feld-gradKais pointing inward Ωa×Ωa.

    we have also,Ga(x1,x2)>0 et?Ga/?x1k(x1,x2)ν1<0,

    Thus,the lemma follows.

    ProofWe start by proving that for a∈]a?,a0[close enough to a0and ε>0,Kahas a critical point between the levels m(a)-ε and m(a)+ε.Without loss of generality we may assume that ε<m(a).We deduce from the defnition of Kaand Proposition 4.3 that

    implies 0<ρa(X)≤ρ0.

    Therefore,if Kahas no critical value in[m(a)-ε,m(a)+ε],it is possible,using the fow

    in contradiction with the defnition of m(a).

    This ends the proof.

    Since,by construction,(AXa,ΛXa,Xa,v)is a critical point of the functional Ka,ua∈H10(Ωa)∩H2(Ωa)defned by

    with AXa=(α1,α2),ΛXa=(λ1,λ2),Xa=(x1,x2),et v=va=v(AXa,ΛXa,Xa),uais a critical point of the functional J,i.e.,a solution of the equation

    5 Proof of Theorem 1.4

    In this last section,Ω is any smooth and bounded domain in Rn,n=5,6 and our aim is to show that forμlarge enough,Problem(Pμ)has multiple solutions,in connection with the category of Ω.

    We use the same method as in sections 3 and 4,with only one concentration point instead of two.We suppose,a priori,that x∈Ωd={x∈Ω/d(x,?Ω)>d},where d is a positive constant.

    Step 1Optimization with respect to v.

    Then,with a suitable choice of the positive constants η0,λ0,v0,(i.e,η0and v0,small enough, λ0large enough),we have

    Moreover,there exists(B,C,D)∈R×R×(R)nsuch that

    where the xkis the k-th component of x.

    The proof is exactly the same as the proof of Proposition 3.1.The fact thatμis assumed to be variable and large makes the condition(5.2)necessary to prove that the quadratic form Qα,λ,xis coercive on Eλ,x.

    As in Proposition 3.4,the variables B,C and D satisfy the following estimates

    Step 2Optimization with respect to α and λ.

    Now we have to fnd,x∈Ωdbeing fxed,αxand λxsuch that

    We have

    If we set

    where∈is assumed to be small,(5.3)is satisfed forμlarge enough,and system(S1)turns out to be equivalent to

    V and W are C1-functions which satisfy

    Then,similarly to the results of Proposition 4.1,we obtain the following proposition

    Proposition 5.2There exists a C1-map which to each x∈Ωdassociates(αx,λx)such that

    (i)(S1)is satisfed

    (ii)

    Step 3Optimization with respect to x.

    This is the last step.We fnd

    on Ωd.

    We see that for d small enough,and then forμlarge enough,there exists cd,μsuch that the level set

    satisfes

    Then,applying the Ljusternik-Schnirelmann theory to the function K defned on Kc,we obtain, since the gradient of-K is pointing inward on the boundary of Kc,then K has at least as many critical points in Ωdas the category of Kc.Moreover

    for d small enough,since Ω is assumed to be smooth.Thus there exist at least k=cat(Ω) distinct points x1,···,xkof Ω such that K′(xi)=0.As a consequence,the functions

    are solutions of(Pμ).

    [1]Atkinson F V,Peletier L A.Elliptic equations with near critical growth.J DifEqu,1987,70:349-365

    [2]Bahri A.Critical Point at Infnity in Some Variational Problems.Pitman Res Notes Math,Ser 182.Harlow: Longman Sci Tech,1989

    [3]Bahri A,Coron J M.On a nonlinear elliptic equation involving the critical Sobolev exponent:the efect of topology of the domain.Comm Pure Appl Math,1988,41:255-294

    [4]Bahri A,Li Y Y,Rey O.On a variational problem with lack of compactness:the topological efect of the critical points at infnity.Calc Var Partial Difer Equ,1995,3:67-94

    [5]Ben Ayed M,Hammami M.On a fourth order elliptic equation with critical nonlinearity in dimension six. Nonlinear Anal,2006,64(5):924-957

    [6]Ben Ayed M,El Mehdi K.The Paneitz Curvature problem on lower dimentional spheres.Ann Global Anal Geom,2007,31(1):1-36

    [7]Ben Ayed M,El Mehdi K,Grossi M,Rey O.A nonexistence result of single peaked solutions to a supercritical nonlinear problem.Comm Contemp Math,2003,5:179-195

    [8]Ben Ayed M,Chtioui H,Hammami M.A Morse lemma at infnity for Yamabe type problems on domains. Ann Inst Henri Poincar′e(Analyse non-lin′eaire),2003,20(4):543-577

    [9]Ben Ayed M,El Khalil M,Hammami M.Some existence results for a Paneits type problem via the theory of critical points at infnity.J Math Pures Appl,2005,84:247-278

    [10]Brezis H,Nirenberg L.Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math,1983,36:437-477

    [11]Brezis H,Peletier L A.Asymptotics for elliptic equations involving the critical growth//Colombani F, Modica L,Spagnolo S,eds.Partial Diferential Equations and the Calculus of Variations.Birkhauser,1989: 149-192

    [12]Chabrowski J,Yan S.Concentration of solutions for a nonlinear elliptic problem with nearly critical exponent.Top Methods Nonl Anal,1999,13:199-233

    [13]Chang Sun-Yung A.On Paneitz operator-a fourth order diferential operator in conformal geometry//Christ M,Kenig C,Sadorsky C,eds.Harmonic Analysis and Partial Diferential Equations;Essays in Honor of Alberto P.Calderon.Chicago Lectures in Mathematics,1999:127-150

    [14]Chow S N,Hale J K.Methods of bifurcation theory.Grundl Math Wiss,Vol 251.Berlin:Springer,1982

    [15]Del Pino M,Felmer P,Musso M.Two bubles solutions in the supercritical Bahri-Coron’s problem.Calc Var Partial Difer Equ,2003,16:113-145

    [16]Del Pino M,Felmer P,Musso M.Multi-peak solutions for supercritical elliptic problems in domains with small holes.J Difer Equ,2002,182:511-540

    [17]Djadli Z,Hebey E,Ledoux M.Paneitz type operators and applications.Duke Math J Partial Difer Equ, 2000,104:129-169

    [18]Ebobisse F,Ahmedou M O.On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent.Nonlinear Anal TMA,2003,52:1535-1552

    [19]Gazzola F,Grunau H C,Squassina M.Existence and nonexistence results for critical growth biharmonic elliptic equations.Calc Var Partial Difer Equ,2003,18:117-143

    [20]Hammami M.Concentration Phenomena for Fourth order elliptic equations with critical exponent.Elec J Difer Equ,2004,2004:1-22

    [21]Han Z C.Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent.Ann Inst Henri Poincar′e(Analyse non-lin′eaire),1991,8:159-174

    [22]Lin C S.Classifcation of solutions of a conformally invariant fourth order eqution in Rn.Comm Math Helv,1998,73:206-231

    [23]Mehdi K,Selmi A.Concentration and multiplicity of solutions for Fourth order equation with critical nonlinearity.Nonlinear Anal TMA,2006,64:417-439

    [24]Melo J L F,Santos E M D.Positive solutions to a fourth-order elliptic problem by the Lusternik-Schnirelmann category.J Math Anal Appl,2014,420:532-550

    [25]Micheletti A M,Pistoia A.Existence of blowing-up solutions for a slightly subcritical or slightly supercritical nonlinear elliptic equation on Rn.Nonlinear Anal TMA,2003,52:173-195

    [26]Musso M,Pistoia A.Multispike solutions for a nonlinear elliptic problem involving the critical Sobolev exponent.Indiana Univ Math J,2002,51:541-579

    [27]Musso M,Pistoia A.Dowble Blow-up solutions for a Brezis-Nirenberg type problem.Comm Contemp Math,2003,5:775-802

    [28]Rey O.Bifurcation from infnity in a nonlinear elliptic equation involving the limiting Sobolev exponent. Duke Math J,1990,60:815-861

    [29]Rey O.The role of Green’s function in a nonlinear elliptic equation involving the critical Sobolev exponent. J Funct Anal,1990,89:1-52

    [30]Rey O.Proof of two conjectures of H.Brezis and L.A.Peletier.Manuscripta Math,1989,65:19-37

    [31]Rey O.Blow-up points of solutions to elliptic equations with limiting nonlinearity.Difer Integral Equ, 1991,4:1155-1167

    [32]Rey O.The topological impact of critical points at infnity in a variational problem with lack of compactness: the dimension 3.Adv Difer Equ,1999,4:581-516

    [33]Van der Vorst R C A M.Variational identitie and applications to diferential systems.Arch Rational Mech Anal,1991,116(4):375-398

    [34]Van der Vorst R C A M.Fourth order elliptic equations with critical growth.C R Acad Sci Paris,1995, 320:295-299

    Appendix

    In this appendix,we collect the estimates of the diferent integral quantities presented in the paper.These estimates are originally introduced by Bahri[2]and Bahri and Coron[3].For the proof,we refer the interested reader to the literature[2,3,5,29].In this appendix,we suppose that λidiis large enough and εijis small enough.

    Lemma A.1We have the following estimates:

    where Sn,c2and c3are defned in Proposition 2.2.

    Lemma A.2The following estimates holds:

    ?Received April 8,2014;revised October 18,2014.

    一个人免费在线观看电影 | 亚洲欧美日韩无卡精品| 国产三级中文精品| 美女免费视频网站| 中文字幕人妻丝袜一区二区| 国产免费av片在线观看野外av| 波多野结衣高清作品| 偷拍熟女少妇极品色| 国产精品久久久久久人妻精品电影| 成人午夜高清在线视频| 十八禁人妻一区二区| 免费搜索国产男女视频| 两性夫妻黄色片| 国产69精品久久久久777片 | 国产又色又爽无遮挡免费看| 国产蜜桃级精品一区二区三区| 久久久久久国产a免费观看| 亚洲av熟女| 精品一区二区三区视频在线 | 精品无人区乱码1区二区| 色综合欧美亚洲国产小说| 国内精品久久久久精免费| 国产精品乱码一区二三区的特点| 亚洲欧美精品综合一区二区三区| 97碰自拍视频| 亚洲成人精品中文字幕电影| 五月玫瑰六月丁香| 精品久久久久久久毛片微露脸| 久久精品91无色码中文字幕| 18禁黄网站禁片午夜丰满| www国产在线视频色| 淫妇啪啪啪对白视频| 亚洲欧美日韩东京热| 一区二区三区激情视频| 国产精品久久久久久亚洲av鲁大| 少妇熟女aⅴ在线视频| 激情在线观看视频在线高清| 欧美日韩精品网址| 国产午夜精品论理片| 又黄又粗又硬又大视频| 天堂影院成人在线观看| 免费观看精品视频网站| 国产免费男女视频| 一级黄色大片毛片| 999久久久国产精品视频| 男女午夜视频在线观看| 国产精品久久久久久精品电影| a级毛片a级免费在线| 免费高清视频大片| 亚洲成人中文字幕在线播放| 亚洲激情在线av| 一区二区三区激情视频| 国内揄拍国产精品人妻在线| 天天添夜夜摸| 亚洲国产欧美一区二区综合| 色视频www国产| 男女那种视频在线观看| 亚洲欧美日韩东京热| 亚洲熟女毛片儿| av中文乱码字幕在线| 18禁国产床啪视频网站| 国产精品九九99| 午夜福利在线观看吧| 亚洲成人久久爱视频| 久久久精品大字幕| 国产精品98久久久久久宅男小说| 天天躁狠狠躁夜夜躁狠狠躁| 欧美性猛交黑人性爽| 成年人黄色毛片网站| 午夜福利成人在线免费观看| 天堂av国产一区二区熟女人妻| av天堂中文字幕网| 18禁观看日本| 少妇丰满av| 亚洲av成人av| 国产精品久久视频播放| 亚洲人与动物交配视频| 丰满人妻熟妇乱又伦精品不卡| 美女扒开内裤让男人捅视频| 美女扒开内裤让男人捅视频| 国产精品久久电影中文字幕| 亚洲国产精品久久男人天堂| 天堂网av新在线| 超碰成人久久| 午夜福利在线观看免费完整高清在 | 久久久国产成人免费| 老司机福利观看| 99久久精品一区二区三区| 亚洲午夜精品一区,二区,三区| 99久久久亚洲精品蜜臀av| 亚洲成人中文字幕在线播放| 亚洲中文av在线| 国产精品久久视频播放| 国产单亲对白刺激| 99精品在免费线老司机午夜| 欧美日本视频| 三级国产精品欧美在线观看 | 日韩欧美国产在线观看| 国产黄片美女视频| 国产精品香港三级国产av潘金莲| 在线观看美女被高潮喷水网站 | 丰满人妻熟妇乱又伦精品不卡| 91老司机精品| 欧美乱码精品一区二区三区| 在线a可以看的网站| 99国产极品粉嫩在线观看| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 精品无人区乱码1区二区| 亚洲av成人精品一区久久| 国内精品一区二区在线观看| 久久精品人妻少妇| 国产精品一区二区三区四区久久| 亚洲中文日韩欧美视频| 黑人欧美特级aaaaaa片| 中文字幕av在线有码专区| 色哟哟哟哟哟哟| 少妇人妻一区二区三区视频| 日韩欧美一区二区三区在线观看| 国产精品爽爽va在线观看网站| 18禁裸乳无遮挡免费网站照片| e午夜精品久久久久久久| 真实男女啪啪啪动态图| 免费看光身美女| 18禁观看日本| 在线免费观看的www视频| 成人午夜高清在线视频| 亚洲欧美激情综合另类| 人妻丰满熟妇av一区二区三区| 免费无遮挡裸体视频| 999久久久国产精品视频| 最近视频中文字幕2019在线8| 国产精品亚洲av一区麻豆| 国产精品国产高清国产av| 国产欧美日韩一区二区三| 免费观看的影片在线观看| 一级毛片精品| 在线观看一区二区三区| 99在线视频只有这里精品首页| 一级毛片高清免费大全| 色在线成人网| 久久午夜亚洲精品久久| 国产伦精品一区二区三区四那| 亚洲精品一区av在线观看| 亚洲精品中文字幕一二三四区| 色尼玛亚洲综合影院| 夜夜看夜夜爽夜夜摸| 亚洲精品国产精品久久久不卡| 国内精品久久久久久久电影| 亚洲欧美精品综合一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 色哟哟哟哟哟哟| 天天添夜夜摸| 两个人看的免费小视频| 女人高潮潮喷娇喘18禁视频| 99riav亚洲国产免费| 成人一区二区视频在线观看| 国产又色又爽无遮挡免费看| 欧美日韩福利视频一区二区| 白带黄色成豆腐渣| 色综合站精品国产| 亚洲精品乱码久久久v下载方式 | 亚洲18禁久久av| 美女 人体艺术 gogo| 两性午夜刺激爽爽歪歪视频在线观看| 天堂√8在线中文| 国产视频内射| 99视频精品全部免费 在线 | 国产精品99久久99久久久不卡| 亚洲国产欧洲综合997久久,| 人妻久久中文字幕网| 午夜两性在线视频| 露出奶头的视频| 成人三级做爰电影| 好男人电影高清在线观看| 日本a在线网址| 制服人妻中文乱码| 2021天堂中文幕一二区在线观| 亚洲国产欧美一区二区综合| 午夜日韩欧美国产| 国产精品久久久久久精品电影| 操出白浆在线播放| 在线a可以看的网站| 国产一区二区激情短视频| 国产单亲对白刺激| 老熟妇仑乱视频hdxx| 亚洲七黄色美女视频| 久久人妻av系列| 久久久久亚洲av毛片大全| 91久久精品国产一区二区成人 | 国产亚洲精品av在线| 一区福利在线观看| 99久久精品国产亚洲精品| 国语自产精品视频在线第100页| 十八禁网站免费在线| 亚洲成a人片在线一区二区| av天堂中文字幕网| 91av网站免费观看| 国产人伦9x9x在线观看| 人人妻,人人澡人人爽秒播| 99久久无色码亚洲精品果冻| 啦啦啦韩国在线观看视频| 搡老岳熟女国产| 欧美成狂野欧美在线观看| 香蕉久久夜色| 国产精品免费一区二区三区在线| www国产在线视频色| 久久精品91蜜桃| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 久久精品夜夜夜夜夜久久蜜豆| 麻豆成人午夜福利视频| 欧美日韩精品网址| 免费看美女性在线毛片视频| 级片在线观看| 无遮挡黄片免费观看| 国产亚洲av嫩草精品影院| 国产熟女xx| 国产91精品成人一区二区三区| 很黄的视频免费| 欧美日韩综合久久久久久 | 久久久久久久久免费视频了| www日本黄色视频网| 久9热在线精品视频| 中文资源天堂在线| 亚洲国产精品sss在线观看| 琪琪午夜伦伦电影理论片6080| 国内毛片毛片毛片毛片毛片| 亚洲国产色片| 非洲黑人性xxxx精品又粗又长| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区免费欧美| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| 免费人成视频x8x8入口观看| 欧美另类亚洲清纯唯美| 老熟妇乱子伦视频在线观看| 午夜福利欧美成人| 搡老妇女老女人老熟妇| 成年女人毛片免费观看观看9| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久av美女十八| 国产高清有码在线观看视频| 亚洲欧美精品综合久久99| 亚洲av五月六月丁香网| 亚洲美女视频黄频| 桃红色精品国产亚洲av| 人妻丰满熟妇av一区二区三区| 国产乱人视频| 亚洲中文av在线| 黄色视频,在线免费观看| 欧美中文日本在线观看视频| 白带黄色成豆腐渣| 成人国产一区最新在线观看| 亚洲精品国产精品久久久不卡| 国产成人影院久久av| 中文字幕最新亚洲高清| ponron亚洲| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 草草在线视频免费看| 国产成人一区二区三区免费视频网站| 亚洲中文字幕一区二区三区有码在线看 | 99热这里只有精品一区 | 久久性视频一级片| 女同久久另类99精品国产91| 啪啪无遮挡十八禁网站| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 国产av一区在线观看免费| 婷婷精品国产亚洲av在线| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 欧美激情在线99| 色综合婷婷激情| 18禁国产床啪视频网站| 亚洲第一电影网av| 在线观看一区二区三区| 婷婷丁香在线五月| 男人舔奶头视频| 国产精品久久视频播放| 网址你懂的国产日韩在线| 99国产综合亚洲精品| 亚洲 欧美一区二区三区| 亚洲激情在线av| 精品日产1卡2卡| www.自偷自拍.com| 99精品久久久久人妻精品| 日本成人三级电影网站| 久久天躁狠狠躁夜夜2o2o| 搞女人的毛片| 国产精品爽爽va在线观看网站| 淫妇啪啪啪对白视频| 99久久精品热视频| 亚洲国产精品久久男人天堂| 国产主播在线观看一区二区| 亚洲av电影不卡..在线观看| 18禁黄网站禁片免费观看直播| 18禁黄网站禁片午夜丰满| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 成人欧美大片| 日韩欧美精品v在线| 最近在线观看免费完整版| 久久国产精品影院| 国模一区二区三区四区视频 | 欧美性猛交黑人性爽| 成人三级做爰电影| 国产真人三级小视频在线观看| 久久天躁狠狠躁夜夜2o2o| 日日夜夜操网爽| 国产精品,欧美在线| 亚洲精品乱码久久久v下载方式 | 久久精品91无色码中文字幕| 国产精品98久久久久久宅男小说| 欧美黑人巨大hd| 超碰成人久久| 亚洲精品中文字幕一二三四区| 国产亚洲精品综合一区在线观看| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 91麻豆精品激情在线观看国产| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品999在线| 热99re8久久精品国产| 人妻夜夜爽99麻豆av| 又大又爽又粗| 亚洲成人免费电影在线观看| 色播亚洲综合网| 亚洲欧美日韩东京热| 国内毛片毛片毛片毛片毛片| 国产精品99久久久久久久久| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 听说在线观看完整版免费高清| 国产伦精品一区二区三区四那| www.999成人在线观看| 久久人妻av系列| 久久天堂一区二区三区四区| 高清在线国产一区| 免费电影在线观看免费观看| 黑人欧美特级aaaaaa片| 亚洲精品美女久久久久99蜜臀| 国产人伦9x9x在线观看| 久久中文看片网| 国产人伦9x9x在线观看| 97超视频在线观看视频| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 伦理电影免费视频| 欧美午夜高清在线| 天堂影院成人在线观看| 在线免费观看的www视频| 一本精品99久久精品77| 日韩欧美三级三区| 午夜精品一区二区三区免费看| 99热只有精品国产| 国产在线精品亚洲第一网站| 久久精品影院6| 精品国产乱子伦一区二区三区| 99热只有精品国产| 日韩大尺度精品在线看网址| 久久久水蜜桃国产精品网| xxx96com| 一二三四社区在线视频社区8| 夜夜躁狠狠躁天天躁| 亚洲18禁久久av| 精品一区二区三区av网在线观看| 变态另类丝袜制服| 免费一级毛片在线播放高清视频| 欧美性猛交黑人性爽| 少妇的逼水好多| 亚洲国产欧美人成| 国产亚洲精品av在线| 中文字幕熟女人妻在线| 国产精品亚洲美女久久久| 亚洲九九香蕉| 亚洲自偷自拍图片 自拍| 欧美日韩乱码在线| 手机成人av网站| 欧美在线一区亚洲| 一级黄色大片毛片| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| x7x7x7水蜜桃| 国产精品久久久av美女十八| 亚洲男人的天堂狠狠| 国产真人三级小视频在线观看| 人妻久久中文字幕网| 色噜噜av男人的天堂激情| 亚洲国产中文字幕在线视频| 久久精品国产清高在天天线| 精品一区二区三区av网在线观看| 亚洲精品国产精品久久久不卡| 国产激情偷乱视频一区二区| 99国产综合亚洲精品| 欧美乱色亚洲激情| 91久久精品国产一区二区成人 | 国产高清视频在线播放一区| 很黄的视频免费| 欧美日本亚洲视频在线播放| 午夜福利成人在线免费观看| 香蕉av资源在线| 男女那种视频在线观看| 久久香蕉国产精品| 欧美乱码精品一区二区三区| 亚洲av熟女| 亚洲欧美精品综合一区二区三区| 免费观看的影片在线观看| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 18禁观看日本| 久久久国产成人精品二区| 丁香欧美五月| 日韩欧美在线二视频| 国产私拍福利视频在线观看| 免费观看精品视频网站| 听说在线观看完整版免费高清| 无限看片的www在线观看| 精品一区二区三区av网在线观看| 久久中文看片网| 啦啦啦观看免费观看视频高清| 欧美在线黄色| 99久久成人亚洲精品观看| 欧美黄色片欧美黄色片| 一级毛片高清免费大全| 一个人免费在线观看电影 | 亚洲成av人片免费观看| 又粗又爽又猛毛片免费看| 日本黄色片子视频| 国产主播在线观看一区二区| 91老司机精品| 噜噜噜噜噜久久久久久91| 欧美绝顶高潮抽搐喷水| 午夜福利在线观看吧| 久久精品91蜜桃| 国产成人aa在线观看| 免费看a级黄色片| 人妻久久中文字幕网| 久久久成人免费电影| 九色国产91popny在线| 亚洲av成人av| 久久久久免费精品人妻一区二区| 两个人视频免费观看高清| av天堂中文字幕网| 在线观看日韩欧美| 亚洲国产精品999在线| 久久伊人香网站| 国产高清视频在线观看网站| 午夜日韩欧美国产| 日韩av在线大香蕉| av福利片在线观看| 麻豆国产av国片精品| 午夜免费成人在线视频| 精品久久久久久成人av| 国产精品,欧美在线| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 亚洲熟女毛片儿| 可以在线观看的亚洲视频| 午夜福利18| 午夜成年电影在线免费观看| 久久精品影院6| 国产熟女xx| 亚洲黑人精品在线| 麻豆久久精品国产亚洲av| 久久久久性生活片| 亚洲美女视频黄频| 啦啦啦韩国在线观看视频| 欧美性猛交╳xxx乱大交人| 成人国产综合亚洲| 久久午夜亚洲精品久久| 国产三级在线视频| 成人18禁在线播放| 久久久久久国产a免费观看| 欧美绝顶高潮抽搐喷水| 嫁个100分男人电影在线观看| 18禁观看日本| 欧美极品一区二区三区四区| 在线免费观看的www视频| 亚洲中文日韩欧美视频| 色播亚洲综合网| 欧美日韩黄片免| 欧美色欧美亚洲另类二区| 午夜a级毛片| 日韩大尺度精品在线看网址| 观看美女的网站| 变态另类成人亚洲欧美熟女| 亚洲成人久久爱视频| 18禁黄网站禁片免费观看直播| 中文在线观看免费www的网站| 国产三级黄色录像| 欧美不卡视频在线免费观看| 最近在线观看免费完整版| 久久人人精品亚洲av| 午夜成年电影在线免费观看| 麻豆国产97在线/欧美| 日本熟妇午夜| 毛片女人毛片| 日本五十路高清| 日本三级黄在线观看| 国产成人福利小说| 超碰成人久久| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 国产成人啪精品午夜网站| 变态另类丝袜制服| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| 搡老岳熟女国产| 精品一区二区三区av网在线观看| 在线观看美女被高潮喷水网站 | 级片在线观看| 一个人免费在线观看的高清视频| 黄色成人免费大全| 精品无人区乱码1区二区| 国产高清激情床上av| 国产精品野战在线观看| 免费搜索国产男女视频| 精品电影一区二区在线| 午夜福利成人在线免费观看| 亚洲精品美女久久av网站| 不卡av一区二区三区| 香蕉国产在线看| 国产成人系列免费观看| 精品国产乱子伦一区二区三区| 午夜亚洲福利在线播放| 日本黄大片高清| 成人鲁丝片一二三区免费| 免费av毛片视频| 一级毛片高清免费大全| 中亚洲国语对白在线视频| 国产爱豆传媒在线观看| 欧美中文综合在线视频| 成人特级av手机在线观看| 免费无遮挡裸体视频| 可以在线观看的亚洲视频| avwww免费| 丁香六月欧美| 嫩草影院入口| 国产乱人视频| www.熟女人妻精品国产| 国产精品自产拍在线观看55亚洲| av天堂中文字幕网| 97超级碰碰碰精品色视频在线观看| 久久天堂一区二区三区四区| 在线观看舔阴道视频| 男插女下体视频免费在线播放| 亚洲美女黄片视频| 亚洲在线观看片| 亚洲av第一区精品v没综合| 两个人的视频大全免费| 欧美极品一区二区三区四区| 国产亚洲欧美在线一区二区| 国产精品99久久99久久久不卡| 午夜激情欧美在线| 丰满的人妻完整版| 亚洲午夜理论影院| 久久久久九九精品影院| 精品久久久久久,| 日韩大尺度精品在线看网址| 亚洲aⅴ乱码一区二区在线播放| 国产精品综合久久久久久久免费| 蜜桃久久精品国产亚洲av| 九九热线精品视视频播放| 又紧又爽又黄一区二区| 国产97色在线日韩免费| 十八禁网站免费在线| 曰老女人黄片| x7x7x7水蜜桃| 亚洲av美国av| 成人高潮视频无遮挡免费网站| 欧美成狂野欧美在线观看| 欧美在线黄色| 亚洲中文日韩欧美视频| 亚洲五月婷婷丁香| www日本黄色视频网| 真人做人爱边吃奶动态| 这个男人来自地球电影免费观看| 人人妻人人澡欧美一区二区| 亚洲在线自拍视频| cao死你这个sao货| 久久久久亚洲av毛片大全| 真实男女啪啪啪动态图| 欧美成人性av电影在线观看| 久久精品人妻少妇| 久久国产精品人妻蜜桃| 国产高清有码在线观看视频| 亚洲 国产 在线| 国产 一区 欧美 日韩| 日日干狠狠操夜夜爽| 又粗又爽又猛毛片免费看| 国产 一区 欧美 日韩| 国产高清有码在线观看视频| www.自偷自拍.com| 国产高清三级在线| 亚洲aⅴ乱码一区二区在线播放| 男人舔奶头视频| 国产高清三级在线| 欧美在线一区亚洲| 人人妻人人澡欧美一区二区| 高潮久久久久久久久久久不卡| 欧美黑人巨大hd| 亚洲乱码一区二区免费版| 亚洲 欧美一区二区三区| 在线观看午夜福利视频| 搡老岳熟女国产| 久久久久久久久中文| 亚洲成av人片免费观看| 亚洲美女视频黄频| 成人永久免费在线观看视频| 日韩有码中文字幕|