• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    采用QSPR模型預(yù)測手性二芳基甲烷衍生物保留因子與分離因子

    2015-01-04 05:22:38胡桂香駱成才潘善飛蔣勇軍鄒建衛(wèi)浙江大學(xué)寧波理工學(xué)院生物與化學(xué)工程學(xué)院浙江寧波3500浙江大學(xué)化學(xué)系杭州3008
    物理化學(xué)學(xué)報 2015年1期
    關(guān)鍵詞:映體芳基手性

    胡桂香 駱成才 潘善飛 蔣勇軍 鄒建衛(wèi)(浙江大學(xué)寧波理工學(xué)院生物與化學(xué)工程學(xué)院,浙江寧波3500;浙江大學(xué)化學(xué)系,杭州3008)

    采用QSPR模型預(yù)測手性二芳基甲烷衍生物保留因子與分離因子

    胡桂香1,*駱成才1潘善飛2蔣勇軍1鄒建衛(wèi)1
    (1浙江大學(xué)寧波理工學(xué)院生物與化學(xué)工程學(xué)院,浙江寧波315100;2浙江大學(xué)化學(xué)系,杭州310028)

    對手性化合物的保留因子和分離因子進(jìn)行定量結(jié)構(gòu)-特征關(guān)系(QSPR)研究,對于預(yù)測保留因子和分離因子甚至對映體的洗脫順序都起著重要作用.本文選擇手性二芳基甲烷衍生物為研究對象,采用VolSurf程序計算分子結(jié)構(gòu)參數(shù),并分別在其與保留因子以及分離因子間建立模型,采用測試集外部檢驗(yàn)、留多法交叉驗(yàn)證和Y隨機(jī)性檢驗(yàn)等方法對分離因子模型的魯棒性進(jìn)行了評估,結(jié)果令人滿意.對變量進(jìn)行分析顯示,分子的球形性,中等能級的親水區(qū)、親水-親脂平衡、兩親矩、合適的氫鍵給體和受體均有利于異構(gòu)體在手性固定相上的保留;一對對映體的高能級的親水區(qū)、低能級的疏水區(qū)、兩親矩、合適的氫鍵給體和受體以及陰離子區(qū)之間大的差異對對映體在手性固定相上的分離是有利的.利用這些模型,可以輕松地預(yù)測對映體的保留因子和分離因子,甚至洗脫順序.

    手性;分子建模;VolSurf;二芳基甲烷;偏最小二乘

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    The derivates possessing diarylmethane moiety often exhibit various biological activities.For example,clemastine((+)-(R,R)-1),1neobenodine((+)-(R)-2),2and chlorpheniramine((+)-(S)-3)3(Fig.1),were used as anticholinergic drugs to treat anaphylactias, such as rhinitis and hives,or used as local anaesthetic and laxative agents.4In recent years,it has been found that this type of compounds shows inhibitory activity against oestrogen synthetase and human immunodeficiency virus(HIV)-1 recombinant reverse transcriptase5,6as well as antitubercular activity7.When two aryl groups differ from each other,the molecule will present chirality and every enantiomer may display different biological activity,e. g.,the antimuscarinic potency of procyclidine((-)-R-4,Fig.1)was about 380 times greater than that of the corresponding(+)-(S) enantiomer.8As a consequence,it is of great significance to study the separation of the chiral diarylmethane derivates,and this has attracted extensive attention in the past decade.

    Asymmetric synthesis was usually chosen to prepare diarylmethane derivates catalyzed by lithiation,9,10hemilabile phosphorus ligand11or triphenylborane12.However,it is very difficult to obtain a diarylmethane derivate with 100%enantiomeric purity13through simple separation technique,because two aryl groups in molecule are often close to each other in steric bulkiness.High performance liquid chromatogram(HPLC)using the chiral stationary phase(CSP)is a widely-used technique to separate a chiral compound,14and the cotton effect of the enantiomer can be determined with circular dichroism(CD)spectrum. Nevertheless,the absolute configuration of the isomer cannot be obtained directly.15

    Fig.1 Structures of chiral compounds

    Quantitative structure-activity/property relationship(QSAR/ QSPR)is a kind of effective means,by which chemical structure is quantitatively correlated with a well defined activity/property. Since 1990's,it has been applied widely to predict the chromatographic retention factors,16-19separation factors,20-23and chiral resolution ability24,while the chirality and the absolute configurations of the enantiomers were not considered in these studies.As a result,the main reason for the separation of the enantiomers could not be elucidated clearly.Chiral descriptors or codes were presented to build the QSAR25-27or QSPR27-30models.However, these descriptors and codes were not broadly used because of the complicated computational methods.In some studies,31,32however, it has been disclosed that there exists significant differences for some structural descriptors between a pair of enantiomers. Whether can these structural differences be used to build the model to predict the separation of enantiomers as well as judge the absolute configurations and elution order of the enantiomers?For this purpose,we report the QSPR models of chiral diarylmethane derivates.Three-dimensional(3D)structural descriptors derived from VolSurf program were adopted to predict the retention factors and separation factors for 63 samples.

    2 Computational methods

    2.1 Experimental data

    There is one chiral centre in the structure of each diarylmethane derivate.The retention and separation factors of 63 samples as well as the absolute configuration were taken from previous publication by Job et al.33HPLC analyses were performed using brush-type(S,S)-Whelk-O1 CSPat a flow rate of 2.0 mL·min-1at 0°C.33The mobile phase was isopropyl alcohol:hexane(volume ratio,1:99).The data are listed in Table 1.The common logarithm value of retention factors(lgk2,lgk1)and separation factors(lga) were used to build the model.

    2.2 VolSurf

    VolSurf program is developed for modeling and predicting the physicochemical and pharmacodynamic properties of a compound.34-36It reads or computes 3D molecular interaction fields between molecule and probe and uses image processing methods to convert them into simple molecular descriptors that are easy to understand and interpret.These descriptors quantitatively characterize molecular size,shape,polarity,hydrophilicity,hydrophobicity,and the balance between them and so on.

    2.3 Statistical analysis

    Chemometrics tool,partial least squares(PLS)analysis,was used to compile the information obtained from VolSurf.Fractional factorial design(FFD)technique was used to remove irrelevant descriptors that did not have any relationship with the property, and,in this way,the predictive ability of the PLS model could be improved.The quality(i.e.,the explanatory power,r2)and the predictive ability(i.e.,q2)of the PLS model were evaluated by leave-one-out cross-validation.

    2.4 General procedures

    The molecular structures were built in standard geometry and then minimized by means of TRIPOS molecular mechanics force field with Sybyl 6.8.The dielectric constant was set as 2.06 to mimic the mobile phase.All chemicals were modeled in their neutral form.The molecular descriptors were derived by using VolSurf(version 3.07A)/GRID.In our study,3D-maps for water probe OH2,the hydrophobic probe DRY,carbonyl oxygen atom O probe,amide NH group N1 probe,and sp3cationic NH3group N3+probe were used at eight energy levels.And these energy levels could simulate the interaction energy and the distance be-

    tween the isomer and CSP.In the meantime,the higher the energy level,the shorter the distance.As a result,102 chemical descriptors were generated.And the value of descriptors of enantiomers for 63 compounds is listed in Table S1 and Table S2(in Supporting Information).These molecular descriptors have clear chemical meanings.Every descriptor is composed of three segments.The first segment is an abbreviation representing the physicochemical property,and the following number(1-8)describes the energy level,while the last segment is probe type.The detailed representation of VolSurf descriptors has been presented by Crucianiet al.37

    Table 1 Structures,retention factors,separation factors,and the absolute configuration of MRE

    continued Table 1

    Two PLS analyses were carried out on VolSurf descriptors in terms of a pair of enantiomers.The whole data set includes 63 compounds and the training set consists of 50 compounds.The training set was selected with the most descriptive compounds (MDC)approach of Hudson et al.38This method privileged a selection scheme that weights the compounds according to their population density.The remaining compounds were used as an external test set to assess the predictive ability of the model.Ultimately,different approaches,including external validation through test set,leave-many-out cross-validation and Y-randomization test,were fully utilized to assess the predictive ability and robustness of the model of separation factors.

    3 Results and discussion

    3.1 QSPR model for retention factors of the more retained enantiomer

    For the whole data set of the more retained enantiomer(MRE), the number of the variables was reduced significantly to 85 after the FFD technique was adopted.With 6 principal components (PCs)used,the model generates an r2value of 0.89 and a q2value of 0.77,and the standard error of calculation(SDEC)is 0.10 and the standard error of prediction(SDEP)is 0.15.

    To further test the predictive ability of VolSurf model of MRE, 63 compounds were divided into two sets.By adopting the MDC method,50 compounds were selected as the training set and the remaining compounds as the test set.After using the FFD technique,95 variables were finally introduced into the model for the training set.With 7 PCs,the model produces an r2of 0.91 and a q2of 0.66.And the SDEC is 0.10 and the SDEP is 0.19.When the model is used to predict the retention factors of the compounds in the test set,it yields a predictive r2of 0.67 and SDEPvalue of 0.16 with 7 PCs.This value is very close to that of the training set, which implies,to some degree,that the model possesses good predictive capability.The experimental,calculated and predicted value of lgk2is listed in Table 1,and the relationship between each other is displayed in Fig.2.

    Fig.2 Relationship between the experimental and calculated/ predicted values of lgk2

    Fig.3 shows the coefficients of 95 variables,and every barrepresents the contribution of a variable to the retention factors. The longer bar means the stronger correlation between the variable and the retention factors.Variables 1-33 are generated with OH2 probe and these variables are successively V,S,R,G,W1-8OH2,Iw1-8OH2,Cw1-7OH2,Emin1-3OH2,D12OH2, D13OH2,and D23OH2.And variables 34-55,namely D1-8DRY,ID1-8DRY,Emin1-3DRY,D12DRY,D13DRY,and D23DRY,are generated with DRY probe.While variables 56-59, HL1,HL2,A,CP,respectively,belong to the mixed descriptors of OH2 and DRY probe.Variables 60-73,W1-6O,and HB1-8O, which are generated with O probe,variables 74-89,W1-8N1 and HB1?8N1,are with N1 probe,and variables 90-93(W1-4N3+) are with N3+probe.While variables 94-95(POL and MW)are quantities regardless of probes.

    Fig.3 PLS coefficient plot of variables for MRE

    Among the variables derived from OH2 probe,G is defined as S/Sequiv,where S is the surface area and Sequivis the surface area of a sphere of volume(V).Accordingly,it measures the molecular globularity and its high value indicates the low globularity and high ellipsoid.This descriptor is positively correlated with the retention factors,which means that high ellipsoid is beneficial to the retention of the enantiomer on the CSP.In terms of W type descriptors,they represent the hydrophilic regions.W2-4OH2 variables are positively correlated with the retention factors,while W6-8OH2 negatively,which illustrates that the hydrophilic regions at low energy levels are favourable to the retention.Iw1-3OH2 and Cw5-7OH2 show negative correlation with the retention factors.Like dipole moments,descriptors of Iw type express the imbalance between the centre of mass of a molecule and the barycentre of its hydrophilic regions.Negative correlation of Iw1-3OH2 implies that high imbalance is detrimental to the retention of the enantiomer on the CSP at 1-3 energy levels.Descriptors of Cw,capacity factor,represent the ratio of the hydrophilic surface over the total molecular surface,i.e.,the hydrophilic surface of a surface unit.Negative correlation of Cw5-7OH2 demonstrates that more hydrophilic surface is disadvantageous to the retention at high energy levels.This is consistent with the result of descriptors W6-8OH2.Emin1OH2 represents the best local interaction energy minimum between the water probe and the target molecule.The result shows that high Emin1OH2 value is beneficial to the retention of the enantiomer. D12OH2 is the distance between the first and second local energy minima.Strong negative correlation of this descriptor with retention factors manifests that long distance between the first and second local energy minima is disadvantageous to the retention.

    Among the quantities derived from DRY probe,D type descriptors represent the hydrophobic regions whereas ID type descriptors measure the imbalance between the centre of mass of a molecule and the barycentre of the hydrophobic regions.D1-3DRYand ID4-8DRYare negatively correlated with the retention factors,which means that more hydrophobic regions at low energy levels and high imbalance between the centre of mass and the barycentre of the hydrophobic regions at high energy levels are unfavourable to the retention.Besides,descriptor D12DRY also shows strongly negative correlation,which indicates that long distance between the first and second local energy minima for hydrophobic probe is disadvantageous to the retention.D6DRY and ID2DRY are found to be the only two descriptors that are positively correlated with the retention factors.It suggests that more hydrophobic regions at suitable high energy level and high imbalance between the centre of mass and the barycentre of the hydrophobic regions at suitable low energy level are helpful to the retention.

    HL1,HL2,A,and CP are mixed descriptors of OH2 and DRY probes.Among them,descriptors of HL refer to the hydrophiliclipophilic balance,which are the ratio between the hydrophilic regions and the hydrophobic regions.The balance describes which effect dominates in the molecule.Positive correlation of HL1 with the retention factors implies that the more hydrophilic regions will be helpful to the retention.Amphiphilic moment(A)is defined as a vector pointing from the centre of the hydrophobic domain to the centre of the hydrophilic domain.Strong positive correlation of this descriptor with the retention factors is found,which signifies that the long vector is conducive to the retention of the enantiomer.

    O is hydrogen bond acceptor probe.Descriptors of W show the hydrogen bond donor regions while HB descriptors describe the hydrogen bond acceptor regions.W1-6O variables are positively correlated with the retention factors,which indicates that hydrogen bond donors are beneficial to the retention.HB1O and HB5-8O show negative correlation,which implies that more hydrogen bond acceptors are detrimental to the retention.

    Amide NH group N1 probe is a hydrogen bond donor probe. Differing from O probe,here descriptors of W show the hydrogen bond acceptor regions and HB variables describe the hydrogen bond donor regions.W1-4N1 descriptors show weak positive correlation while W6-8N1 for strong negative correlation with the retention factors,which demonstrates that the hydrogen bond acceptor atoms in the molecule have the weak interaction with the CSP,and more hydrogen bond acceptor atoms at high energy levels will be unfavourable to the retention.The descriptors with strong positive correlation are HB2N1 and HB6-7N1.This hints that the suitable hydrogen bond donors and interaction between the enantiomer and the CSP are beneficial to the retention,which is in accord with the results obtained with O probe.

    N3+is sp3cationic NH3probe and W descriptors show the anionic regions of a molecule.W1N3+is positively correlated andW2N3+negatively correlated with the retention factors,which demonstrates that the ionic interaction between the enantiomer and the CSP is useful to the retention.

    POL and MW are molecular descriptors which are not derived from 3D molecular fields.POL is an estimate of the average molecular polarizability,which is calculated according to the additive method of Miller.39This method is based on the structure of the molecules and is therefore independent of the number and type of probes used.Weak negative correlation with retention factors is found for this descriptor,which indicates that high value is disadvantageous to the retention.MW,the molecular weight,is positively correlated with the retention factors,i.e.,the larger MW of a molecule,the more retained on the CSP.

    3.2 QSPR model for retention factors of the less retained enantiomer

    Similarly,QSPR models for retention factors of the less retained enantiomer(LRE)have been constructed.For 63 compounds,the number of the variables is 86 after adopting the FFD technique.With 8 PCs used,the model generates an r2value of 0.93 and a q2value of 0.80.The SDEC is 0.08 and the SDEP is 0.14.

    Also,63 compounds were divided into two sets.Using the FFD technique,86 variables were finally introduced into the model for the training set,including 50 samples.With 7 PCs,the model produces an r2of 0.94 and a q2of 0.79.The SDEC is 0.09 and the SDEP is 0.16.When the model is used to predict the retention factors of the compounds in the test set,it yields a predictive r2of 0.88 and SDEP value of 0.10 with 7 PCs.This value is lower than the training set,so the model possesses satisfactory predictive capability.The experimental,calculated and predicted value of lgk1is listed in Table 1,and the relationship between them is displayed in Fig.4.

    Fig.4 Relationship between the experimental and calculated/predicted values of lgk1

    Fig.5 shows the coefficients of 86 variables.These variables are successively V,S,R,G,W1-7OH2,Iw1-8OH2,Cw1-7OH2, Emin1-3OH2,D12OH2,D13OH2,D1-8DRY,ID1-8DRY, Emin2DRY,D12DRY,D23DRY,HL1,HL2,A,CP,W1-6O,HB1-7O,W1-7N1,HB1-5N1,HB7N1,W1-4N3+,POL,and MW.

    Fig.5 PLS coefficients plot of variables for LRE

    Among the variables derived from OH2 probe,R is the ratio of volume/surface.It scales the molecular wrinkled surface,that is, rugosity,and the small ratio suggests the high rugosity.Strong negative correlation with the retention factors means that the low rugosity provides negative effects on the retention of the enantiomer on the CSP.Positive correlation of descriptor G signifies that high value is advantageous to the retention.W1-4OH2 variables are positive correlation with the retention factors while W5-7OH2 are negative,which is coincident with the result of the MRE.Iw5-8OH2 variables are distinctly positive correlation, which demonstrates that high imbalance is favourable to the retention at high energy levels.Emin3OH2 represents the third best local interaction energy minimum between the water probe and the target molecule.Strong positive correlation implies that high value is beneficial to the retention of the enantiomer.

    For DRY probe,D1-5DRY descriptors are significantly negative correlation with the retention factors,which purports that more hydrophobic regions at low energy levels are unfavourable to the retention.Positive correlation of ID5-8DRY descriptors implies that high imbalance between the centre of mass and the barycentre of the hydrophobic regions at high energy levels is helpful to the retention.Negative correlation of D23DRYindicates that long distance between the second and third local energy minimum for hydrophobic probe is disadvantageous to the retention.

    Positive correlation of HL1 and A demonstrates that the more hydrophilic regions than the hydrophobic regions and large vector pointing from the centre of the hydrophobic domain to the centre of the hydrophilic domain are beneficial to the retention.

    W1-6O descriptors are positive correlation while HB1-7O negative with the retention factors,which signifies that hydrogen bond donors are favourable while hydrogen bond acceptors unfavourable to the retention.W1-3N1 variables are weak positive correlation with the retention factors,while W6-7N1 weak negative,which means that the hydrogen bond acceptor atoms have the weak interaction with the CSP and more hydrogen bond acceptor atoms at high energy levels are detrimental to the retention.Strong positive correlation of HB2N1 and HB7N1 represents the suitable hydrogen bond donors and interaction between the enantiomer and the CSP is beneficial to the retention.Strong negative correlation of W2-4N3+implies that the ionic interaction between the enantiomer and the CSP is disadvantageous to the retention.Positive correlation of POL and MW indicates that high POL value and mass are of benefit to the retention of the enantiomer on the CSP.

    Comparing the results of MRE and LRE,it can be found that most of variables possess coincidence with each other.For instance,variable G,W2-4OH2,HL1,A,W1-6O,W1-3N1, HB2N1 and MW are all positively correlated with the retention factors,while variables W6-7OH2,Cw5OH2,D1-3DRY,HB5-7O,W6-7N1,and W2N3+are all negative correlation.However, when the chiral compound is separated with HPLC method,more attention should be paid to the separation factors,instead of the retention factors.Only if LRE is eluted faster than MRE,an effective separation can be obtained.Therefore,we are more concerned about the variables that are negative correlation with LRE and positive correlation with MRE,or weak positive correlation with LRE and strong positive correlation with MRE,or strong negative correlation with LRE and weak negative correlation with MRE.Comparing the results of MRE and LRE,it discloses that the variables matching the described conditions include W3-5OH2,Cw3-4OH2,Emin1OH2,D4-6DRY,ID2-3DRY, D23DRY,A,W2-5O,HB3-5N1,and W1-2N3+.This proves that the hydrophilic and hydrophobic variables with the median energy levels are beneficial to the separation factors.

    3.3 QSPR model for the separation factors

    The separation factors(a)is defined as the ratio of the retention factors of MRE and LRE,i.e.,a=k2/k1.Accordingly,lga=lgk2-lgk1.

    In order to establish the QSPR model for directly predicting the separation factors,it is crucial to seek suitable descriptors that reflect the separation effect of the enantiomers.Instead of using the descriptors of one enantiomer,here the descriptors'difference value of a pair of enantiomers(the value of MRE minus the one of LRE)is used to construct the QSPR model of separation factors.Only 63 variables are used to build the model after some descriptors have been excluded due to the fact that these descriptors have the same or almost the same value.The difference value of 63 variables between the enantiomers is listed inTable S3.

    The PLS method was used to generate the linear correlation. Among all samples,compounds27,40,and54were observed to have obvious deviation.The possible explanation is that it is caused by the structures themselves.Comparing compounds27and26,40and41,54and53,it can be seen that only one different substituent can lead to the change of the configuration of the MRE.The change of the substituent brings about the change of the interaction between the enantiomers and the CSP,where the steric interaction is dominating on the base of the compared compounds.After deleting these three outliers,a QSPR model with 7 PCs was obtained.The r2value of the model is 0.92,and the q2value is 0.70.The SDEC is 0.04 and the SDEP is 0.08.The experimental and calculated value of lga is listed in Table 1,and the linear fit of each other is shown in Fig.6(a),from which good consistency can be seen readily.In order to testify the predictive ability,the random 10 compounds(6,12,18,24,31,36,43,48, 51,and60)were chosen as the test set and other compounds (except three outliers)as the training set.The results demonstrate that the r2value of the training set is 0.94,and the q2value is 0.64. The SDEC is 0.03 and the SDEP is 0.09.The model is used to predict the separation factors of the compounds in the test set and it yields a predictive r2of 0.73 and SDEP value of 0.07 with 7 PCs.This states that the model possesses satisfactory predictive capability.The experimental,calculated and predicted value of lga is listed in Table 1,and the relationship between them is displayed in Fig.6(b).

    Fig.6 (a)Relationship between the experimental and calculated values of lga;(b)relationship between the experimental and calculated/predicted values of lga

    Ten leave-many-out cross-validations were carried out to check the robustness of the model for the separation factors.Fig.7 shows the result of the plot of the q2and the M number.From the figure, it can be seen that the q2is persistently stable and close to the q2of the leave-one-out cross-validation even at M=30,which confirms the robustness of the model.

    Fig.7 Plot of the q2and M number for the leave-many-out cross-validation

    Y-randomization tests were performed to testify the possible existence of chance correlation of the model.40,41In the tests,the dependent variable(lga)was randomly scrambled and used to build and investigate the PLS model.The result model with the randomized values should have dramatically lower r2and q2than the original one,because the relationship between the structure and the original dependent variable is broken.35 randomization runs were conducted in the present study.Fig.8 shows the results of the Y-randomization tests.From the figure,it can be seen that all randomized models have bad quality when compared with the original model.The r2value is about 0.2-0.5 and all q2values are negative,which means that the models have no predictive ability. The r2and q2value is within the limit recommended in the literature,40which implies that the original model is considered being free of chance correlation.

    It is noteworthy that the calculated separation factors are 0.00 for compound44and minus values for compounds9and22(both are-0.03)among whole samples in Table 1.Except these three compounds,all others present positive predictive value,which signifies that the QSPR model predicts qualitatively the elution order very well.The correct rate of prediction on elution order is 95%.And the correct rate of prediction on elution order of the training set to the test set is 100%.

    Fig.8 (a)r2and the correlation coefficient between lga and the randomized data;(b)q2and the correlation coefficient between lga and the randomized data

    Fig.9 shows the coefficients of 63 descriptors in the QSPR model for the whole samples,which are successively the difference value of V,S,W1-7OH2,Iw8OH2,D12OH2,D13OH2, D23OH2,D1-7DRY,ID1-8DRY,Emin2-3DRY,D12DRY, D13DRY,D23DRY,A,W1-5O,HB1-7O,W1-8N1,HB1-6N1, and W1-3N3+between the enantiomers.

    From Fig.9,it can be found that the difference value of V and D23OH2 are negatively correlated with lga,which means that the larger the differences of V and D23OH2,the more difficult the separation of the enantiomers.While the difference value of W5-7OH2 and D13OH2 is remarkably positively correlated with the separation factors,which represents that large differences of these variables are advantageous to the separation.The difference of D3DRY is positive correlation with the separation factors while D5-7DRY and Emin2-3DRY strong negative,which demonstrates that,at low energy level,large differences of hydrophobic regions are beneficial to the separation,while at high energy levels not.Positive correlation of the difference of descriptor A implies that the large difference of the amphiphilic moment between the enantiomers is advantageous to the separation.In addition,the large differences of W3O,HB5-6O,and W3N3+are advantageous to the separation,while the large differences of W5O and W8N1 disadvantageous.

    Fig.9 PLS coefficient plot of variables for QSPR model of separation factors

    Table 2 Value of variables for MRE,LRE,and their difference of compounds 19 and 24

    Among all compounds,compound19has the largest lga value (0.59)while compound24possesses the lowest value(0.01). From Fig.9,it can be seen that the differences of Emin3DRY, W8N1,and W3N3+are the three most strongly correlated descriptors with the separation factors.Table 2 shows the value of descriptor Emin3DRY,W8N1,and W3N3+for MRE,LRE of compounds19and24and their differences between the enan-tiomers.It can be seen from Table 2 that compound19has higher W3N3+and lower Emin3DRY and W8N1 difference value than compound24.W3N3+has a positive correlation with the separation factors.High value is beneficial to the separation,which coincides with the experimental data.Emin3DRY and W8N1 are correlated negatively with the separation.In Table 2,with the higher separation factors,molecule19has much lower Emin3DRY and W8N1 difference value than molecule24.So,it can be concluded that the correlation of the difference of variable is coincident with the separation effect.

    4 Conclusions

    QSPR models for chiral diarylmethane derivates have been constructed in the present study.For the retention factors,good results were obtained and the models established for the training set had satisfactory predictive capability for the test set.According to analysis of the descriptors introduced in the models,it can be concluded that the molecular globularity,hydrophilic regions at median energy levels,hydrophilic-lipophilic balance,amphiphilic moment,suitable hydrogen bond donors and acceptors are all beneficial factors for the retention of the enantiomer,and large value will result in the long retention time.However,the hydrophilic regions at high energy levels,the hydrophobic regions at low energy levels,more hydrogen bond acceptors at high energy levels and the anion regions are unfavourable factors for the retention of the enantiomer,and also,large value of these descriptors will bring about the short retention time.As for the separation factors,it can be summarized that the differences of the hydrophilic regions at high energy levels,the distance between the first and third energy minima for OH2 probe,the hydrophobic regions at low energy level,amphiphilic moment,suitable hydrogen bond donors and acceptors as well as the anion regions between the enantiomers are favourable factors for the separation,and large difference value will result in the large separation factors.While the differences of the volume,the distance between the second and third energy minima for OH2 probe,the hydrophobic regions at high energy levels,the second and third energy minima for DRY probe,the hydrogen bond donors and acceptors regions at high energy levels are disadvantageous factors to the separation, and large difference value will lead to the small separation factors. The external validation through the test set,leave-many-out crossvalidation and Y-randomization test were carried out and confirmed the robustness and good predictive ability of the model for the separation factors.Using the model,we can predict the retention factors,especially the separation factors and the elution order of the enantiomers of chiral diarylmethane derivates.Also, this study provides a useful guide for studying other chiral compounds.

    Supporting Information:The descriptors'value of enantiomers for 63 compounds and the difference value of 63 variables between the enantiomers have been included.This information is available free of charge via the internet at http://www.whxb.pku. edu.cn.

    (1) Ebn?ther,A.;Weber,H.P.Helv.Chim.Acta1976,59,2462.

    (2) Casy,A.F.;Drake,A.F.;Ganellin,C.R.;Mercer,A.D.;Upton, C.Chirality 1992,4,356.

    (3) James,M.N.G.;Williams,G.J.B.Can.J.Chem.1974,52,1872.doi:10.1139/v74-267

    (4) Sund,R.B.Nor.Pharm.Acta 1983,45,125.

    (5) Jones,C.D.;Winter,M.A.;Hirsh,K.S.;Stam,N.;Taylor,H. M.;Holden,H.E.;Davenport,J.D.;Krumkalns,E.V.;Suhr,R. G.J.Med.Chem.1990,33,416.doi:10.1021/jm00163a065

    (6) Silvestri,R.;Artico,M.;Martino,G.D.;Ragno,R.;Massa,S.; Loddo,R.;Murgioni,C.;Loi,A.G.;Colla,P.L.;Pani,A.J.Med.Chem.2002,45,1567.doi:10.1021/jm010904a

    (7) Panda,G.;Parai,M.K.;Das,S.K.;Shagufta;Sinha,M.; Chaturvedi,V.;Srivastava,A.K.;Manju,Y.S.;Gaikwad,A.N.; Sinha,S.Eur.J.Med.Chem.2007,42,410.doi:10.1016/j. ejmech.2006.09.020

    (8) Tacke,R.;Strohmann,C.;Sarge,S.;Cammenga,H.K.; Sehomburg,D.;Mutschler,E.;Lambrecht,G.Liebigs Ann. Chem.1989,No.2,137.

    (9) Wilkinson,J.A.;Rossington,S.B.;Ducki,S.;Leonardb,J.; Hussain,N.Tetrahedron2006,62,1833.doi:10.1016/j. tet.2005.11.044

    (10) Gao,G.;Gu,F.L.;Jiang,J.X.;Jiang,K.Z.;Sheng,C.Q.;Lai, G.Q.;Xu,L.W.Chem.Eur.J.2011,17,2698.doi:10.1002/ chem.201003111

    (11) Arao,T.;Suzuki,K.;Kondo,K.;Aoyama,T.Synthesis2006,No.22,3809.

    (12) Rudolph,J.;Schmidt,F.;Bolm,C.Adv.Synth.Catal.2004,346,867.

    (13) Stanchev,S.;Rakovska,R.;Berova,N.;Snatzke,G.Tetrahedron-Asymmetry1995,6,183.doi:10.1016/0957-4166 (94)00374-K

    (14) Okamoto,Y.;Ikai,T.Chem.Soc.Rev.2008,37,2593.doi: 10.1039/b808881k

    (15) Ramillien,M.;Vanthuyne,N.;Jean,M.;Gherase,D.;Giorgi, M.;Naubron,J.V.;Piras,P.;Roussel,C.J.Chromatogr.A2012,1269,82.doi:10.1016/j.chroma.2012.09.025

    (16) Héberger,K.J.Chromatogr.A2007,1158,273.doi:10.1016/j. chroma.2007.03.108

    (17) Rio,A.D.J.Sep.Sci.2009,32,1566.doi:10.1002/jssc.v32:10

    (18) Petric,M.;Crisan,L.;Crisan,M.;Micle,A.;Maranescu,B.; Ilia,G.Heteroatom Chem.2013,24,138.doi:10.1002/ hc.2013.24.issue-2

    (19) Durcekova,T.;Boronova,K.;Mocak,J.;Lehotay,J.;Cizmarik, J.J.Pharmaceut.Biomed.2012,59,209.doi:10.1016/j. jpba.2011.09.035

    (20) Suzuki,T.;Timofei,S.;Iuoras,B.E.;Uray,G.;Verdino,P.; Fabian,W.M.F.J.Chromatogr.A2001,922,13.doi:10.1016/S0021-9673(01)00921-9

    (21) Du,W.;Yang,G.;Wang,X.;Yuan,S.;Zhou,L.;Xu,D.;Liu,C.Talanta2003,29,1187.

    (22) Szaleniec,M.;Dudzik,A.;Pawul,M.;Kozik,B.J.Chromatogr.A2009,1216,6224.doi:10.1016/j.chroma.2009.07.002

    (23) Dabic,D.;Natic,M.;Dzambaski,Z.;Markovic,R.;Milojkovic-Opsenica,D.;Tesic,Z.J.Sep.Sci.2011,34,2397.doi:10.1002/ jssc.v34.18

    (24) Asensi-Bernardi,L.;Escuder-Gilabert,L.;Martin-Biosca,Y.; Medina-Hernandez,M.J.;Sagrado,S.J.Chromatogr.A2013,1308,152.doi:10.1016/j.chroma.2013.08.003

    (25) Zhang,Q.Y.;Xu,L.Z.;Li,J.Y.;Zhang,D.D.;Long,H.L.; Leng,J.Y.;Xu,L.J.Chemometrics2012,26,497.doi:10.1002/ cem.v26.10

    (26) Chen,G.H.;Xia,Z.N.;Lu,Y.;Liao,L.M.;Shu,M.;Sun,J.Y.; Li,Z.L.Acta Chim.Sin.2008,66,2052.[陳國華,夏之寧,陸 瑤,廖立敏,舒 茂,孫家英,李志良.化學(xué)學(xué)報,2008,66, 2052.]

    (27) Carbonell,P.;Carlsson,L.;Faulon,J.L.J.Chem.Inf.Model.2013,53,887.doi:10.1021/ci300584r

    (28) Liu,D.;Zhang,W.J.;Xu,L.Acta Chim.Sin.2009,67,145. [劉 東,章文軍,許 祿.化學(xué)學(xué)報,2009,67,145.]

    (29) Zhang,Q.Y.;Hu,W.P.;Hao,J.F.;Liu,X.H.;Xu,L.Acta Chim.Sin.2010,68,883. [張慶友,胡衛(wèi)平,郝軍峰,劉繡華,許 祿.化學(xué)學(xué)報,2010,68,883.]

    (30) Feng,C.J.Acta Phys.-Chim.Sin.2010,26,193. [馮長君.物理化學(xué)學(xué)報,2010,26,193.]doi:10.3866/PKU. WHXB20100123

    (31) Fresqui,M.A.C.;Ferreira,M.M.C.;Trsic,M.Anal.Chim. Acta2013,759,43.doi:10.1016/j.aca.2012.11.004

    (32) Hu,G.X.;Zou,J.W.;Zeng,M.;Pan,S.F.;Yu,Q.S.QSAR Comb.Sci.2009,28,1112.doi:10.1002/qsar.v28:10

    (33) Job,G.E.;Shvets,A.;Pirkle,W.H.;Kuwahara,S.;Kosaka,M.; Kasai,Y.;Taji,H.;Fujita,K.;Watanabe,M.;Harada,N.J.Chromatogr.A2004,1055,41.doi:10.1016/j. chroma.2004.08.001

    (34) Ermondi,G.;Caron,G.J.Chromatogr.A2012,1252,84.doi: 10.1016/j.chroma.2012.06.069

    (35) Visentin,S.;Ermondi,G.;Medana,C.;Pedemonte,N.;Galietta, L.;Caron,G.Eur.J.Med.Chem.2012,55,188.doi:10.1016/j. ejmech.2012.07.017

    (36) Das,S.;Roy,P.;Islam,M.A.;Saha,A.;Mukherjee,A.Chem. Pharm.Bull.2013,61,125.doi:10.1248/cpb.c12-00475

    (37) Cruciani,G.;Crivori,P.;Carrupt,P.A.;Testa,B.J.Mol. Struct.-Theochem2000,503,17.

    (38) Hudson,B.D.;Hyde,R.M.;Rahr,E.;Wood,J.;Osman,J.Quant.Struct.-Act.Relat.1996,15,285.doi:10.1002/qsar.v15:4

    (39) Miller,K.J.J.Am.Chem.Soc.1990,112,8533.doi:10.1021/ ja00179a044

    (40) Kiralj,R.;Ferreira,M.M.C.J.Braz.Chem.Soc.2009,20,770.doi:10.1590/S0103-50532009000400021

    (41) Wang,X.J.;Sun,Y.Y.;Wu,L.;Gu,S.J.;Liu,R.N.;Liu,L.; Liu,X.;Xu,J.Chemometr.Intell.Lab.2014,134,1.doi: 10.1016/j.chemolab.2014.03.001

    Predicting Retention and Separation Factors of Chiral Diarylmethane Derivates by QSPR Models

    HU Gui-Xiang1,*LUO Cheng-Cai1PAN Shan-Fei2JIANG Yong-Jun1ZOU Jian-Wei1
    (1School of Biotechnology and Chemical Engineering,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100, Zhejiang Province,P.R.China;2Department of Chemistry,Zhejiang University,Hangzhou 310028,P.R.China)

    Quantitative structure-property relationship(QSPR)studies on retention and separation factors of chiral compounds play a key role in predicting the retention and separation factors even the elution order of enantiomers.Chiral diarylmethane derivates were selected for computing molecular structural descriptors using VolSurf program.Models were built between the descriptors and retention as well as separation factors.The robustness of the model with respect to separation factors was assessed by external validation through the test set,leave-many-out cross-validation and Y-randomization test.The results were satisfactory.Analysis on the variables shows that the molecular globularity,hydrophilic regions at median energy levels,hydrophilic-lipophilic balance,amphiphilic moment,suitable hydrogen bond donors and acceptors are beneficial to the retention of enantiomers on the chiral stationary phase.Large differences of the hydrophilic regions at high energy levels, hydrophobic regions at low energy levels,amphiphilic moment,suitable hydrogen bond donors and acceptors, and anion regions between enantiomers are advantageous to the separation of enantiomers on the chiral stationary phase.These models allow the prediction of retention and separation factors,especially the elution order of enantiomers.

    Chirality;Molecular modeling;VolSurf;Diarylmethane;Partial least squares

    O641

    10.3866/PKU.WHXB201410281www.whxb.pku.edu.cn

    Received:August 16,2014;Revised:October 27,2014;Published on Web:October 28,2014.

    ?Corresponding author.Email:hugx@nit.zju.edu.cn;Tel:+86-574-88130130.

    The project was supported by the National Natural Science Foundation of China(21002088,21272211)and Program of Science and Technology of Ningbo,China(2013D1003).

    國家自然科學(xué)基金(21002088,21272211)和寧波市科技計劃(2013D1003)資助項目

    猜你喜歡
    映體芳基手性
    催化鄰羥基苯基取代對亞甲基醌與酮亞胺環(huán)加成反應(yīng)合成二氫-1,3-苯并噁嗪化合物
    手性磷酰胺類化合物不對稱催化合成α-芳基丙醇類化合物
    分子催化(2022年1期)2022-11-02 07:10:30
    分子印跡復(fù)合膜在拆分延胡索乙素對映體中的應(yīng)用
    中成藥(2017年9期)2017-12-19 13:34:31
    利奈唑胺原料藥中R型異構(gòu)體的手性HPLC分析
    脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
    新型3-氧-3-芳基-2-芳基腙-丙腈衍生物的合成及其抗癌活性
    一種新型芳基烷基磺酸鹽的制備與性能評價
    3-芳基苯并呋喃酮類化合物的合成
    中國塑料(2015年10期)2015-10-14 01:13:13
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    纖維素鍵合手性柱拆分分析吲達(dá)帕胺對映體
    国产麻豆成人av免费视频| 人妻丰满熟妇av一区二区三区| 亚洲午夜理论影院| 国内少妇人妻偷人精品xxx网站 | 一区二区三区激情视频| 在线永久观看黄色视频| 91av网站免费观看| 亚洲五月天丁香| avwww免费| 久久人人精品亚洲av| 欧美亚洲日本最大视频资源| 国产真人三级小视频在线观看| 久久婷婷人人爽人人干人人爱| 欧美午夜高清在线| 国产免费av片在线观看野外av| 日韩欧美三级三区| 在线天堂中文资源库| 久久久久久大精品| 欧美zozozo另类| 亚洲国产精品成人综合色| 中国美女看黄片| 99riav亚洲国产免费| 亚洲黑人精品在线| 国产精华一区二区三区| 国产国语露脸激情在线看| 99久久国产精品久久久| 老司机午夜十八禁免费视频| 欧美日韩亚洲国产一区二区在线观看| 免费看日本二区| 91麻豆av在线| 午夜福利成人在线免费观看| www国产在线视频色| 老司机午夜福利在线观看视频| www.精华液| 国产精品永久免费网站| 少妇的丰满在线观看| 国产片内射在线| 午夜久久久久精精品| 黄色a级毛片大全视频| 亚洲av中文字字幕乱码综合 | 男人舔女人下体高潮全视频| 欧美黑人精品巨大| 18禁国产床啪视频网站| 亚洲精品美女久久久久99蜜臀| 国产精品爽爽va在线观看网站 | 国产精品美女特级片免费视频播放器 | 一卡2卡三卡四卡精品乱码亚洲| 丰满人妻熟妇乱又伦精品不卡| 91大片在线观看| 中文字幕高清在线视频| 在线国产一区二区在线| 国产免费男女视频| 国产精品98久久久久久宅男小说| 熟女电影av网| 黄色 视频免费看| 精品电影一区二区在线| 人人妻,人人澡人人爽秒播| 成人三级黄色视频| 他把我摸到了高潮在线观看| 亚洲精品一区av在线观看| 亚洲国产看品久久| 国产伦人伦偷精品视频| 日韩av在线大香蕉| 一边摸一边抽搐一进一小说| 男人操女人黄网站| 97超级碰碰碰精品色视频在线观看| 亚洲国产中文字幕在线视频| 久久午夜综合久久蜜桃| 麻豆一二三区av精品| 亚洲中文日韩欧美视频| www日本在线高清视频| 亚洲av五月六月丁香网| 国产亚洲精品久久久久久毛片| 999久久久精品免费观看国产| av天堂在线播放| 午夜a级毛片| 天堂√8在线中文| 听说在线观看完整版免费高清| 一个人观看的视频www高清免费观看 | 久久香蕉激情| 欧美日韩亚洲综合一区二区三区_| 亚洲狠狠婷婷综合久久图片| 日韩欧美一区视频在线观看| 88av欧美| 亚洲性夜色夜夜综合| 69av精品久久久久久| 男人操女人黄网站| 性欧美人与动物交配| 国产人伦9x9x在线观看| 国产精品一区二区免费欧美| 91在线观看av| 日韩精品中文字幕看吧| 亚洲中文字幕一区二区三区有码在线看 | 狠狠狠狠99中文字幕| 成人手机av| 国产单亲对白刺激| 成人18禁高潮啪啪吃奶动态图| 99国产精品99久久久久| 女性被躁到高潮视频| 国产午夜福利久久久久久| 国产精品久久久久久亚洲av鲁大| 中文字幕人成人乱码亚洲影| 深夜精品福利| 国产一区二区在线av高清观看| 搡老妇女老女人老熟妇| 嫁个100分男人电影在线观看| 国产视频内射| 午夜久久久久精精品| 热re99久久国产66热| 成年版毛片免费区| 久久久久久人人人人人| 在线观看一区二区三区| 男女床上黄色一级片免费看| 亚洲七黄色美女视频| 国产熟女午夜一区二区三区| 精品欧美一区二区三区在线| 欧美一级a爱片免费观看看 | 精品国产亚洲在线| 国产91精品成人一区二区三区| 国产精品久久久久久人妻精品电影| 美女 人体艺术 gogo| 欧美国产日韩亚洲一区| 在线观看舔阴道视频| 一边摸一边做爽爽视频免费| 波多野结衣高清无吗| 欧美黑人欧美精品刺激| 叶爱在线成人免费视频播放| 日韩av在线大香蕉| 国产国语露脸激情在线看| 亚洲欧洲精品一区二区精品久久久| 一本大道久久a久久精品| 精品国产亚洲在线| 一级a爱片免费观看的视频| 亚洲av美国av| 嫩草影院精品99| 高清毛片免费观看视频网站| 少妇的丰满在线观看| 50天的宝宝边吃奶边哭怎么回事| 又黄又粗又硬又大视频| 黄色 视频免费看| 久久精品国产亚洲av香蕉五月| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 精品欧美一区二区三区在线| 日日夜夜操网爽| 国产亚洲av高清不卡| 欧美又色又爽又黄视频| 一区二区日韩欧美中文字幕| 亚洲av电影在线进入| 嫁个100分男人电影在线观看| www国产在线视频色| 亚洲精品av麻豆狂野| 午夜激情av网站| 精品电影一区二区在线| 国产精品久久久久久精品电影 | 精品国产国语对白av| 夜夜看夜夜爽夜夜摸| 波多野结衣av一区二区av| 亚洲成av片中文字幕在线观看| 免费人成视频x8x8入口观看| 亚洲人成伊人成综合网2020| 久久青草综合色| 亚洲色图av天堂| 婷婷精品国产亚洲av在线| 天堂动漫精品| 男人的好看免费观看在线视频 | 一进一出抽搐gif免费好疼| 精品久久久久久,| 欧美激情极品国产一区二区三区| 免费搜索国产男女视频| 99热6这里只有精品| 欧美一级a爱片免费观看看 | 亚洲专区国产一区二区| 国产在线观看jvid| 久久久精品欧美日韩精品| 成人手机av| 欧美中文综合在线视频| 一级毛片高清免费大全| 精品国产亚洲在线| 男人舔女人下体高潮全视频| 久久久久久大精品| 久9热在线精品视频| 黄色丝袜av网址大全| 亚洲午夜精品一区,二区,三区| 午夜影院日韩av| 亚洲无线在线观看| 精品欧美国产一区二区三| 欧美国产日韩亚洲一区| 成人精品一区二区免费| 一级毛片女人18水好多| 中文字幕精品免费在线观看视频| 国产精品免费视频内射| 精品国产超薄肉色丝袜足j| 国产真人三级小视频在线观看| 亚洲狠狠婷婷综合久久图片| av福利片在线| 午夜免费鲁丝| 国产精品99久久99久久久不卡| 国产亚洲精品第一综合不卡| 19禁男女啪啪无遮挡网站| 亚洲五月婷婷丁香| 校园春色视频在线观看| 又黄又粗又硬又大视频| 自线自在国产av| 久久久水蜜桃国产精品网| 91国产中文字幕| 欧美国产日韩亚洲一区| 国产精品国产高清国产av| 人人妻人人澡欧美一区二区| 91成年电影在线观看| 国产欧美日韩一区二区精品| 在线播放国产精品三级| 欧美激情久久久久久爽电影| 成人三级黄色视频| 一夜夜www| 少妇的丰满在线观看| 9191精品国产免费久久| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出| 男人的好看免费观看在线视频 | 日本在线视频免费播放| 国产伦在线观看视频一区| av天堂在线播放| 久久久久久久午夜电影| 女警被强在线播放| 人人澡人人妻人| 在线观看免费视频日本深夜| 久热这里只有精品99| 99久久无色码亚洲精品果冻| 久久草成人影院| av电影中文网址| 国产野战对白在线观看| 免费看美女性在线毛片视频| 无人区码免费观看不卡| 国产精品一区二区免费欧美| 精品少妇一区二区三区视频日本电影| 亚洲第一av免费看| 一夜夜www| 欧美丝袜亚洲另类 | 婷婷亚洲欧美| 大型黄色视频在线免费观看| 国产黄a三级三级三级人| 亚洲人成电影免费在线| xxxwww97欧美| 中文字幕精品亚洲无线码一区 | 久久精品成人免费网站| 国内揄拍国产精品人妻在线 | 一本大道久久a久久精品| 国产成人av激情在线播放| 国产亚洲精品av在线| 亚洲中文字幕一区二区三区有码在线看 | 99国产综合亚洲精品| 香蕉国产在线看| 午夜免费鲁丝| 国产一级毛片七仙女欲春2 | 久久久国产成人精品二区| 亚洲中文日韩欧美视频| 18禁观看日本| 国产欧美日韩精品亚洲av| 亚洲色图 男人天堂 中文字幕| 日本在线视频免费播放| 黄色成人免费大全| 亚洲成人精品中文字幕电影| 国产精品精品国产色婷婷| 在线看三级毛片| 在线观看舔阴道视频| 99国产极品粉嫩在线观看| 精品久久久久久久毛片微露脸| 在线观看免费午夜福利视频| 精品国产乱子伦一区二区三区| 妹子高潮喷水视频| 18禁国产床啪视频网站| 久久精品国产亚洲av高清一级| 国产亚洲欧美98| 香蕉久久夜色| 亚洲精品在线观看二区| 18禁裸乳无遮挡免费网站照片 | 九色国产91popny在线| 一级黄色大片毛片| 色在线成人网| 日本免费a在线| 欧美中文日本在线观看视频| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 欧美性猛交╳xxx乱大交人| 国产视频内射| 黑人操中国人逼视频| 国产亚洲精品第一综合不卡| av在线天堂中文字幕| 国内精品久久久久久久电影| 精品国内亚洲2022精品成人| 老司机靠b影院| 国产精品日韩av在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区免费欧美| 亚洲电影在线观看av| АⅤ资源中文在线天堂| 国产真实乱freesex| 午夜日韩欧美国产| 成人av一区二区三区在线看| 久久香蕉国产精品| 日韩有码中文字幕| 久久国产亚洲av麻豆专区| 婷婷精品国产亚洲av在线| av在线天堂中文字幕| 特大巨黑吊av在线直播 | 99国产综合亚洲精品| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点| 91成人精品电影| 免费女性裸体啪啪无遮挡网站| 99久久综合精品五月天人人| 又黄又粗又硬又大视频| 日韩成人在线观看一区二区三区| 午夜亚洲福利在线播放| 国产亚洲欧美精品永久| 曰老女人黄片| 丰满的人妻完整版| 91国产中文字幕| 一级毛片精品| 人人妻,人人澡人人爽秒播| 免费女性裸体啪啪无遮挡网站| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 深夜精品福利| 午夜老司机福利片| 在线观看舔阴道视频| 一级a爱片免费观看的视频| 色播亚洲综合网| 黄色a级毛片大全视频| 久久精品人妻少妇| 欧美成人性av电影在线观看| 午夜成年电影在线免费观看| 一区二区三区激情视频| 国产精品,欧美在线| 欧美日韩福利视频一区二区| 又黄又粗又硬又大视频| 国产高清激情床上av| 国产亚洲av嫩草精品影院| 一级毛片精品| 2021天堂中文幕一二区在线观 | 757午夜福利合集在线观看| 免费av毛片视频| 1024手机看黄色片| 看黄色毛片网站| 在线视频色国产色| 一级片免费观看大全| 午夜免费鲁丝| 国产av在哪里看| 一级片免费观看大全| 精品久久久久久久久久免费视频| 欧美亚洲日本最大视频资源| 极品教师在线免费播放| 色av中文字幕| 亚洲三区欧美一区| 90打野战视频偷拍视频| 老司机福利观看| 亚洲中文字幕一区二区三区有码在线看 | 成人手机av| 热re99久久国产66热| 国产不卡一卡二| 精品欧美国产一区二区三| 国产亚洲精品av在线| 国产免费av片在线观看野外av| 久久久久国内视频| 国产激情偷乱视频一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 国产1区2区3区精品| 久久99热这里只有精品18| 午夜激情福利司机影院| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 最新在线观看一区二区三区| 欧美日韩精品网址| 天堂√8在线中文| 无人区码免费观看不卡| 亚洲最大成人中文| 午夜免费观看网址| 一级作爱视频免费观看| 欧美乱色亚洲激情| 午夜免费观看网址| 三级毛片av免费| 亚洲色图av天堂| 亚洲av成人av| 性欧美人与动物交配| 国产精品亚洲一级av第二区| 国产精品日韩av在线免费观看| 色av中文字幕| 亚洲国产高清在线一区二区三 | 99精品久久久久人妻精品| 国产精品亚洲美女久久久| 午夜免费观看网址| 制服诱惑二区| 在线观看舔阴道视频| 国产欧美日韩一区二区三| av福利片在线| 色老头精品视频在线观看| 香蕉av资源在线| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av| 国产精品九九99| 国内精品久久久久久久电影| 国产精品一区二区精品视频观看| 国产一区二区在线av高清观看| 精品午夜福利视频在线观看一区| 亚洲电影在线观看av| 黄色视频,在线免费观看| 中文在线观看免费www的网站 | 婷婷六月久久综合丁香| 别揉我奶头~嗯~啊~动态视频| 女性被躁到高潮视频| 亚洲精品美女久久久久99蜜臀| 性欧美人与动物交配| 少妇裸体淫交视频免费看高清 | 久久久久久久精品吃奶| 亚洲人成网站高清观看| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 中文资源天堂在线| 免费av毛片视频| 国产日本99.免费观看| 在线观看免费视频日本深夜| 女性生殖器流出的白浆| 国产成人啪精品午夜网站| 12—13女人毛片做爰片一| 99国产综合亚洲精品| 国产aⅴ精品一区二区三区波| 欧美亚洲日本最大视频资源| 精品国产乱码久久久久久男人| 国产人伦9x9x在线观看| 大型黄色视频在线免费观看| 亚洲一码二码三码区别大吗| 看免费av毛片| avwww免费| 精品一区二区三区四区五区乱码| 侵犯人妻中文字幕一二三四区| 亚洲av电影在线进入| 久久午夜综合久久蜜桃| 亚洲美女黄片视频| 亚洲成av人片免费观看| 中文资源天堂在线| 岛国视频午夜一区免费看| 首页视频小说图片口味搜索| 欧美精品亚洲一区二区| 国产精品自产拍在线观看55亚洲| 国产av在哪里看| 亚洲精品粉嫩美女一区| 少妇的丰满在线观看| 国产一区二区三区视频了| 香蕉丝袜av| 精品第一国产精品| 无遮挡黄片免费观看| 18禁裸乳无遮挡免费网站照片 | 亚洲五月色婷婷综合| 亚洲精品美女久久av网站| 夜夜夜夜夜久久久久| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 国产97色在线日韩免费| 日本成人三级电影网站| 国产一区二区三区在线臀色熟女| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美激情综合另类| 精品不卡国产一区二区三区| 叶爱在线成人免费视频播放| 精品久久久久久久久久久久久 | 90打野战视频偷拍视频| 成人18禁在线播放| 国内少妇人妻偷人精品xxx网站 | 亚洲中文字幕日韩| 露出奶头的视频| 欧美久久黑人一区二区| 国产精品久久久av美女十八| 在线观看日韩欧美| 变态另类成人亚洲欧美熟女| 亚洲无线在线观看| 正在播放国产对白刺激| 国产成人系列免费观看| 国产欧美日韩一区二区精品| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 欧美最黄视频在线播放免费| 国产免费av片在线观看野外av| 成人国语在线视频| 大型黄色视频在线免费观看| 99riav亚洲国产免费| 757午夜福利合集在线观看| 久久久精品欧美日韩精品| 淫妇啪啪啪对白视频| 午夜福利18| 日韩有码中文字幕| 久久久久久免费高清国产稀缺| cao死你这个sao货| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| xxx96com| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 99久久久亚洲精品蜜臀av| 亚洲欧美一区二区三区黑人| 精品久久久久久久人妻蜜臀av| 亚洲精品美女久久久久99蜜臀| 91大片在线观看| 日韩欧美一区视频在线观看| 欧美黄色淫秽网站| 男人舔奶头视频| 一进一出抽搐动态| 一区二区三区高清视频在线| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| 青草久久国产| 国产99白浆流出| 欧美乱妇无乱码| 欧美三级亚洲精品| 久9热在线精品视频| 久久久久久人人人人人| 久久香蕉激情| 午夜视频精品福利| 中文字幕精品亚洲无线码一区 | 在线观看一区二区三区| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费| 国产精品久久视频播放| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 怎么达到女性高潮| 岛国视频午夜一区免费看| 国产精品永久免费网站| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 日韩免费av在线播放| 最近在线观看免费完整版| 亚洲电影在线观看av| 午夜免费激情av| 国产精品1区2区在线观看.| 免费人成视频x8x8入口观看| 老司机深夜福利视频在线观看| 香蕉丝袜av| 国产伦在线观看视频一区| 俄罗斯特黄特色一大片| 国产亚洲精品综合一区在线观看 | 欧美性猛交黑人性爽| 国产精品野战在线观看| 欧美激情极品国产一区二区三区| 国内精品久久久久精免费| 久久中文看片网| 久久午夜综合久久蜜桃| 男女做爰动态图高潮gif福利片| 午夜福利成人在线免费观看| www日本黄色视频网| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 可以免费在线观看a视频的电影网站| 国内少妇人妻偷人精品xxx网站 | 久久人人精品亚洲av| 1024手机看黄色片| 老司机靠b影院| 日韩有码中文字幕| 一区二区三区高清视频在线| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩欧美 国产精品| 久久九九热精品免费| 身体一侧抽搐| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久人人做人人爽| 欧美中文综合在线视频| 久久婷婷人人爽人人干人人爱| 法律面前人人平等表现在哪些方面| avwww免费| 成人18禁在线播放| 丰满的人妻完整版| 欧美久久黑人一区二区| 在线免费观看的www视频| 亚洲在线自拍视频| 88av欧美| 日日爽夜夜爽网站| 色综合站精品国产| 久久 成人 亚洲| 视频区欧美日本亚洲| 久久精品亚洲精品国产色婷小说| 黑丝袜美女国产一区| 欧美乱码精品一区二区三区| 日韩视频一区二区在线观看| 在线国产一区二区在线| 国产一区二区三区在线臀色熟女| 好看av亚洲va欧美ⅴa在| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成网站高清观看| АⅤ资源中文在线天堂| 两个人看的免费小视频| 久久精品国产清高在天天线| 中文在线观看免费www的网站 | 男女床上黄色一级片免费看| 免费在线观看日本一区| or卡值多少钱| 韩国av一区二区三区四区| 免费女性裸体啪啪无遮挡网站| 激情在线观看视频在线高清| 日日干狠狠操夜夜爽| 一二三四在线观看免费中文在| 男人的好看免费观看在线视频 | 韩国精品一区二区三区| 国产精品亚洲av一区麻豆| 国产真人三级小视频在线观看| 午夜久久久在线观看| 亚洲男人天堂网一区| 波多野结衣巨乳人妻| 国内毛片毛片毛片毛片毛片| 757午夜福利合集在线观看| 麻豆av在线久日| 国产成人欧美|