• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有特殊結(jié)構(gòu)和電子性質(zhì)的PdAu/Al2O3催化劑上蒽醌加氫反應(yīng)性能

    2015-01-04 12:52:25何志遠(yuǎn)管永川張金利天津大學(xué)化工學(xué)院天津300072
    物理化學(xué)學(xué)報(bào) 2015年4期
    關(guān)鍵詞:價態(tài)化工學(xué)院雙金屬

    韓 優(yōu) 何志遠(yuǎn) 管永川 李 韡 張金利(天津大學(xué)化工學(xué)院,天津300072)

    具有特殊結(jié)構(gòu)和電子性質(zhì)的PdAu/Al2O3催化劑上蒽醌加氫反應(yīng)性能

    韓 優(yōu) 何志遠(yuǎn) 管永川 李 韡 張金利*
    (天津大學(xué)化工學(xué)院,天津300072)

    通過改變Pd和Au的負(fù)載順序合成了一系列具有不同結(jié)構(gòu)和電子性質(zhì)的PdAu雙金屬催化劑,并用于蒽醌加氫反應(yīng).其中通過先負(fù)載Au后負(fù)載Pd的順序制得的Pd/Au/Al2O3催化劑,其加氫效率可高達(dá)14.27 g·L-1. X射線衍射、透射電子顯微鏡、H2程序升溫還原和X射線光電子能譜等分析表征結(jié)果顯示,Pd/Au/Al2O3催化劑中分散在Au顆粒表面的Pd納米顆粒具有獨(dú)特的爆米花結(jié)構(gòu),其表面零價態(tài)的單質(zhì)Pd含量最多,而這種表面零價態(tài)的單質(zhì)Pd是蒽醌加氫反應(yīng)中的關(guān)鍵活性組分.此外,Au的加入可有效抑制副反應(yīng)的發(fā)生,減少降解產(chǎn)物的生成,從而大大提高了催化選擇性.

    負(fù)載順序;PdAu雙金屬;蒽醌加氫;降解產(chǎn)物

    1 Introduction

    Catalytic hydrogenation of 2-ethylanthraquinone(EAQ)into 2-ethylanthrahydroquinone(EAQH2)is the key reaction in the industrial synthesis of H2O2.1,2In this method,EAQ is hydrogenated to EAQH2in the presence of metal catalyst,and then EAQH2is oxidized by O2to yield H2O2with regeneration of the starting EAQ.The target product EAQH2formed in the quinonehydroquinone stage undergoes further hydrogenation to givevarious products through two reaction pathways.The first reaction route consists of the successive saturation of aromatic ring to generate 2-ethyl-5,6,7,8-tetrahydro-9,10-anthrahydroquinone (H4EAQH2)and 2-ethyl-1,2,3,4,5,6,7,8-octahydro-9,10-anthrahydroquinone(H8EAQH2).The second route is the hydrogenolytic cleavage of C―O bonds to give 2-ethylanthrone(EAN) as the main product.Among them only H4EAQH2can be oxidized by O2to generate H2O2and its corresponding 2-ethyl-5,6,7,8-tetrahydro-9,10-anthraquinone(H4EAQ)can also be used in the production cycle of H2O2.Thus EAQ and H4EAQ are called as“active quinones”and other hydrogenation products are considered as“degradation products”.3-6Limiting degradation products formed in the anthraquinone process is one of the priority issues of process improvement,since the formation of degradation products substantially reduces the amount of active quinones.7

    ?Editorial office ofActa Physico-Chimica Sinica

    Drelinkiewicz et al.5,8,9carried out pioneering work to investigate feasible method to limit the formation of degradation products on Pd catalysts.They reported that alkali modifiers(Li,Na, K,Cs)could accelerate the rate of the first quinone-hydroquinone stage whereas reduce the rate of reactions in“deep hydrogenation”stage.The suppression of“deep hydrogenation”stage was ascribed to reduced acidity of catalysts by alkaline promoters.5They also coated SiO2with polyaniline(PANI).The prepared Pd/ PANI(SiO2)catalyst exhibited high reactivity to phenyl ring saturation and strong inhibition of degradation reactions compared with conventional Pd/SiO2catalyst.Such advantageous catalytic properties may be related with the weakening of the strength of hydrogen bonding and hydrophobic character of polymer.8Modification of the Al2O3support with Na2SiO3solution was another effective way to limit hydrogenolytic reactions producing degradation products and enhance the maintenance of catalysts activity during the hydrogenation experiment.The observed phenomenon showing a profitable role of silica species may be interpreted by modification of adsorption properties of the surface towards anthraquinone molecules.9Li et al.3,10improved preparation methods ofAl2O3support used in EAQ hydrogenation.They prepared spherical Al2O3,SiO2-Al2O3using conventional oil-drop (OD)method,and Al2O3using the separate nucleation and aging steps(SNAS)method.The order of average hydrogenation efficiency and selectivity to active quinones was Pd/Al2O3(SNAS) (10.9 g·L-1,97%)>Pd/SiO2-Al2O3(OD)(10.3 g·L-1)>Pd/Al2O3(OD)(8.6 g·L-1,93%).The improved performance can be ascribed to the modified pore structure of support,which can increase the dispersion of Pd and decrease the diffusion resistance.

    These researches mainly focused on the modification of supports.Few attempts have been made to limit the formation of degradation products through controlling the catalytic chemistry of Pd based on catalyst design principles.A potential method to improve catalytic performance is incorporation of a second metal into the Pd catalyst.11-13Au has been found to enhance the activity of Pd significantly by the pioneer work of Hutchings et al.14-16Bimetallic PdAu catalysts have been reported to be active for a variety of selective hydrogenation reactions.Yang et al.17reported that bimetallic PdAu catalyst showed a higher activity and selectivity than Pd catalyst in hydrogenation of phenol to cyclohexanone,conversion increased from 15%to 97.5%and selectivity increased from 94.6%to 96.6%.Panpranot et al.18found that Au in bimetallic PdAu catalyst for 1-heptyne hydrogenation could promote electrons for Pd,which greatly promoted the second-step hydrogenation of 1-heptene to heptane.Yang et al.19also found the addition of Au to Pd catalyst favorably promoted the hydrogenation of cinnamaldehyde with conversion rate improved for three times.The selectivity to hydrocinnamal dehyde was also increased from 85%to 90%.Ouyang et al.20revealed that the role of Au in bimetallic PdAu catalyst for the direct synthesis of H2O2from H2and O2was to isolate single Pd sites to facilitate the dissociation of H2but unfavorable for the dissociation of O2.This promotion effect dramatically enhanced the selectivity to H2O2and reduced the decomposition of H2O2.Based on these encouraging findings, incorporation of Au into Pd/Al2O3catalyst becomes a meaningful and feasible method to improve its catalytic activity and selectivity for the hydrogenation of EAQ.

    In our present work,a combination of impregnation(IM)and deposition-precipitation(DP)methods was used to prepare the bimetallic PdAu/Al2O3catalysts with high performance for the EAQ hydrogenation reaction.In an attempt to establish a relationship between the catalytic performance and their structural and electronic properties,a systematic investigation of the structural and electronic properties of PdAu/Al2O3catalysts with different preparation methods was carried out via various analytic techniques,such as N2adsorption-desorption,X-ray diffraction (XRD),transmission electron microscopy(TEM),CO chemisorption,hydrogen temperature program reduction(H2-TPR),and X-ray photoelectron spectroscopy(XPS).

    2 Experimental

    2.1 Catalyst preparation

    In this work,HAuCl4·3H2O(99.99%Sigma-Alddrich)was used as gold precursor and PdCl2(99.99%Sigma-Alddrich)as palladium precursor.Pseudoboehmite(99%CNOOC Tianjin Chemical Research Institute)was calcined in air at 550°C for 4 h to obtain γ-Al2O3.The particle size was remained between 0.02 and 0.10 mm.γ-Al2O3was used as a support for preparing three bimetallic PdAu samples with the same Pd(0.3%,w,mass fraction,the same below)andAu(0.28%)loadings at a mole ratio of 2:1 but prepared with three different procedures as follows.

    (i)The catalyst(Pd/Au/Al2O3)was prepared by depositing the two metals separately using different techniques(i.e.,Pd by IM and Au by DP).Au was deposited using DP by suspending the support in a HAuCl4aqueous solution.The pH was adjusted to 7 by dropwise addition of a 1 mol·L-1NaOH solution(96%,Tianjin Guangfu Fine Chemical Research Institute).Then,the material was vigorously mixed for 2 h and maintained standing at 45°C for 12 h.The obtained sample was dried at 120°C overnight and calcined in static air at 550°C for 4 h.In the second step,theobtained Au/Al2O3was impregnated with a PdCl2aqueous solution.Then,the obtained sample was subjected to the same treatment conditions described above.

    (ii)Another catalyst sample(Au/Pd/Al2O3)was prepared by inverting the deposition order where the Pd was deposited by IM in the first step followed byAu loading using a DP method in the second step.

    (iii)The third catalyst(Pd-Au/Al2O3)was prepared by co-DP. Astirred slurry of γ-Al2O3in a PdCl2and HAuCl4aqueous solution was adjusted to pH 7 by dropwise addition of a 1 mol·L-1NaOH sodium hydroxide solution.Then the obtained sample was subjected to the same treatment conditions described above.

    For comparison,a monometallic Pd catalyst(Pd/Al2O3)was prepared by IM,and a monometallic Au catalyst(Au/Al2O3)was synthesized by DP.The detailed procedures were the same as those used for the bimetallic catalysts.In all of these catalysts,we kept the method of Pd(or Au)addition to the catalyst consistent, i.e.,Au by DP and Pd by IM(except the Pd-Au/Al2O3because of the procedure limitation).All of the catalysts were prepared by reducing the sample for 2 h under a H2flow at 350°C with a rate of 5°C·min-1.

    2.2 Catalyst characterization

    N2adsorption-desorption isotherms were determined at-196°C using a ASAP 2000 analyzer(Micromeritics,America).Inductively coupled plasma-atomic emission spectrometry(ICP-AES) was carried out using an Iris advantage device(Thermo Jarrel Ash,America).XRD patterns were measured from 10°to 90°(2θ) using a Bruker D8Advance diffractometer equipped with a Si(Li) solid-state detector(SOL-X)and a sealed tube providing Cu Kαradiation(Bruker,Germany).TEM and scanning transmission electron microscopy(STEM)analysis were carried out using a JEOL JEM2010 microscope under an accelerating voltage of 200 kV(JEOL,Japan).This instrument includes an EDAX X-ray energy dispersive spectrometer(EDS)and a JEOL high-angle annular dark-field(HAADF)detector.The XPS spectra were recorded using an Axis Ultra DLD spectrometer employing a monochromated Al-KαX-ray source(hν=1486.6 eV),hybrid (magnetic/electrostatic)optics,a multi-channel plate,and delayline detector(DLD)(Kratos,Britain).All the binding energies were referenced to the C 1s peak at 284.6 eV.H2-TPR was performed with a TPDRO1100 instrument(Thermo Jarrel Ash, America):a sample of 50 mg was heated from room temperature to 900°C at a heating rate of 10°C·min-1in a 10.0%H2-Ar mixture flowing at a rate of 20 mL·min-1.A TPDRO1100 instrument was used to perform pulse chemisorption to determine the CO uptake(Thermo Jarrel Ash,America).The catalysts were reduced at 550°C respectively for 1 h and then cooled to room temperature in He.Pulse CO chemisorption was performed using 500 μL pulse of 10%CO/He in a He carrier gas.A 1:1 CO/Pd molar ratio was assumed to determine the Pd surface content of the catalysts.

    The N2adsorption-desorption,ICP,H2-TPR,and CO chemisorption investigations were performed with fresh catalysts,and the XRD,TEM,and XPS investigations were performed using the reduced catalysts.

    2.3 Catalytic performance test

    The hydrogenation experiments were carried out in an autoclave at 0.3 MPa and 60°C.The working solution was prepared by dissolving 120 g of solid EAQ(98%,TCI)in 1 L of a mixed solvent of trioctyl phosphate(98%,TCI)and trimethylbenzene (98%,TCI)with the volume ratio of 0.33.60 mL of the working solution was mixed with 1.20 g of catalyst,and then,the mixture was hydrogenated in a H2atmosphere for 30 min.After the hydrogenation reaction,the solution was instantaneously centrifugally separated with a rotating speed of 3000 r·min-1for 15 min to remove the solid catalyst.Then,2 mL of the catalyst-free solution was placed into 20 mL of deionized water,and the mixture was oxidized by oxygen at room temperature for 30 min in a separating funnel.2 mL of dilute phosphorous acid was added to the deionized water to prevent H2O2decomposition during the oxidation reaction.After the oxidation reaction,a H2O2aqueous solution was obtained from the sublayer solution of the separating funnel.The H2O2content was analyzed by titration with a KMnO4solution.Prior to the titration,5 mL of a 20%(w)sulfuric acid solution was added to the H2O2solution.The catalytic activity is expressed by the following simplified equation:3where B is the hydrogenation efficiency(g·L-1),which is defined as the mass of H2O2formed per volume working solution,C is the KMnO4solution concentration(mol·L-1),V0is the KMnO4solution volume(mL),and V is the H2O2solution volume(mL).

    A high performance liquid chromatograph(HPLC)equipped with a C18 separation column and UV detector was used to analyze the concentrations of EAQ and H4EAQ,which were denoted as ct(EAQ)and ct(H4EAQ),respectively,at t=30 min in the reoxidized working solution.The mobile phase was a mixture of methanol and water with a volume ratio of 80:20.The wavelength of the ultraviolet radiation was 245 nm.The sum of the EAQ and H4EAQ concentrations in the solution was smaller than the initial concentration of EAQ(i.e.,c0(EAQ)).This difference was assumed as cumulative of the degradation products(cD)given by a mass balance:4,6

    3 Results and discussion

    3.1 Structural properties

    3.1.1 N2adsorption-desorption

    The chemical compositions and textural properties of the calcined catalysts are summarized in Table 1.The N2adsorptiondesorption isotherm for the γ-Al2O3(Fig.S1,Supporting Information)showed that it was a type IV isotherm with hysteresis loop of mesoporous materials.The bare γ-Al2O3exhibited mesoporous structure with SBET=190 m2·g-1,Vp=0.56 cm3·g-1,Dp=11.7 nm.When the support was loaded with metal,its surface area and total pore volume(for example,Pd/Au/Al2O3SBET=174 m2·g-1,Vp=0.54 cm3·g-1)descended.This was caused by some Pd or Au complexes partially blocking the micropores during the calcination process.

    The Pd andAu amounts of the catalysts were analyzed by ICP. As listed in Table 1,the Pd andAu amounts found in the catalysts were slightly lower than the theoretical value(i.e.,0.30%for Pd and 0.28%for Au),but their mole ratio in the bimetallic catalysts equalled to the nominal value of 2:1.

    Table 1 Chemical composition and textural properties of the calcined catalysts and bare support

    3.1.2 XRD

    The metal crystallites of the catalysts were characterized using XRD.As shown in Fig.1,peaks located at 2θ=38.1°,44.3°,and 77.6°were indexed to the(111),(200),and(311)planes of cubic Au metal.19The XRD characteristic peaks corresponding to Pd,i.e., (111)at 40.1°and(200)at 46.6°,were not detected in any of the catalysts,which might be due to the overlapping with the broad feature from theAl2O3support,(222)at 39.5°and(400)at 45.9°.21Table 2 presents the Au particle size data calculated using the Scherrer equation.The fairly large particle size(16.3-21.1 nm) was due to the calcination at a high temperature(550°C)in air.22Because the average pore diameter of the bare support was 11.7 nm,these particles could not enter into the Al2O3pores and were located on the external surface.23

    Fig.1 XRD patterns for theAl2O3,Au/Al2O3,Pd/Al2O3,Pd/Au/ Al2O3,Au/Pd/Al2O3,and Pd-Au/Al2O3after reduction

    Table 2 Specifications of several catalysts prepared using different methods

    3.1.3 TEM

    In order to gain a better understanding of the microstructure of the PdAu particles,the samples were observed using STEMHAADF and TEM.TheAu particles with an average size of 13.9 nm were clearly visible in the TEM images ofAu/Al2O3in Fig.S2 (Supporting Information).TEM results for Pd/Al2O3indicated that Pd was better dispersed on theAl2O3support with an average size of 6.2 nm.For Pd/Au/Al2O3,as shown in Fig.2(a),PdAu particles dispersed homogeneously on support,with an average particle size of 15.2 nm.The HRTEM image(Fig.2(b))showed that these Pd nanoclusters with popcorn structure were dispersed on the Al2O3supported Au particles.The STEM-HAADF and linescanning EDS results shown in Fig.2(c)and 2(d)further confirmed the observation from the HRTEM.The Pd particles were 4-5 nm and theAu particle was~15 nm.

    For the Au/Pd/Al2O3,particles with an average size of 14.9 nm were observed(Fig.3(a)).In a random selection of these bimetallic particles(Fig.3(b)),three Pd particles were surrounded with Au. The STEM-HAADF and line-scanning EDS(Figs.3(c)and 3(d)) indicated that the partially coverage of Pd surface by Au.24In our present study,Au particles loaded in the second step could melt during the calcination process.25TheseAu species incorporated Pd particles that were near from each other into larger aggregates.

    A totally different morphology was observed for the Pd-Au/ Al2O3catalyst,which exhibited a vast quantity of larger bimetallic particles with an average size of 25.8 nm(Fig.4(a)).The HRTEM image(Fig.4(b))showed that largeAu particle was covered by Pd. The STEM-HAADF and line-scanning EDS shown in Fig.4c and 4d further confirmed theAucore-Pdshellstructure was formed in Pd-Au/Al2O3catalyst.The core-shell structure of supported bimetallic PdAu particles with relative large size(>30 nm)prepared by the same co-IM method has also been reported by other research groups.14,25-28On the premise of this structure,the Au particle size (14.9 nm)based on XRD results only reflected the size of Au core,which was in accordance with size observed by line-scanning EDS(15-17 nm).The Pd particle size(25.6 nm)based on CO chemisorption results(in Table 2)reflected the size of these Aucore-Pdshellparticles,which was in accordance with size observed by TEM(25.8 nm).

    3.1.4 CO chemisorption

    CO chemisorption was performed to determine the Pd dispersion and particle size.26The corresponding results are shown in Table 2.The dispersion of Pd increased in the following order: Pd/Au/Al2O3>Pd/Al2O3>Au/Pd/Al2O3>Pd-Au/Al2O3.The calculated size of Pd nanoparticle in Pd/Au/Al2O3catalyst was in agreement with that observed by line-scanning EDS results.The popcornstructure of Pd nanoparticles formed on the supportedAu particles improved the dispersion of Pd.For Au/Pd/Al2O3,the lower dispersion compared with Pd/Al2O3was due to the coverage by Au. And the lowest dispersion of Pd-Au/Al2O3was due to the formation of large particles.

    Fig.2 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image of Pd/Au/Al2O3catalyst; (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    Fig.3 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image ofAu/Pd/Al2O3catalyst; (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    Fig.4 (a)TEM image,(b)HRTEM image,and(c)STEM-HAADF image of Pd-Au/Al2O3catalyst, (d)line-scanning EDS of the metal particle indicated with a line in STEM-HAADF image

    3.2 Electronic properties

    3.2.1 H2-TPR

    To further understand the interaction between Pd and Au,the reducibility of the unreduced samples was investigated by H2-TPR,and the results are shown in Fig.5.The Au/Al2O3catalyst exhibited a broadened H2consumption peak in the temperature range of 170-210°C,which may be due to the reduction ofAu3+.19For the Pd/Al2O3catalyst,peaks observed at 130,150,and 375, 460°C were due to the reduction of surface PdO,Pd2O and subsurface PdO,Pd2O,respectively.29For the bimetallic PdAu catalysts,all of the reduction peaks for the Pd species shifted to lower temperatures,and the extent of the shift for Pd/Au/Al2O3and Au/Pd/Al2O3was larger than that for Pd-Au/Al2O3.In addition,the first reduction peak that appeared at 100°C for Pd/Au/Al2O3was much sharper than that of Au/Pd/Al2O3,which further demonstrated that the Pd in Pd/Au/Al2O3possessed a relatively uniform particle size.It should be noted that the dissociative H2adsorption capacity of the metal catalyst is related to the electronic structure of the metal.19The results of H2-TPR suggested that the addition ofAu have modified the electronic properties of Pd.

    Fig.5 H2-TPR curves forAl2O3,Au/Al2O3,Pd/Al2O3, Pd/Au/Al2O3,Au/Pd/Al2O3,Pd-Au/Al2O3

    3.2.2 XPS

    To obtain additional insight into the electronic relationship between the Pd and Au species in the bimetallic PdAu catalysts, the chemical states of Pd andAu were investigated by XPS.Prior to the measurements,all of the catalysts were reduced in H2and maintained in a vacuum desiccator.The test samples were prepared in a glovebox in order to avoid the contact with air.The Pd 3d andAu 4f spectra of the catalysts are shown in Fig.6.Ashift of ca 0.1-0.8 eV was observed toward high binding energy compared to the monometallic Pd for the three bimetallic PdAu catalysts,which was due to the charge transfer betweenAu and Pd.19The presence of Pd2+in all of these catalysts resulted from the incomplete reduction of some surface oxide layer of PdO.18

    Fig.6 XPS spectra of Pd 3d(a)andAu 4f(b)in the different reduced catalysts

    The fraction of Pd species on the surface was roughly represented by the peak-fitting method.The XPS-derived atomic ratios are listed in Table 3.It is important to note that the addition ofAu elevated the ratio of Pd0in these bimetallic PdAu samples compared to that in the pure Pd/Al2O3catalyst,which was consistent with the results of other researchers.30,31Further analysis indicated that the percentage of Pd0on the surface increased in the following order:Pd/Au/Al2O3>Au/Pd/Al2O3>Pd/Al2O3>Pd-Au/Al2O3, and the percentage of Au0on the surface decreased in the same order.These results implied that the addition of Au benefited the reduction of Pd2+to metallic Pd or the protection of Pd0from being oxidized to Pd2+.In addition,the Au0species can act as an electronic promoter for Pd.

    Table 3 Surface atomic ratios(%)of the catalysts after reduction based on XPS

    3.3 Mechanism of loading sequence effect on the structural and electronic properties of bimetallic catalysts

    Based on the characterization results,the schematic diagrams at the top-left corner of Figs.2(b),3(b),and 4(b)showed the structures of the reduced bimetallic PdAu/Al2O3catalysts prepared via different loading sequences.For Pd/Au/Al2O3,Pd was subsequently loaded on the Au particles to form a popcorn structure with a uniform particle size distribution and an improved Pd species dispersion.In addition,the subsequently loaded Pd nanoclusters on the Au particles might inhibit the aggregation of the Au particles during the second calcination step due to its higher melting point.25Therefore,more Pd atoms were exposed on the surface of the catalyst.For Au/Pd/Al2O3,Pd was partially covered by Au,thus it contained a lower content of surface Pd. The Pd-Au/Al2O3sample exhibited larger bimetallic particles with Aucore-Pdshellstructure.Due to the low dispersion,much fewer surface Pd atoms were exposed.

    The different size distributions and morphologies of the supported PdAu catalysts led to different interactions betweenAu and Pd.The results of a theoretical study32indicated that the Au adatom was basically neutral on the Al2O3support,while the Pd adatom could provide a significant amount of charge transfer to the Al2O3surface,which could explain the easy oxidation of Pd. When Au is deposited first followed by Pd loading to form the unique popcorn structure in the Pd/Au/Al2O3catalyst,a high content of Pd was formed on theAu surface rather than theAl2O3surface,which prevented the electron transfer from Pd to theAl2O3support and maintained more Pd in the metallic state.In addition, the popcorn structure of the PdAu nanoparticles in Pd/Au/Al2O3, which were uniform and small in size,increased the contact area between Au and Pd,which led to a shortcut for electron transfer fromAu to Pd and reduction of Pd2+to metallic Pd.Therefore,the content of metallic surface Pd in Pd/Au/Al2O3was the highest among the three bimetallic PdAu catalysts prepared with different loading sequences.

    3.4 Catalytic performance

    The catalytic performance of the bimetallic PdAu/Al2O3catalysts is shown in Table 4.A negligible yield(1.11 g·L-1)wasobtained for Au/Al2O3under the given reaction condition,implying that Au was inactive for the EAQ hydrogenation reaction. OnceAu was added to the Pd/Al2O3,the Pd/Au/Al2O3(14.27 g·L-1) and Au/Pd/Al2O3(12.79 g·L-1)catalysts exhibited higher hydrogenation efficiency than Pd/Al2O3(12.04 g·L-1),especially for the Pd/Au/Al2O3catalyst.The hydrogenation efficiency increased in the following order:Pd/Au/Al2O3>Au/Pd/Al2O3>Pd/Al2O3>Pd-Au/Al2O3.This order was consistent with the surface Pd0content in these catalysts,which indicated that surface Pd0was a key active component for the EAQ hydrogenation reaction.The hydrogenation efficiency was 14.27 g·L-1for the Pd/Au/Al2O3catalyst.The hydrogenation efficiencies of different Pd/Al2O3catalysts measured by Li et al.3,10,33,34in a fixed bed reactor were 8.0,8.5,10.2,and 10.9 g·L-1.The catalytic performances of industrial catalysts were also evaluated under the same condition as our prepared catalysts and the corresponding data were also listed in Table 4.As determined by ICP analysis,the Pd amounts found in the industrial catalyst-1 and industrial catalyst-2 were 0.6%, 1.8%,respectively.Compared with these two industrial catalysts, the Pd/Au/Al2O3was highly active but with a much lower Pd loading.The hydrogenation efficiency based on the mass of Pd was calculated and increased in the following order Pd/Au/Al2O3(4757 g·L-1·g-1)>Pd/Al2O3(4013 g·L-1·g-1)>industrial catalyst-1 (1933 g·L-1·g-1)>industrial catalyst-2(712 g·L-1·g-1).

    Table 4 Catalytic activities for EAQ hydrogenation with different catalysts and the composition of the re-oxidized working solution

    In the anthraquinone process,only EAQ and H4EAQ are called“active quinones”because they can be used in the H2O2production cycle.Other hydrogenation products are considered as“degradation products”.10Because the degradation products that formed in the hydrogenation/oxidation process cycle will cause a loss of active quinones,the amount of active quinones is an important parameter in H2O2production using the anthraquinone method.The amount of active quinines(ct(EAQ)+ct(H4EAQ))and degradation products(cD)in the re-oxidized working solution are also listed in Table 4.It clearly shows that the amount of degradation products decreases via adding Au into the Pd/Al2O3catalyst,demonstrating that the addition of Au can effectively suppress the side reactions.The Pd/Au/Al2O3catalyst generated the fewest degradation products among all the catalysts in the first hydrogenation/oxidation process cycle.Its selectivity to active quinones was also much higher than the industrial catalysts.Table 5 presents the catalytic performance results for the optimal Pd/Au/ Al2O3catalysts at various mole ratios of Pd and Au.We kept the Pd loading constant(0.3%)and changed Pd/Au mole ratio by altering theAu loading.The catalytic performance results in Table 5 further demonstrated that the addition of Au could keep the catalytic selectivity at a high level(>99%)via suppressing the side reactions.Futhermore,the loading amount of Au could affect the catalytic activity to some extent,and the best mole ratio for Pd/Au/ Al2O3catalyst was 2:1.

    Two types of compounds have been suggested for the composition of degradation products.One consists of the successive saturation of phenyl ring,such as H8EAQH2.The second route is the hydrogenolytic cleavage of C―O bonds,such as EAN.The hydrogenation of the second aromatic ring with formation of H8EAQH2was observed only after complete transformation of quinone system in EAQ to the EAQH2.35So the degradation products listed in Tables 4 and 5 mainly consist of hydrogenolysisderiving products.As a matter of fact,the side reactions comprising the hydrogenolytic cleavage of C―O bonds were strongly limited by addition ofAu.

    Table 5 Catalytic activities for the optimal Pd/Au/Al2O3catalysts at various mole ratios of Pd andAu and the composition of the re-oxidized working solution

    4 Conclusions

    Pd/Au/γ-Al2O3catalyst prepared by loading Pd on Au particles deposited on γ-Al2O3support showed superior catalytic performance(i.e.,B=14.27 g·L-1,selectivity>99%)in the EAQ hydrogenation reaction.The morphology of the sample could be depicted as small,monodispersed Pd nanoparticles distributed on supported Au particles.Moreover,the electronic promotion effect of Au helped to keep more metallic Pd on the catalyst surface, which was the key active component for the reaction of EAQ hydrogenation.The addition of Au was found to improve the selectivity to active quinones.These conclusions not only provide the basis for the design of novel catalysts used in the industrial anthraquinone process,but also are helpful in the development of supported bimetallic PdAu catalysts for related reactions.

    Supporting Information:The N2adsorption-desorption isotherms of γ-Al2O3and the prepared catalysts,and the TEM images for Pd/Al2O3and Au/Al2O3have been included.This information is available free of charge via the internet at http://www. whxb.pku.edu.cn.

    (1) Campos-Martin,J.M.;Blanco-Brieva,G.;Fierro,J.L.G. Angew.Chem.Int.Edit.2006,45,6962.

    (2) Samanta,C.Appl.Catal.A 2008,350,133.doi:10.1016/j. apcata.2008.07.043

    (3) Feng,J.T.;Wang,H.Y.;Evans,D.G.;Duan,X.;Li,D.Q.Appl. Catal.A 2010,382,240.doi:10.1016/j.apcata.2010.04.052

    (4) Drelinkiewicz,A.;Waksmundzka-Gora,A.J.Mol.Catal.A: Chem.2006,246,167.doi:10.1016/j.molcata.2005.10.026

    (5) Kosydar,R.;Drelinkiewicz,A.;Lalik,E.;Gurgul,J.Appl. Catal.,A 2011,402,121.doi:10.1016/j.apcata.2011.05.036

    (6) Kosydar,R.;Drelinkiewicz,A.;Ganhy,J.P.Catal.Lett.2010, 139,105.doi:10.1007/s10562-010-0413-1

    (7) Chen,Q.L.Chem.Eng.Process 2008,47,787.doi:10.1016/j. cep.2006.12.012

    (8) Drelinkiewicz,A.;Waksmundzka-Góra,A.;Makowski,W.; Stejskal,J.Catal.Commun.2005,6,347.doi:10.1016/j. catcom.2005.02.009

    (9) Drelinkiewicz,A.;Kangas,R.;Laitinen,R.;Pukkinen,A.; Pursiainen,J.Appl.Catal.A 2004,263,71.doi:10.1016/j. apcata.2003.12.010

    (10) Tang,P.G.;Chai,Y.Y.;Feng,J.T.;Li,Y.;Li,D.Q.Appl.Catal. A 2014,469,312.doi:10.1016/j.apcata.2013.10.008

    (11) Ding,T.;Qin,Y.N.;Ma,Z.Chin.J.Catal.2002,23(3),227. [丁 彤,秦永寧,馬 智.催化學(xué)報(bào),2002,23(3),227.]

    (12) Wang,F.;Xu,X.L.Chem.Ind.Eng.Prog.2012,31(1),107. [王 豐,徐賢倫.化工進(jìn)展,2012,31(1),107.]

    (13) Wang,R.;Li,C.C.;Chen,T.W.;Lin,J.X.;Mao,S.L.Chin.J. Catal.2004,25(9),711. [王 榕,林墀昌,陳天文,林建新,毛樹祿.催化學(xué)報(bào),2004,25(9),711.]

    (14) Edwards,J.K.;Freakley,S.J.;Carley,A.F.;Kiely,C.J.; Hutchings,G.J.Accounts Chem.Res.2013,47,845.

    (15) Hutchings,G.J.;Kiely,C.J.Accounts Chem.Res.2013,46, 1759.doi:10.1021/ar300356m

    (16) Sankar,M.;Dimitratos,N.;Miedziak,P.J.;Wells,P.P.;Kiely, C.J.;Hutchings,G.J.Chem.Soc.Rev.2012,41,8099.doi: 10.1039/c2cs35296f

    (17) Yang,X.;Du,L.;Liao,S.J.;Li,Y.X.;Song,H.Y.Catal. Commun.2012,17,29.doi:10.1016/j.catcom.2011.10.006

    (18) Kittisakmontree,P.;Pongthawornsakun,B.;Yoshida,H.;Fujita, S.;Arai,M.;Panpranot,J.J.Catal.2013,297,155.doi: 10.1016/j.jcat.2012.10.007

    (19) Yang,X.;Chen,D.;Liao,S.J.;Song,H.Y.;Li,Y.W.;Fu,Z.Y.; Su,Y.L.J.Catal.2012,291,36.doi:10.1016/j.jcat.2012.04.003

    (20) Ouyang,L.;Da,G.J.;Tian,P.F.;Chen,T.Y.;Liang,G.D.;Xu, J.;Han,Y.F.J.Catal.2014,311,129.doi:10.1016/j. jcat.2013.11.008

    (21) Menegazzo,F.;Signoretto,M.;Manzoli,M.;Boccuzzi,F.; Cruciani,G.;Pinna,F.;Strukul,G.J.Catal.2009,268, 122.doi:10.1016/j.jcat.2009.09.010

    (22) Suo,Z.H.;Ma,C.Y.;Liao,W.P.;Jin,M.S.;Lv,H.Y.Fuel Process.Technol.2011,92 1549.doi:10.1016/j. fuproc.2011.03.018

    (23) Pawelec,B.;Venezia,A.M.;La Parola,V.;Cano-Serrano,E.; Campos-Martin,J.M.;Fierro,J.L.G.Appl.Surf.Sci.2005, 242,380.doi:10.1016/j.apsusc.2004.09.004

    (24) Wang,Z.Q.;Zhou,Z.M.;Zhang,R.;Li,L.;Cheng,Z.M.Acta Phys.-Chim.Sin.2014,30,2316.[王沾祺,周志明,張 銳,李 莉,程振民.物理化學(xué)學(xué)報(bào),2014,30,2316.]doi:10.3866/ PKU.WHXB201410152

    (25) Edwards,J.K.;Solsona,B.E.;Landon,P.;Carley,A.F.; Herzing,A.;Kiely,C.J.;Hutchings,G.J.J.Catal.2005,236, 69.doi:10.1016/j.jcat.2005.09.015

    (26) Bulushev,D.A.;Beloshapkin,S.;Plyusnin,P.E.;Shubin,Y.V.; Bukhtiyarov,V.I.;Korenev,S.V.;Ross,J.R.H.J.Catal.2013, 299,171.doi:10.1016/j.jcat.2012.12.009

    (27) Edwards,J.K.;Ntainjua,N.;Carley,A.F.;Herzing,A.A.; Kiely,C.J.;Hutchings,G.J.Angew.Chem.Int.Edit.2009,48, 8512.doi:10.1002/anie.v48:45

    (28) Edwards,J.K.;Thomas,A.;Carley,A.F.;Herzing,A.A.;Kiely, C.J.;Hutchings,G.J.Green Chem.2008,10,388.doi:10.1039/ b714553p

    (29) Babu,N.S.;Lingaiah,N.;Kumar,J.V.;Prasad,P.S.S.Appl. Catal.A 2009,367,70.doi:10.1016/j.apcata.2009.07.031

    (30) Qian,K.;Huang,W.X.Catal.Today 2011,164,320.doi: 10.1016/j.cattod.2010.10.018

    (31) Maclennan,A.;Banerjee,A.;Hu,Y.F.;Miller,J.T.;Scott,R.W. J.ACS Catal.2013,3,1411.doi:10.1021/cs400230t

    (32) Márquez,A.M.;Graciani,J.;Sanz,J.F.Theor.Chem.Acc. 2010,126,265.doi:10.1007/s00214-009-0703-0

    (33) Li,Y.;Feng,J.T.;He,Y.F.;Evans,D.G.;Li,D.Q.J.Ind.Eng. Chem.2012,51,11083.doi:10.1021/ie300385h

    (34) Yang,Y.H.;Lin,Y.J.;Feng,J.T.;Evans,D.G.;Li,D.Q.Chin. J.Catal.2006,27(4),304.[楊永輝,林彥軍,馮俊婷,Evans, D.G.,李殿卿.催化學(xué)報(bào),2006,27(4),304.]

    (35) Santacesaria,E.;Di Serio,M.;Velotti,R.;Leone,U.J.Mol. Catal.1994,94,37.doi:10.1016/0304-5102(94)87028-4

    Catalytic Performance of PdAu/Al2O3Catalyst with Special Structural and Electronic Properties in the 2-Ethylanthraquinone Hydrogenation Reaction

    HAN You HE Zhi-Yuan GUAN Yong-Chuan LI Wei ZHANG Jin-Li*
    (School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072,P.R.China)

    Aseries of bimetallic PdAu catalysts with different structures were prepared by changing the loading sequence of Pd and Au for the hydrogenation of 2-ethylanthraquinone.Pd/Au/Al2O3was obtained by loading Pd ontoAu particles deposited onto anAl2O3support with a hydrogenation efficiency up to 14.27 g·L-1.According to X-ray diffraction,transmission electron microscopy,hydrogen temperature program reduction,and X-ray photoelectron spectroscopy measurements,the popcorn structure and unique electronic properties of the Pd species in the Pd/Au/Al2O3catalyst resulted in the highest content of surface metallic Pd,which was the most active component for the reaction.What is more,the addition of Au can effectively reduce the amount of degradation products by suppressing side reactions.

    Loading sequence;Bimetallic PdAu;Anthraquinone hydrogenation; Degradation product

    O643

    10.3866/PKU.WHXB201501292www.whxb.pku.edu.cn

    Received:November 26,2014;Revised:January 28,2015;Published on Web:January 29,2015.

    ?Corresponding author.Email:zhangjinli@tju.edu.cn;Tel:+86-22-27401476.

    The project was supported by the National Natural Science Foundation of China(21106094,21276179),National Key Basic Research Program of China(973)(2012CB720300),and Program for Changjiang Scholars,Innovative Research Team in University,China(IRT1161).

    國家自然科學(xué)基金委(21106094,21276179),國家重點(diǎn)基礎(chǔ)研究規(guī)劃項(xiàng)目(2012CB720300)和長江學(xué)者與創(chuàng)新團(tuán)隊(duì)發(fā)展計(jì)劃(IRT1161)資助

    猜你喜歡
    價態(tài)化工學(xué)院雙金屬
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    Sn在鋯合金氧化膜中穩(wěn)定價態(tài)的第一性原理研究
    上海金屬(2022年5期)2022-09-26 02:07:28
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    雙金屬支承圈擴(kuò)散焊替代技術(shù)研究
    雙金屬復(fù)合管液壓脹形機(jī)控制系統(tǒng)
    雙金屬復(fù)合管焊接方法選用
    超聲提取—三氯化鈦還原一原子熒光光譜法對土壤樣品中不同價態(tài)碲的測定
    中國測試(2018年4期)2018-05-14 15:33:30
    《化工學(xué)報(bào)》贊助單位
    雙金屬復(fù)合板的拉伸回彈特性研究
    熟女少妇亚洲综合色aaa.| 男人舔女人的私密视频| 18禁国产床啪视频网站| 久久久亚洲精品成人影院| 成人国语在线视频| 国产99久久九九免费精品| 国产老妇伦熟女老妇高清| 伊人久久国产一区二区| 日韩熟女老妇一区二区性免费视频| 亚洲精品久久久久久婷婷小说| 国产精品人妻久久久影院| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三区av网在线观看 | 国产精品二区激情视频| 免费人妻精品一区二区三区视频| 国产精品 欧美亚洲| 婷婷色综合www| 亚洲av成人不卡在线观看播放网 | 日韩精品免费视频一区二区三区| 中文字幕人妻丝袜制服| 国产精品秋霞免费鲁丝片| 可以免费在线观看a视频的电影网站 | 国产在视频线精品| 亚洲欧美中文字幕日韩二区| 九色亚洲精品在线播放| 秋霞在线观看毛片| 日韩中文字幕欧美一区二区 | 久久久久久久大尺度免费视频| 国产成人欧美| 日韩制服丝袜自拍偷拍| 国产精品蜜桃在线观看| 老熟女久久久| 日本欧美视频一区| 精品视频人人做人人爽| 亚洲久久久国产精品| 欧美在线一区亚洲| 国产精品人妻久久久影院| 咕卡用的链子| 亚洲第一av免费看| 欧美xxⅹ黑人| 日韩av免费高清视频| 午夜福利影视在线免费观看| 国产日韩欧美在线精品| 交换朋友夫妻互换小说| 欧美另类一区| 欧美日韩精品网址| 国产不卡av网站在线观看| 母亲3免费完整高清在线观看| 色婷婷av一区二区三区视频| 久久久久人妻精品一区果冻| 99九九在线精品视频| 伊人久久大香线蕉亚洲五| www.av在线官网国产| 香蕉国产在线看| 丰满迷人的少妇在线观看| 亚洲精品第二区| 国产又爽黄色视频| 亚洲国产欧美一区二区综合| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| 18禁国产床啪视频网站| 中文欧美无线码| 国产人伦9x9x在线观看| 飞空精品影院首页| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 免费日韩欧美在线观看| 国产精品香港三级国产av潘金莲 | 啦啦啦在线观看免费高清www| 婷婷色综合www| 丝袜喷水一区| 日韩av不卡免费在线播放| 国产亚洲午夜精品一区二区久久| 亚洲欧美精品综合一区二区三区| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 国产乱来视频区| 国产不卡av网站在线观看| 国产精品国产三级专区第一集| 中文字幕最新亚洲高清| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 精品一区二区免费观看| 国产老妇伦熟女老妇高清| 亚洲国产看品久久| 一区二区三区精品91| 中国国产av一级| 亚洲精品成人av观看孕妇| av视频免费观看在线观看| 午夜日本视频在线| 成人18禁高潮啪啪吃奶动态图| 亚洲精品成人av观看孕妇| 亚洲精品一二三| 一区二区三区精品91| 国产成人av激情在线播放| 婷婷色av中文字幕| 天天添夜夜摸| 久久久国产一区二区| 一边摸一边抽搐一进一出视频| 波多野结衣av一区二区av| 色网站视频免费| 亚洲av男天堂| 国产黄色视频一区二区在线观看| 久久久久精品人妻al黑| 女人精品久久久久毛片| 一二三四在线观看免费中文在| 国产不卡av网站在线观看| 一区二区三区精品91| 精品一区二区三区av网在线观看 | 一级片免费观看大全| 免费av中文字幕在线| 少妇 在线观看| 宅男免费午夜| 亚洲天堂av无毛| 国产成人免费无遮挡视频| 亚洲精品国产av蜜桃| 日韩熟女老妇一区二区性免费视频| 日韩制服骚丝袜av| 亚洲欧美精品综合一区二区三区| 亚洲av成人不卡在线观看播放网 | 日韩视频在线欧美| 午夜av观看不卡| e午夜精品久久久久久久| 天堂8中文在线网| 亚洲欧美一区二区三区国产| 亚洲国产毛片av蜜桃av| 亚洲精品日韩在线中文字幕| 一区二区三区四区激情视频| 在线观看一区二区三区激情| 美女大奶头黄色视频| 欧美精品av麻豆av| av线在线观看网站| 伊人亚洲综合成人网| av天堂久久9| 蜜桃国产av成人99| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频| www日本在线高清视频| 在线观看免费视频网站a站| 午夜日本视频在线| 欧美日韩国产mv在线观看视频| 午夜福利视频在线观看免费| 亚洲一码二码三码区别大吗| 久久久精品94久久精品| 久久久久久久国产电影| 国产成人精品无人区| 男女国产视频网站| 国产深夜福利视频在线观看| 国产伦人伦偷精品视频| 少妇人妻 视频| 天堂8中文在线网| 午夜91福利影院| 亚洲欧美精品综合一区二区三区| 韩国精品一区二区三区| 国产精品久久久人人做人人爽| 国产精品.久久久| 电影成人av| 国产成人91sexporn| 亚洲情色 制服丝袜| av电影中文网址| 妹子高潮喷水视频| 欧美av亚洲av综合av国产av | 综合色丁香网| 熟妇人妻不卡中文字幕| 日韩av在线免费看完整版不卡| 久久久久久久久免费视频了| tube8黄色片| 欧美精品人与动牲交sv欧美| 日韩大片免费观看网站| 一二三四中文在线观看免费高清| 一级黄片播放器| av又黄又爽大尺度在线免费看| 日韩av在线免费看完整版不卡| 一级毛片 在线播放| 1024视频免费在线观看| 精品久久久久久电影网| 卡戴珊不雅视频在线播放| 国产欧美日韩一区二区三区在线| 黄色视频不卡| 丝袜人妻中文字幕| 久久综合国产亚洲精品| 久久久久久免费高清国产稀缺| 人妻一区二区av| 韩国高清视频一区二区三区| 丰满饥渴人妻一区二区三| 99久久人妻综合| 人人妻人人爽人人添夜夜欢视频| 亚洲第一区二区三区不卡| 午夜av观看不卡| 可以免费在线观看a视频的电影网站 | 大片免费播放器 马上看| 高清在线视频一区二区三区| 久久国产精品大桥未久av| 电影成人av| 汤姆久久久久久久影院中文字幕| svipshipincom国产片| 精品卡一卡二卡四卡免费| 嫩草影视91久久| 精品酒店卫生间| 日本一区二区免费在线视频| 免费观看性生交大片5| 国产成人欧美| 岛国毛片在线播放| 免费在线观看黄色视频的| 中文字幕高清在线视频| 国产乱人偷精品视频| 国产欧美亚洲国产| 亚洲美女黄色视频免费看| 亚洲精品国产色婷婷电影| 亚洲三区欧美一区| 日本欧美视频一区| 亚洲第一区二区三区不卡| 亚洲国产欧美在线一区| 色播在线永久视频| 一边摸一边做爽爽视频免费| 精品一品国产午夜福利视频| 最近中文字幕2019免费版| 又大又黄又爽视频免费| 日日摸夜夜添夜夜爱| 精品国产超薄肉色丝袜足j| 国产一卡二卡三卡精品 | e午夜精品久久久久久久| 国产1区2区3区精品| 国产无遮挡羞羞视频在线观看| 亚洲,欧美精品.| 亚洲av欧美aⅴ国产| 啦啦啦在线观看免费高清www| 无限看片的www在线观看| 丝瓜视频免费看黄片| 黄色视频不卡| 国产精品秋霞免费鲁丝片| 午夜福利视频精品| 飞空精品影院首页| kizo精华| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 老司机亚洲免费影院| 在线亚洲精品国产二区图片欧美| 日本黄色日本黄色录像| 国产精品一国产av| 女人精品久久久久毛片| 国产在视频线精品| 国产一区二区三区综合在线观看| 男女高潮啪啪啪动态图| 涩涩av久久男人的天堂| 观看av在线不卡| 美女国产高潮福利片在线看| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 男女之事视频高清在线观看 | 欧美久久黑人一区二区| 久久狼人影院| 日韩大片免费观看网站| 国产精品久久久久久久久免| 色精品久久人妻99蜜桃| 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 天天影视国产精品| 国产成人91sexporn| 激情视频va一区二区三区| 黄频高清免费视频| 王馨瑶露胸无遮挡在线观看| www.av在线官网国产| 久久久久精品国产欧美久久久 | 国产精品一区二区在线不卡| 少妇人妻精品综合一区二区| 18禁国产床啪视频网站| 欧美精品一区二区大全| 大片电影免费在线观看免费| 2021少妇久久久久久久久久久| 日本黄色日本黄色录像| 两个人看的免费小视频| 久久婷婷青草| 国产精品人妻久久久影院| 亚洲成人一二三区av| 国产成人精品无人区| 毛片一级片免费看久久久久| 国产欧美亚洲国产| 国产精品三级大全| 国产日韩欧美亚洲二区| 国产 一区精品| 欧美乱码精品一区二区三区| 久久久国产精品麻豆| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 国产成人欧美| 两性夫妻黄色片| 国产精品久久久久久精品电影小说| 欧美最新免费一区二区三区| 在线观看免费高清a一片| 亚洲欧美成人精品一区二区| 国产亚洲午夜精品一区二区久久| 日韩视频在线欧美| 爱豆传媒免费全集在线观看| 狠狠精品人妻久久久久久综合| 国产极品天堂在线| 欧美国产精品va在线观看不卡| 亚洲国产毛片av蜜桃av| 亚洲成人av在线免费| 一级片免费观看大全| 国产极品天堂在线| 亚洲国产av新网站| 一本色道久久久久久精品综合| 亚洲欧美成人综合另类久久久| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产一区二区久久| 久久久精品94久久精品| 一区二区三区四区激情视频| 看免费av毛片| 一区二区三区乱码不卡18| 免费少妇av软件| 国产av精品麻豆| 一区二区av电影网| 99久久综合免费| 亚洲三区欧美一区| 午夜福利一区二区在线看| 大话2 男鬼变身卡| 日日撸夜夜添| 亚洲色图综合在线观看| 丝瓜视频免费看黄片| 男女之事视频高清在线观看 | 国产成人一区二区在线| 巨乳人妻的诱惑在线观看| 午夜日本视频在线| 毛片一级片免费看久久久久| 亚洲图色成人| 老汉色av国产亚洲站长工具| 各种免费的搞黄视频| av女优亚洲男人天堂| 蜜桃在线观看..| 一区二区av电影网| 久久人人爽人人片av| 中文字幕人妻丝袜一区二区 | 欧美人与性动交α欧美软件| 日韩电影二区| 欧美亚洲 丝袜 人妻 在线| 欧美乱码精品一区二区三区| 丁香六月天网| 一级片免费观看大全| 男女边吃奶边做爰视频| 精品少妇一区二区三区视频日本电影 | 嫩草影院入口| 亚洲欧美一区二区三区国产| 丁香六月天网| 国产成人精品无人区| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 欧美亚洲日本最大视频资源| 十八禁网站网址无遮挡| 国产精品一区二区在线不卡| 日韩精品免费视频一区二区三区| 99久久精品国产亚洲精品| 免费看av在线观看网站| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 中文字幕亚洲精品专区| 国产福利在线免费观看视频| 国产99久久九九免费精品| 国产日韩欧美在线精品| 亚洲av欧美aⅴ国产| 国产精品.久久久| 国产欧美日韩综合在线一区二区| 精品久久久精品久久久| a级片在线免费高清观看视频| 国产精品成人在线| 电影成人av| 午夜免费鲁丝| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| 亚洲国产最新在线播放| 一区福利在线观看| 香蕉国产在线看| 亚洲欧美清纯卡通| 一级爰片在线观看| 你懂的网址亚洲精品在线观看| 欧美最新免费一区二区三区| 国产精品 国内视频| 男男h啪啪无遮挡| 九九爱精品视频在线观看| 免费在线观看完整版高清| 日韩精品有码人妻一区| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 国产爽快片一区二区三区| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 亚洲,欧美精品.| 久久久久国产一级毛片高清牌| 欧美成人精品欧美一级黄| av网站免费在线观看视频| 亚洲婷婷狠狠爱综合网| 免费在线观看完整版高清| 亚洲综合色网址| 丝袜在线中文字幕| 电影成人av| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀 | 操出白浆在线播放| 亚洲精品第二区| 欧美xxⅹ黑人| 丝袜美足系列| 国产精品香港三级国产av潘金莲 | 欧美精品一区二区大全| 王馨瑶露胸无遮挡在线观看| 深夜精品福利| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 超色免费av| 曰老女人黄片| 亚洲成人av在线免费| 综合色丁香网| 久久久精品免费免费高清| 亚洲伊人久久精品综合| 欧美亚洲日本最大视频资源| 电影成人av| 欧美人与性动交α欧美软件| 久久鲁丝午夜福利片| 国产精品欧美亚洲77777| 亚洲成人免费av在线播放| 99精品久久久久人妻精品| 麻豆乱淫一区二区| 国产成人精品久久二区二区91 | 无遮挡黄片免费观看| 最黄视频免费看| 亚洲欧美激情在线| 在线观看免费日韩欧美大片| 18禁观看日本| 狂野欧美激情性xxxx| 在线观看免费视频网站a站| 国产高清国产精品国产三级| www.av在线官网国产| 亚洲欧美一区二区三区久久| 国产成人精品无人区| 在线免费观看不下载黄p国产| 天天躁夜夜躁狠狠久久av| 青春草国产在线视频| 99精品久久久久人妻精品| 悠悠久久av| 国产黄频视频在线观看| 水蜜桃什么品种好| 亚洲图色成人| 91国产中文字幕| 一二三四中文在线观看免费高清| 久久久欧美国产精品| 久久性视频一级片| 国产精品99久久99久久久不卡 | 99久国产av精品国产电影| 丰满乱子伦码专区| 十八禁高潮呻吟视频| 狠狠婷婷综合久久久久久88av| 午夜免费鲁丝| 欧美黑人精品巨大| 777米奇影视久久| 在线观看一区二区三区激情| 国产成人免费观看mmmm| 成年av动漫网址| 美女主播在线视频| 婷婷色av中文字幕| 香蕉国产在线看| 婷婷色av中文字幕| 久久性视频一级片| 国产日韩欧美视频二区| 电影成人av| 午夜激情av网站| 亚洲一码二码三码区别大吗| 91国产中文字幕| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 国产女主播在线喷水免费视频网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲欧美精品自产自拍| 大片免费播放器 马上看| 成年人免费黄色播放视频| 综合色丁香网| 蜜桃在线观看..| 夫妻午夜视频| 一区二区日韩欧美中文字幕| 黑人猛操日本美女一级片| 午夜福利乱码中文字幕| 免费不卡黄色视频| 999久久久国产精品视频| 精品国产乱码久久久久久小说| 国产乱来视频区| 国产精品久久久久久人妻精品电影 | 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 视频区图区小说| 三上悠亚av全集在线观看| 汤姆久久久久久久影院中文字幕| 中文乱码字字幕精品一区二区三区| 亚洲av电影在线进入| 日本av手机在线免费观看| 黄片小视频在线播放| 中国国产av一级| 男人添女人高潮全过程视频| 亚洲国产欧美在线一区| 韩国精品一区二区三区| 午夜av观看不卡| 狂野欧美激情性bbbbbb| 国产成人精品久久二区二区91 | 日韩中文字幕欧美一区二区 | 国产精品偷伦视频观看了| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 国产成人免费无遮挡视频| 欧美日本中文国产一区发布| av又黄又爽大尺度在线免费看| 九九爱精品视频在线观看| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 男人操女人黄网站| 亚洲精品在线美女| 欧美精品一区二区免费开放| 免费黄色在线免费观看| 视频在线观看一区二区三区| 777久久人妻少妇嫩草av网站| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| 叶爱在线成人免费视频播放| 精品国产国语对白av| 久久女婷五月综合色啪小说| 精品少妇内射三级| 国产成人精品福利久久| 高清不卡的av网站| 九草在线视频观看| 久久青草综合色| 国产欧美亚洲国产| 久久97久久精品| 国产欧美亚洲国产| www日本在线高清视频| 久久精品亚洲av国产电影网| 国产亚洲精品第一综合不卡| 精品第一国产精品| 国产伦人伦偷精品视频| 国产精品久久久久久精品古装| 香蕉国产在线看| 免费黄网站久久成人精品| 精品国产一区二区久久| 乱人伦中国视频| 精品国产乱码久久久久久小说| 丝袜在线中文字幕| 国产 一区精品| 久久久久精品性色| 成年美女黄网站色视频大全免费| 一二三四中文在线观看免费高清| 黄色一级大片看看| 久久热在线av| 91精品三级在线观看| 多毛熟女@视频| 日韩 欧美 亚洲 中文字幕| 欧美国产精品一级二级三级| 宅男免费午夜| 成人18禁高潮啪啪吃奶动态图| 亚洲成人免费av在线播放| av片东京热男人的天堂| 丁香六月天网| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞伦理黄片| 国产亚洲午夜精品一区二区久久| 国产又色又爽无遮挡免| 91老司机精品| 亚洲中文av在线| 美国免费a级毛片| 永久免费av网站大全| 一级黄片播放器| 在线观看免费日韩欧美大片| 亚洲成人一二三区av| bbb黄色大片| 黄色 视频免费看| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影小说| 99精国产麻豆久久婷婷| 啦啦啦中文免费视频观看日本| 成人午夜精彩视频在线观看| 色吧在线观看| 狠狠精品人妻久久久久久综合| 欧美亚洲 丝袜 人妻 在线| 老司机在亚洲福利影院| 亚洲欧美一区二区三区黑人| 丰满少妇做爰视频| 久久鲁丝午夜福利片| 欧美久久黑人一区二区| 午夜免费观看性视频| 亚洲精品美女久久av网站| 久久人妻熟女aⅴ| 丁香六月欧美| 91精品三级在线观看| 制服人妻中文乱码| 久久毛片免费看一区二区三区| 男女国产视频网站| 国产又色又爽无遮挡免| xxx大片免费视频| 青春草视频在线免费观看| 亚洲综合色网址| 亚洲国产看品久久| 人人妻人人澡人人看| 国产乱人偷精品视频| 精品久久久久久电影网| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 国产1区2区3区精品| 亚洲国产精品一区二区三区在线| 老汉色∧v一级毛片| 国产精品人妻久久久影院|