• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    氮硫雙摻雜活性炭材料的制備和電容性能

    2015-01-04 12:52:13李朝輝李仕蛟朱婷婷沈紅龍禚淑萍山東理工大學(xué)化學(xué)工程學(xué)院山東淄博255049
    物理化學(xué)學(xué)報 2015年4期
    關(guān)鍵詞:紅龍山東理工大學(xué)物理化學(xué)

    李朝輝 李仕蛟 周 晉 朱婷婷 沈紅龍 禚淑萍(山東理工大學(xué)化學(xué)工程學(xué)院,山東淄博255049)

    氮硫雙摻雜活性炭材料的制備和電容性能

    李朝輝 李仕蛟 周 晉*朱婷婷 沈紅龍 禚淑萍*
    (山東理工大學(xué)化學(xué)工程學(xué)院,山東淄博255049)

    以頭發(fā)和蔗糖為原料,通過水熱碳化和KOH活化兩步法制備了氮硫雙摻雜微孔炭材料.利用掃描電子顯微鏡,透射電子顯微鏡,氮氣吸脫附,X射線光電子能譜,電子能譜和傅里葉交換紅外光譜等手段系統(tǒng)表征了所制備活性炭材料的微觀形貌,孔隙結(jié)構(gòu)和表面化學(xué)性質(zhì).并在6 mol·L-1KOH溶液中研究了所制備活性炭材料的電容性能.氮氣吸脫附測試表明,所制備活性炭材料的比表面積最高可達(dá)1849.4 m2·g-1,孔道以微孔為主.所制備活性炭材料氮元素含量為1.6%-2.5%(原子分?jǐn)?shù)(x))),硫元素含量為0.2%-0.5%(x).由于N、O、S官能團的協(xié)同作用,所制備碳材料表現(xiàn)出明顯的贗電容.活性炭材料的比電容值最高可達(dá)200 F·g-1,對應(yīng)的能量密度為6.9 Wh·kg-1.功率密度達(dá)到10000 W·kg-1時,能量密度仍達(dá)到4.1 Wh·kg-1.本文的工作表明以生物質(zhì)為原料可以方便制備氮硫雙摻雜活性炭電極材料.

    碳材料;超級電容器;人的頭發(fā);電化學(xué)性質(zhì);水熱處理

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    Supercapacitors bridge the gap between batteries and dielectric capacitors on the Ragone plot describing the relation between energy and power.This electrochemical device has attracted more and more interest and attention due to its high power density,long cycle life,good reversibility,and broad energy storage application prospects.1According to the energy storage mechanism,supercapacitor can be defined into two kinds which are electrochemical double-layer capacitors(EDLCs)and pseudo-capacitors.In EDLCs,the electrical energy is achieved by electrostatic storage at the interface between the electrode surface and electrolyte solution.EDLCs require electrode materials with high effective surface area and pores adapted to the size of electrolyte ions, which is typical represented by nanostructured carbon materials. In pseudo-capacitors,the storage of electrical energy is achieved by the reversible Faradaic charge-transfer of electro-active species on the electrode.Electrode materials of pseudo-capacitors,mainly metal oxides and conductive polymers,have exhibit high specific capacitance.However,poor cycle stability,low conductivity,and high price have limited the practical application of these materials.2

    Porous carbon materials have long been considered to be the most promising electrode materials for supercapacitors owing to their excellent physicochemical stability,good conductivity,and tailored nano-scale porosity.3Various carbon materials,including activated porous carbons,4carbide-derived carbons,5templated carbons,6hierarchical porous carbons,7graphenes,8carbon nanotubes9and so on,have been applied as electrode materials for EDLCs,and show high capacitive performance.Although many kinds of carbon materials with tailored porosity have been reported as electrode materials for EDLCs,activated carbons still dominate commercial supercapacitor applications due to their lowprice,easy preparation,and superior capacitive performance. Activated carbon electrodes not only exhibit predominantly electrochemical double-layer capacitance,but also exhibit pseudocapacitance.It has been widely proved that heteroatom-doped activated carbons exhibit excellent capacitive performance which is partly due to the fact that the heteroatom species in the carbon framework,such as N,O,S species usually induce additional pseudo-capacitance resulting in the improvement of the whole capacitive performance.10

    Heteroatom-doping could be achieved via ammoxidationtreatment or using heteroatom-rich raw materials as carbon precursors.4a,11Post-ammoxidation of activated carbons11aor pyrolyzation under NH3atomosphere11binduces nitrogen-containing species,thus results in improvement of the capacitive performance of the activated carbons,but ammonia is a chemical agent with severe pungency and high toxicity.Heteroatom containing polymers,such as urea formaldehyde resins,4apolyaniline,11cpolypyrrole,11dand polythiophene,11ehave been used to prepared N or S-doped carbon electrode materials with high capacitive performance,while these heteroatom-containing polymers are always obtained from non-renewable fossil raw materials via complicated and time-consuming synthesis routes.Considering the broad scale of supercapacitor applications,the development of carbon materials from renewable biomass materials is of high application prospects.12Previous reports have proved that heteroatom-doped carbon materials could be easily prepared by selecting a specific biomass as carbon precursor.13Hair is a filamentous biomaterial that ceaselessly grows from follicles of dermis during the most of human lifetime.Human hair contains lots of N,S species in the form of keratin,a protein composed of cysteine and other amino acids.Therefore,N or S species may be induced into the target carbon product when using human hair as carbon precursor.In the present work,we prepare N,S co-doped activated carbon materials from sucrose and human hair via a combined method of hydrothermal carbonization and post-KOH activation.The capacitive performance of the prepared carbons is investigated in 6 mol·L-1KOH electrolyte.

    2 Experimental

    2.1 Material preparation

    Hairs are collected from barbershop,and are thoroughly washed to remove the greases.All the chemical agents,including NaOH,KOH,KCl,polytetrafluoroethylene(PTFE)emulsion etc. are purchased from Sinopharm Chemical Reagent Co.,Ltd.10 g clean hairs were dissolved in 60 mL 2 mol·L-1NaOH solution. This solution was filtered to remove any insoluble matter.In a typical procedure,2 g sucrose and a certain volume of hair solution were mixed together,and subsequently were diluted to 20 mL using deionized water.The mixture was hydrothermally treated at 180°C overnight in a Teflon-lined stainless steel autoclave.The obtained dark-brown powders were further activated by double weight of KOH at 700°C with a heating ramp of 5°C· min-1for 3 h under N2flow.Finally,the resulting samples were washed with water until neutral pH was reached.In this way,three carbon samples were prepared by using different amount of hair solutions(2,4,8 mL),which were labeled as NSC-1,NSC-2, NSC-3,respectively.

    2.2 Material characterization

    A scanning electron microscope(SEM,Sirion 200 FEI, Netherlands)was used to observe the morphology of the carbon samples.The element composition and atom binding states were characterized by energy dispersive spectroscopy(EDS,INCA Energy spectrometer,Netherlands),X-ray photoelectron spectroscopy(XPS,Escalab 250,USA),and Fourier transform infrared spectroscopy(FTIR,Nicolet 5700,USA).The porosity of the prepared carbon materials was analyzed by an ASAP 2020 nitrogen sorption system(Micrometitics,USA).The carbon materials were degassed at 350°C overnight before sorption measurements.Brunauer-Emmett-Teller(BET)surface area(SBET)was calculated from the N2adsorption isotherm data within the relative pressure(p/p0)of 0.05 to 0.25.Total pore volume(VT)was obtained at a relative pressure of 0.995.Micropore volume(Vmicro) was calculated by t-plot method.Mesopore volume(Vmeso)was determined by subtracting the micropore volume from the total pore volume.Pore size distributions(PSDs)were obtained fromthe adsorption isotherms using the nonlocal density functional theory(NLDFT)model,assuming a slit-shape pore.

    2.3 Electrochemical measurements

    The working electrodes were prepared by mixing 95%(w) carbon materials and 5%(w)PTFE binder,pressing the mixture onto nickel foam at 15 MPa,and drying at 120°C for 10 h.All electrochemical measurements,including cyclic voltammetry (CV),galvanostatic charge/discharge test and electrochemical impedance spectroscopy(EIS),were carried on a CHI660D electrochemical testing station(Chenhua Instruments Co.Ltd., Shanghai,China).The galvanostatic charge/discharge test was performed in a two-electrode system to determine the specific capacitance of the prepared carbons at current densities ranging from0.2 to 20A·g-1.EIS test was performed with alternate current amplitude of 5 mV using a three-electrode system in 6 mol·L-1KOH electrolyte with a platinum plate electrode and a saturated calomel electrode(SCE)as the counter and reference electrodes, respectively.The potential range of CV and charge/discharge tests is-0.90-0.00 V,and the frequency range of EIS test is 10 mHz-100 kHz.

    The specific capacitance is calculated by the following equation:

    where Cm(F·g-1)is the gravimetric specific capacitance of the carbon samples,I(A)is the discharge current,t(s)is the discharge time,ΔV(V)is the potential window(0.9 V in this study), and m(g)is the mass of active material in two working electrodes.

    Energy density(E)and powder density(P)could be calculated from the galvanostatic charge/discharge test using the equations of

    where V is the discharge voltage(0.9 V in this case).

    The Nyquist plot of NSC-2 is analyzed using the following equation:

    where Z(ω)is complex impedance,Z'(ω)is real part of impedance,Z"(ω)is imaginary part of impedance,C'(ω)is real capacitance,C"(ω)is imaginary capacitance,ω is the angular frequency, f0is a frequency corresponding to peak value of C"(ω),and τ0is time relaxation constant.

    3 Results and discussion

    As shown in Fig.S1(Supporting Information),typically spherical shaped carbonaceous particles are obtained after hydrothermal treatment which is identical with the previous reports.14Fig.1 shows the microscopic morphologies of the prepared carbon materials imaged by SEM and TEM observation.The activated hydrothermal carbons are composed of smaller carbon fragments with large pores which are distinct with typically spherical shaped particles.That may be because the hydrothermal microspheres are oxidized and broken down during the severely chemical activation process.The prepared carbons have porous texture in the macroscopic scale,which makes ionic diffusion easy from bulk electrolyte into inner micropore surface(Fig.1(a-c)).No apparent nanopores are observed from high resolution SEM images indicating that the porosity of the prepared carbons mainly consisted of micropores(Fig.1(e-g)).High resolution TEM images clearly exhibit work-like micropores formed by stacking curved graphene micro-layers(Fig.1(d,h)).To determine the pore texture and specific surface area,we have performed N2sorption measurements(Fig.2),calculated PSDs by NLDFT model,and then summarized pore parameters in Table 1.It can be seen that all the carbons exhibit sorption isotherm of type I,rapidly achieve a high adsorption capacity at very low relative pressures(p/p0<0.05)and the sorption capacities of the prepared carbons retain almost unchanged with the increasing of relative pressures,indicating themicropore nature of these carbons.The PSD plots of the prepared carbons resemble each other,and the ultra-micropores(<1.5 nm) occupy a significant fraction in the total micropore volume.As shown in Table 1,the prepared carbons are highly microporous, and the specific surface area of the activated carbons is in the range of 1177.8 to 1849.4 m2·g-1.The similar porosity properties of the activated carbons demonstrate that the dosage of activated agents may be the main factor that determines the porosity of the carbon materials prepared in this work.

    Fig.1 SEM images of(a,e)NSC-1,(b,f)NSC-2,(c,g)NSC-3,and TEM images of(d,h)NSC-2

    Fig.2 (a)N2sorption isotherms and(b)pore size distributions of the prepared carbons

    The heteroatom-containing surface functional groups,mainly N,S,O-containing groups,are considered important in charge storage ability given that the polar surface properties enable easy access of the electrolyte species which take part in either double layer formation or pseudo-Faradaic reactions.Hair is primarily composed of protein,notably keratin.Keratins have large amounts of cysteine.Therefore,N,S-containing groups could be induced into the prepared carbon materials when using human hair as carbon precursor.In another word,human hair acts as an N,S-supplier in this work,while the sucrose acts as the main carbon precursor.The surface chemical properties of the prepared carbons are analyzed by XPS and EDS measurements(Fig.3).It is seen that N,S-species are successfully induced into the prepared carbons according to the XPS spectra(Table 1,Fig.3(a)).The nitrogen contents are 2.5%,2.1%,and 1.6%(atomic fraction,x),and the sulfur contents are 0.3%,0.5%,and 0.2%(x)for NSC-1,NSC-2,and NSC-3,respectively.It should be noted that the oxygen content of the prepared carbons is very high,more than 5%(x), which is a common result for the KOH-activated carbons.The S-doping is also proved by EDS measurement.About 0.4%,0.7%, and 0.3%(x)of S-doping were determined by EDS for NSC-1, NSC-2,and NSC-3,respectively,which are very close to the values determined by XPS measurement.Element mapping demonstrates that the distributions of N and S species in the carbon are homogeneous(Fig.3(b)).The heteroatom-doping is further confirmed by FTIR spectroscopy(Fig.3(c)).The absorption bands at 1000-1150 and 1550 cm-1are assigned to C―O groups in ethers or phenols and the C―N groups in pyridinic N or pyrrolic N groups,respectively.Amoderate absorption peak at about 620 cm-1for NSC-2 reflects the existance of thiophenic groups,further indicating the success of sulfur doping.Together with the results of EDS,XPS,and FTIR,N,S co-doped activated carbons are successfully prepared by using human hair as precursor in this work.

    In order to further investigate the atom binding states of the prepared carbons,the high resolution XPS spectra were performed (Fig.4).The peak assignments for high resolution XPS of the prepared carbons are summarized in Table S1(Supporting Information).C 1s scans show several peaks with varying contributions.In general,the peak at around 284.7 eV can be assigned to sp2hybridized carbon in an aromatic environment.The shoulder peak at 285.4 eV corresponds to carbon atoms single bonded to sulfur,nitrogen or oxygen in the form of thioether,thiophene, pyrrolidonic,phenol or ether.Weak peaks at 286.4 eV(assigned to carbonyl or amide groups)and 289.0 eV(assigned to ester or carboxylic groups)are also observed.In the region of O 1s XPS response,peaks at binding energies of 531.2,532.3,and 533.5 eV are attributed to quinone groups(O-I),phenol groups and/or C―O―C ether groups(O-II),and carboxyl groups(O-III),respectively(Fig.4(b)).15As shown in N 1s spectra,four types of nitrogen species including pyridinic N(N-6),pyrrolic N(N-5), quaternary N(N-Q),and pyridinic N-oxide group(N-X),could be determined by the peaks at 398.2,400.4,401.2,and 402.5-403.4 eV,respectively(Fig.4(c)).16In the case of sulfur(Fig.4(d)),the majority of sulfur species are defined as thiophenic species corresponding to the peaks of 163.8-164.7 eV,and a few oxidized sulfur species(sulfone or sulfoxide)are also determined by the peaks of 168.0-169.5 eV.11eBesides,a little disulfide species can also be found(peaks of 162.1-162.3 eV).

    Fig.3 (a)XPS spectra of NSC-1,NSC-2,and NSC-3;(b)EDS mapping of NSC-2;(c)FTIR spectra of NSC-1, NSC-2,and NSC-3;(d)molecular structure of cysteine

    The electrochemical behaviors of the prepared carbon materials as supercapacitor electrodes were firstly investigated by cyclic voltammetry using a three-electrode system in 6 mol·L-1KOH electrolyte with a platinum plate electrode and SCE as the counter and reference electrodes,respectively(Fig.5(a)).It is seen that the CV curves apparently deviate from the standard rectangle shape, and a visible increase of response current in the potential range of-0.4--0.9 V is observed for the CV curves,indicating that the prepared carbons possess a large pseudo-capacitance.No visible redox peaks are observed on the CV curves which may be due to the fusion of the complicated redox reactions induced by the various electrochemical active N-,O-,and S-species.17It has been widely accepted that the heteroatom-containing groups could improve the capacitive performance in aqueous electrolyte by introducing noticeable pseudo-capacitance via reversible redox reaction.The contribution of O-containing groups to pseudocapacitance should be prior considered because all the prepared carbons possess high amount of oxygen species(more than 10% (x)).Aredox mechanism for a carbonyl or quinone-type group has been proposed18

    where―CxOK represents a phenol-or hydroquinone-type groups. This reaction should make large contribution to the pseudo-capacitance of the prepared carbons.As very electrochemical active sites,the nitrogen-containing groups can induce extra pseudocapacitance due to Faradaic redox reactions of N-6 and N-5 groups.10a,19Recently,it is reported that the electron-rich sulfur dopants deliver more polarized surface as well as reversible pseudo-sites and thus result in superior performance(equations (8),(9)).17b

    Although the S-doping may play a positive role in the whole capacitance,it should be noted that the S-doping of the prepared carbons is low,and the electroactive oxidized sulfur species is less (equations(8),(9)and Table S1(Supporting Information)).Thus the pseudo-capacitance is mainly attributed to the nitrogen and oxygen-containing groups.Furthermore,the hydrophilic nitrogen, oxygen or sulfur species promote the wettability of carbon pore surface to the aqueous electrolyte,and the conductivity of the carbons could be improved by doping nitrogen into the carbon skeleton.14bThese facts may be also positive for the capacitive performance.

    CV curves for NSC-2,given by a two-electrode test,with sweep rates ranging from 5 to 200 mV·s-1are shown in Fig.5(b). CV curve at a high sweep rate of 200 mV·s-1is still close to rectangle-like shape,indicating an excellent power capability of this carbon.The gravimetric specific capacitances of the prepared carbons at current densities ranging from 0.2 to 20 A·g-1are determined by galvanostatic charge/discharge test(Fig.5(c,d)).At a low current density of 0.2A·g-1,the specific capacitances of the prepared carbons are 185,200,and 190 F·g-1for NSC-1,NSC-2, and NSC-3,respectively.The specific capacitance of the prepared carbons decreases with the current density increases,because the ions of electrolyte have not enough time to reach all the pore surface of the electrode materials at high current density.The NSC-2 carbon still remains a high specific capacitance of 117 F· g-1even when the current density increases by 100 times,up to 20A·g-1,indicating the good power capability of this carbon(Fig.5 (d)).Generally,the larger the specific surface area,the higher the capacitance is.Alarge amount of heteroatom doping could induce large pseudo-capacitance,thus enhances the whole capacitance of the carbon materials.Compared with NSC-1,NSC-2 possesses much larger specific surface area and more O-,S-species.That may be why NSC-2 shows higher capacitance than NSC-1 although the latter one possesses more N-species.Compared with NSC-3,NSC-2 possesses large amount of N-,S-species which will induce large pseudo-capacitance.Thus,we could explain that NSC-2 exhibits the highest capacitance among the prepared carbons.Additionally,the conductivity also plays an important role in the capacitive performance,which will be discussed next.

    Fig.4 High resolution XPS spectra of NSC-1,NSC-2,NSC-3(a-d)and structure of N,O,S-containing groups(e)

    We also prepared two carbon materials denoted as SC and HC which were prepared by using only hydrothermal treatment sucrose or human hair as precursor,respectively.The specific capacitances determined by galvanostatic charge/discharge test are shown in Fig.S2(Supporting Information).It could be seen that the HC shows lower capacitance and much poorer power capability than the NSC-2.Surprisingly,the SC shows slight larger capacitance and power capability than NSC-2.That may have two reasons:(1)SC carbon possesses very high specific surface area up to 1700 m2·g-1and abundant microporosity;(2)the N/S species on the pore surface of carbon may be obstacles for the diffusion of ions.Anyhow,we should face seriously with this fact, and will further investigate it in future.

    Energy density and power density of all the investigated carbon materials are calculated by Equations(2),(3),and the Ragone plots are shown in Fig.6(a).It could be seen that all the Ragone plots gradually slope down as the increase of power density, which means that less energy can be released at higher power output.Among the three samples,NSC-2 delivers the highest energy density of 6.9 Wh·kg-1at a power density of 100 W·kg-1. At a high power density of 10000 W·kg-1,the energy density of NSC-2 still reaches up to 4.1 Wh·kg-1.The long-term cyclic stability of the prepared carbons was measured by using galvanostatic charge/discharge test up to 10000 cycles at 1A·g-1(Fig.6 (b)).It could be seen that the prepared carbons show excellent characteristic of recycling charge/discharge performance with a high capacitance retention ratio up to 98%based on the dischargecapacitance of the initial cycle.

    Fig.5 Electrochemical behavior of NSC-1,NSC-2,and NSC-3 in 6 mol·L-1KOH electrolyte

    Fig.6 (a)Ragone plots and(b)cycle tests of NSC-1,NSC-2,and NSC-3 at 1A·g-1

    Nyquist plots,simulated plot from ZView software,and the equivalent circuit are illustrated in Fig.7.Apparently,the Nyquist plots could be divided into several distinct parts,an uncompleted semicircle part at high frequency,an inclined portion of the curve (about 45°)at middle frequency,and a linear part at low frequency.At very high frequencies,the imaginary part(Z?)of the impedance is near to zero and the real part of resistance(Z') measured is the ohmic resistance derived from the electrolyte and the contact between the electrode and the current collector(Rs). The low values of Rs(about 0.4 Ω)indicate the good conductivity of the prepared carbons.It could be also observed that the ohmic resistances of the carbons are very close to each other indicating that the conductivity of the prepared carbon is close.Thus we can conclude that the conductivity may be not the major reason for the difference of capacitive performance.The uncompleted semicircle loop observed in the range of medium-high frequencies stands for charge transfer resistance(Rct)at the interface between the electrolyte and electrode.The Rctvalues of the prepared carbons are 2.2,1.7,and 2.5 Ω for NSC-1,NSC-2,and NSC-3,respectively. The values of Rctmay be related to the heteroatom-doping of the prepared carbons.According to XPS results,large amounts of hydrophilic oxygen and nitrogen species exist on the carbon surface,increase the polarity of the carbon surface and facilitate the contact between the carbon surface and the aqueous electrolyte.NSC-2 reaches an optimum value of Rct,which may be dueto the synergistic effect of multi N,O,S-doping.Although the NSC-3 carbon contains much more polar oxygen species than the other carbons,the Rctof NSC-3 is much larger than that of NSC-2.For NSC-3,larger O-doping will result in more strain and defect sites in the carbon materials,which may lead to the increasing of charge transfer resistance for this carbon.The 45°slope regions in the middle frequencies are ascribed to the Warburg impedance (W),responding to the frequency dependence of ion diffusion/ transport from electrolyte to the micropore surface of carbon electrode.The short length of this slope for NSC-2 indicates that the electrolyte ions diffuse fast in the pores of this carbon which may be due to the hetero-doped polar pore surface.The almost vertical line represents the dominance of ideal double-layer charge/ discharge(Cdl)at low frequencies.The existence of a limit pseudocapacitor(CL)demonstrates the redox reaction of heteroatomcontaining groups.The relation plots between normalized real capacitance(C'(ω))and imaginary capacitance(C?(ω))with frequency are illustrated in Fig.7(d).The real capacitance values decrease with the increasing of test frequency since only exterior pore surface could be reached at higher frequencies.The time constant of the cells could be calculated according to the peak frequency of the normalizedC?(ω)plot.According to Equation (6),a low time constant is determined to be 0.53 s for NSC-2 further suggesting that the carbon is a promising electrode material for high power application.

    Fig.7 (a)EIS spectra of NSC-1,NSC-2,and NSC-3;(b)simulation of the EIS spectra of NSC-2;(c)equivalent circuit; and(d)dependence of normalized real and imaginary capacitance on frequencies of NSC-2

    4 Conclusions

    In summary,N,S co-doped activated microporous carbons are successfully prepared from renewable human hair and sucrose via a combined method of hydrothermal carbonization and chemical activation.Visible pseudo-capacitances are given by the N,O,S-doped species.The carbons show high specific capacitance of up to 200 F·g-1in KOH electrolyte.The preparation method employed in this work is facile and efficient,and shows the significance of developing heteroatom-doped carbon functional materials from renewable biomass.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) (a)Conway,B.;Birss,V.;Wojtowicz,J.J.Power Sources 1997, 66(1),1. (b)Simon,P.;Gogotsi,Y.Nature Materials 2008,7(11),845. (c)Candelaria,S.L.;Shao,Y.;Zhou,W.;Li,X.;Xiao,J.; Zhang,J.G.;Wang,Y.;Liu,J.;Li,J.;Cao,G.Nano Energy 2012,1(2),195. (d)Chen,S.;Xing,W.;Duan,J.;Hu,X.;Qiao,S.Z.J.Mater. Chem.A 2013,1(9),2941.

    (2) (a)Yu,G.;Xie,X.;Pan,L.;Bao,Z.;Cui,Y.Nano Energy 2013, 2(2),213.doi:10.1016/j.nanoen.2012.10.006 (b)Chen,C.J.;Hu,Z.A.;Hu,Y.Y.;Li,L.;Yang,Y.Y.;An,N.; Li,Z.M.;Wu,H.Y.Acta Phys.-Chim.Sin.2014,30(12),2256. [陳嬋娟,胡中愛,胡英瑛,李 麗,楊玉英,安 寧,李志敏,吳紅英.物理化學(xué)學(xué)報,2014,30(12),2256.]doi:10.3866/PKU.WHXB201409302

    (3) Zhang,L.L.;Zhao,X.Chem.Soc.Rev.2009,38(9),2520.doi: 10.1039/b813846j

    (4) (a)Chen,X.Y.;Chen,C.;Zhang,Z.J.;Xie,D.H.;Deng,X.; Liu,J.W.J.Power Sources 2013,230,50.doi:10.1016/j. jpowsour.2012.12.054 (b)Kim,T.;Jung,G.;Yoo,S.;Suh,K.S.;Ruoff,R.S.ACS Nano 2013,7(8),6899. (c)Calvo,E.;Lufrano,F.;Staiti,P.;Brigandì,A.;Arenillas,A.; Menéndez,J.J.Power Sources 2013,241,776. (d)Chen,M.;Kang,X.;Wumaier,T.;Dou,J.;Gao,B.;Han,Y.; Xu,G.;Liu,Z.;Zhang,L.J.Solid State Electrochem.2013,17 (4),1005. (e)Ma,G.F.;Mu,J.J.;Zhang,Z.G.;Sun,K.J.;Peng,H.;Lei, Z.Q.Acta Phys.-Chim.Sin.2013,29(11),2385.[馬國富,牟晶晶,張稚國,孫看軍,彭 輝,雷自強.物理化學(xué)學(xué)報,2013, 29(11),2385.]doi:10.3866/PKU.WHXB201309051

    (5) (a)Tsai,W.Y.;Gao,P.C.;Daffos,B.;Taberna,P.L.;Perez,C. R.;Gogotsi,Y.;Favier,F.Electrochem.Commun.2013,34,109. doi:10.1016/j.elecom.2013.05.031 (b)Pérez,C.R.;Yeon,S.H.;Ségalini,J.;Presser,V.;Taberna, P.L.;Simon,P.;Gogotsi,Y.Adv.Funct.Mater.2013,23(8), 1081.

    (6) (a)Nishihara,H.;Kyotani,T.Adv.Mater.2012,24(33),4473. doi:10.1002/adma.v24.33 (b)Xing,W.;Qiao,S.;Ding,R.;Li,F.;Lu,G.;Yan,Z.;Cheng, H.Carbon 2006,44(2),216. (c)Wei,J.;Zhou,D.;Sun,Z.;Deng,Y.;Xia,Y.;Zhao,D.Adv. Funct.Mater.2013,23(18),2322.

    (7)(a)Huang,W.;Zhang,H.;Huang,Y.;Wang,W.;Wei,S.Carbon 2011,49(3),838.doi:10.1016/j.carbon.2010.10.025 (b)Lv,Y.;Zhang,F.;Dou,Y.;Zhai,Y.;Wang,J.;Liu,H.;Xia, Y.;Tu,B.;Zhao,D.J.Mater.Chem.2012,22(1),93. (c)Wang,Q.;Yan,J.;Wang,Y.;Wei,T.;Zhang,M.;Jing,X.; Fan,Z.Carbon 2014,67,119.

    (8) (a)Bai,Y.;Rakhi,R.;Chen,W.;Alshareef,H.J.Power Sources 2013,233,313.doi:10.1016/j.jpowsour.2013.01.122 (b)Xu,Y.;Lin,Z.;Huang,X.;Liu,Y.;Huang,Y.;Duan,X.ACS Nano 2013,7(5),4042. (c)Wang,J.D.;Peng,T.J.;Sun,H.J.;Hou,Y.D.Acta Phys.-Chim.Sin.2014,30(11),2077.[汪建德,彭同江,孫紅娟,侯云丹.物理化學(xué)學(xué)報,2014,30(11),2077.]doi:10.3866/ PKU.WHXB201409152

    (9) Niu,Z.;Dong,H.;Zhu,B.;Li,J.;Hng,H.H.;Zhou,W.;Chen, X.;Xie,S.Adv.Mater.2013,25(7),1058.doi:10.1002/adma. v25.7

    (10) (a)Ra,E.;Raymundo-Pi?ero,E.;Lee,Y.;Béguin,F.Carbon 2009,47(13),2984;doi:10.1016/j.carbon.2009.06.051 (b)Seredych,M.;Bandosz,T.J.J.Mat.Chem.A 2013,1(38), 11717. (c)Okajima,K.;Ohta,K.;Sudoh,M.Electrochimica Acta 2005,50(11),2227.

    (11) (a)Jurewicz,K.;Babe?,K.;?ió?kowski,A.;Wachowska,H. Electrochimica Acta 2003,48(11),1491.doi:10.1016/S0013-4686(03)00035-5 (b)Wang,X.;Liu,C.G.;Neff,D.;Fulvio,P.F.;Mayes,R.T.; Zhamu,A.;Fang,Q.;Chen,G.;Meyer,H.M.;Jang,B.Z. J.Mater.Chem.A 2013,1(27),7920. (c)Han,J.;Xu,G.;Ding,B.;Pan,J.;Dou,H.;MacFarlane,D. R.J.Mater.Chem.A 2014,2(15),5352. (d)Wei,L.;Sevilla,M.;Fuertes,A.B.;Mokaya,R.;Yushin,G. Adv.Funct.Mater.2012,22(4),827. (e)Gu,W.;Sevilla,M.;Magasinski,A.;Fuertes,A.B.;Yushin, G.Energy&Environmental Science 2013,6(8),2465.

    (12) (a)Wei,L.;Gleb,Y.Nano Energy 2012,1(4),552.doi:10.1016/ j.nanoen.2012.05.002 (b)Rufford,T.E.;Hulicova-Jurcakova,D.;Zhu,Z.;Lu,G.Q. Electrochem.Commun.2008,10(10),1594.

    (13) (a)Braghiroli,F.;Fierro,V.;Izquierdo,M.;Parmentier,J.;Pizzi, A.;Celzard,A.Carbon 2012,50(15),5411.doi:10.1016/j. carbon.2012.07.027 (b)Raymundo-Pi?ero,E.;Cadek,M.;Beguin,F.Adv.Funct. Mater.2009,19(7),1032.

    (14) (a)Sevilla,M.;Fuertes,A.B.Carbon 2009,47(9),2281.doi: 10.1016/j.carbon.2009.04.026 (b)Zhao,L.;Baccile,N.;Gross,S.;Zhang,Y.;Wei,W.;Sun,Y.; Antonietti,M.;Titirici,M.M.Carbon 2010,48(13),3778.

    (15) Hulicova-Jurcakova,D.;Seredych,M.;Lu,G.Q.;Bandosz,T.J. Adv.Funct.Mater.2009,19(3),438.doi:10.1002/adfm.v19:3

    (16) Jansen,R.;Van Bekkum,H.Carbon 1995,33(8),1021.doi: 10.1016/0008-6223(95)00030-H

    (17) (a)Raymundo-Pi?ero,E.;Leroux,F.;Béguin,F.Adv.Mater. 2006,18(14),1877. (b)Zhao,X.;Zhang,Q.;Chen,C.M.;Zhang,B.;Reiche,S.; Wang,A.;Zhang,T.;Schl?gl,R.;Sheng,S.D.Nano Energy 2012,1(4),624.

    (18) Sun,G.;Long,D.;Liu,X.;Qiao,W.;Zhan,L.;Liang,X.;Ling, L.Journal of Electroanalytical Chemistry 2011,659(2),161. doi:10.1016/j.jelechem.2011.05.017

    (19) Li,W.;Chen,D.;Li,Z.;Shi,Y.;Wan,Y.;Huang,J.;Yang,J.; Zhao,D.;Jiang,Z.Electrochem.Commun.2007,9(4),569. doi:10.1016/j.elecom.2006.10.027

    Preparation and Supercapacitive Performance of N,S Co-Doped Activated Carbon Materials

    LI Zhao-Hui LI Shi-Jiao ZHOU Jin*ZHU Ting-Ting SHEN Hong-Long ZHUO Shu-Ping*
    (School of Chemical Engineering,Shandong University of Technology,Zibo 255049,Shandong Province,P.R.China)

    In this work,N,S co-doped microporous carbon materials were successfully prepared using human hair and sucrose as carbon precursors via a two-step method that combined hydrothermal treatment and post-KOH activation.The morphology,pore texture,and surface chemical properties of the activated carbon materials were investigated by scanning electron microscopy,transmission electron microscopy,N2adsorption/desorption, X-ray photoelectron spectroscopy,energy dispersive spectroscopy,and Fourier transform infrared spectroscopy. The electrochemical capacitive behavior of the prepared carbons was systematically studied in 6 mol·L-1KOH electrolyte.The maximum specific surface area of the prepared carbons was found to be 1849.4 m2·g-1with a porosity that mainly consisted of micropores.Nitrogen and sulfur contents varied from 1.6%to 2.5%and from 0.2%to 0.5%(atomic fraction(x)),respectively.The synergistic-positive effect of N,O,and S-containing groups caused the prepared carbons to exhibit a large pseudo-capacitance.High specific capacitances of up to 200 F·g-1at 0.2A·g-1were observed,response to an energy density of 6.9 Wh·kg-1.At a power density of 10000 W·kg-1,the energy density was found to be 4.1 Wh·kg-1.The present work highlights the significance of this new strategy to prepare N,S co-doped carbon materials from renewable biomass.

    Carbon materials;Supercapacitor;Human hair;Electrochemical property; Hydrothermal treatment

    O646

    10.3866/PKU.WHXB201501281www.whxb.pku.edu.cn

    Received:November 13,2014;Revised:January 23,2015;Published on Web:January 28,2015.

    ?Corresponding authors.ZHOU Jin,Email:zhoujsdut@gmail.com.ZHUO Shu-Ping,Email:zhuosp_cademic@yahoo.com; Tel/Fax:+86-533-2781664.

    The project was supported by the National Natural Science Foundation of China(51302156).

    國家自然科學(xué)基金(51302156)資助項目

    猜你喜歡
    紅龍山東理工大學(xué)物理化學(xué)
    紅的龍
    山東理工大學(xué)
    山東理工大學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    加工辣椒新品種引進(jìn)對比示范總結(jié)
    山東理工大學(xué)
    山東理工大學(xué)
    Chemical Concepts from Density Functional Theory
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    91字幕亚洲| 超碰成人久久| 丰满人妻熟妇乱又伦精品不卡| 久久这里只有精品19| 久久香蕉激情| 国产精品 国内视频| а√天堂www在线а√下载| 视频区欧美日本亚洲| 久久香蕉国产精品| 亚洲片人在线观看| 村上凉子中文字幕在线| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区免费| 免费观看精品视频网站| 最近最新中文字幕大全电影3| www.精华液| 免费在线观看黄色视频的| 国产精品美女特级片免费视频播放器 | 成人亚洲精品av一区二区| 久久午夜亚洲精品久久| 夜夜爽天天搞| 久久久水蜜桃国产精品网| 国产精品一及| 国产av一区二区精品久久| 日本五十路高清| 又粗又爽又猛毛片免费看| 欧美三级亚洲精品| 天天一区二区日本电影三级| 一级毛片高清免费大全| 亚洲天堂国产精品一区在线| 午夜老司机福利片| 母亲3免费完整高清在线观看| 大型av网站在线播放| 国产欧美日韩精品亚洲av| 91成年电影在线观看| 长腿黑丝高跟| 99re在线观看精品视频| 五月玫瑰六月丁香| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av美国av| 国产在线观看jvid| 日韩免费av在线播放| 999久久久精品免费观看国产| 精品不卡国产一区二区三区| 熟妇人妻久久中文字幕3abv| 99久久99久久久精品蜜桃| 国产激情欧美一区二区| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产99精品国产亚洲性色| 久99久视频精品免费| 99riav亚洲国产免费| 在线观看美女被高潮喷水网站 | 亚洲精品中文字幕在线视频| 一二三四在线观看免费中文在| www日本在线高清视频| 久久精品91蜜桃| 少妇粗大呻吟视频| 亚洲,欧美精品.| 日本一二三区视频观看| 日日夜夜操网爽| 一区二区三区高清视频在线| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看| 又黄又爽又免费观看的视频| 亚洲成人国产一区在线观看| 在线观看日韩欧美| 成人永久免费在线观看视频| 久久国产乱子伦精品免费另类| 国产精品精品国产色婷婷| 很黄的视频免费| 欧美日本视频| 在线观看一区二区三区| 午夜福利在线观看吧| 亚洲第一电影网av| 午夜两性在线视频| 欧美日韩中文字幕国产精品一区二区三区| 久久草成人影院| 欧美绝顶高潮抽搐喷水| 国产欧美日韩一区二区三| 一边摸一边抽搐一进一小说| 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 国产精品久久久久久亚洲av鲁大| 亚洲在线自拍视频| 日本一本二区三区精品| 亚洲av五月六月丁香网| 欧美日本亚洲视频在线播放| 色在线成人网| 免费在线观看日本一区| 黄色片一级片一级黄色片| svipshipincom国产片| 成人亚洲精品av一区二区| 日本一本二区三区精品| 国产精品乱码一区二三区的特点| 国语自产精品视频在线第100页| 久久人人精品亚洲av| 一个人免费在线观看的高清视频| 一本久久中文字幕| 久久伊人香网站| 成人永久免费在线观看视频| 不卡av一区二区三区| 欧美成人午夜精品| av在线播放免费不卡| 亚洲av日韩精品久久久久久密| av在线天堂中文字幕| 老鸭窝网址在线观看| 午夜精品久久久久久毛片777| 成年免费大片在线观看| 99热这里只有是精品50| 亚洲专区字幕在线| 亚洲精品在线美女| 亚洲乱码一区二区免费版| 黄色女人牲交| а√天堂www在线а√下载| 国产精华一区二区三区| 久久精品国产99精品国产亚洲性色| 淫妇啪啪啪对白视频| 亚洲一区中文字幕在线| 999久久久国产精品视频| 久久这里只有精品中国| 久久久久久大精品| 又大又爽又粗| 可以免费在线观看a视频的电影网站| 精品国产乱子伦一区二区三区| 又紧又爽又黄一区二区| 亚洲美女视频黄频| 免费看美女性在线毛片视频| 少妇的丰满在线观看| 手机成人av网站| 黄色女人牲交| 99在线视频只有这里精品首页| 成人精品一区二区免费| 日韩欧美精品v在线| cao死你这个sao货| 成人一区二区视频在线观看| www日本黄色视频网| 老鸭窝网址在线观看| 亚洲av成人精品一区久久| ponron亚洲| av在线天堂中文字幕| 99热这里只有精品一区 | 99国产精品99久久久久| 午夜福利18| 亚洲黑人精品在线| 脱女人内裤的视频| 国产精品香港三级国产av潘金莲| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美激情久久久久久爽电影| 久久香蕉国产精品| 亚洲第一欧美日韩一区二区三区| 一级黄色大片毛片| 19禁男女啪啪无遮挡网站| 亚洲免费av在线视频| 曰老女人黄片| 亚洲精品美女久久久久99蜜臀| 免费在线观看成人毛片| 久久香蕉精品热| 国产一区二区激情短视频| av片东京热男人的天堂| 精品国产超薄肉色丝袜足j| 欧美日韩中文字幕国产精品一区二区三区| 久久伊人香网站| 一区二区三区高清视频在线| 欧美黑人巨大hd| 中文字幕久久专区| 午夜a级毛片| 亚洲欧美日韩高清专用| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 黄色片一级片一级黄色片| 久久久久国产精品人妻aⅴ院| 亚洲,欧美精品.| 非洲黑人性xxxx精品又粗又长| 成人高潮视频无遮挡免费网站| 宅男免费午夜| 性欧美人与动物交配| 又黄又粗又硬又大视频| 午夜免费成人在线视频| 国产91精品成人一区二区三区| 中亚洲国语对白在线视频| 欧美成人免费av一区二区三区| 欧美乱色亚洲激情| 男人舔奶头视频| 看免费av毛片| 午夜久久久久精精品| 亚洲国产欧美网| ponron亚洲| 国产精品,欧美在线| 俺也久久电影网| 精品第一国产精品| 一进一出抽搐gif免费好疼| av有码第一页| 久99久视频精品免费| 老司机午夜福利在线观看视频| 亚洲一区二区三区不卡视频| 美女免费视频网站| 极品教师在线免费播放| 青草久久国产| 欧美久久黑人一区二区| 日本成人三级电影网站| 神马国产精品三级电影在线观看 | 欧美日韩福利视频一区二区| 欧美国产日韩亚洲一区| 欧美激情久久久久久爽电影| 精品久久久久久,| 久久中文字幕人妻熟女| 少妇的丰满在线观看| 一本精品99久久精品77| 久9热在线精品视频| 欧美久久黑人一区二区| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 舔av片在线| 国产真实乱freesex| 男男h啪啪无遮挡| 午夜视频精品福利| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 不卡一级毛片| 日本精品一区二区三区蜜桃| 日韩大码丰满熟妇| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 久久99热这里只有精品18| 又大又爽又粗| 国产在线精品亚洲第一网站| 亚洲成人久久性| 天天添夜夜摸| 亚洲精品av麻豆狂野| 亚洲美女视频黄频| 亚洲欧美精品综合久久99| 久久久久久人人人人人| 久久久久九九精品影院| 少妇熟女aⅴ在线视频| 麻豆国产97在线/欧美 | avwww免费| 国产麻豆成人av免费视频| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频| 久久精品国产综合久久久| 岛国视频午夜一区免费看| 精品久久蜜臀av无| 国产亚洲精品第一综合不卡| 免费在线观看黄色视频的| 在线a可以看的网站| 久久中文字幕人妻熟女| 麻豆一二三区av精品| 一进一出好大好爽视频| 又爽又黄无遮挡网站| 巨乳人妻的诱惑在线观看| 亚洲一区高清亚洲精品| 宅男免费午夜| 97超级碰碰碰精品色视频在线观看| 亚洲人与动物交配视频| 韩国av一区二区三区四区| 村上凉子中文字幕在线| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 日日干狠狠操夜夜爽| 国产片内射在线| 老熟妇仑乱视频hdxx| 最近视频中文字幕2019在线8| 亚洲avbb在线观看| 亚洲av成人不卡在线观看播放网| 午夜福利视频1000在线观看| 日本熟妇午夜| 欧美一区二区国产精品久久精品 | 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 怎么达到女性高潮| 99久久精品热视频| 女人被狂操c到高潮| 不卡一级毛片| 香蕉丝袜av| 淫妇啪啪啪对白视频| 97人妻精品一区二区三区麻豆| 十八禁人妻一区二区| 成人永久免费在线观看视频| av有码第一页| 亚洲av成人精品一区久久| 欧美av亚洲av综合av国产av| 欧美日韩一级在线毛片| 日韩中文字幕欧美一区二区| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 亚洲九九香蕉| 人人妻人人看人人澡| 国产私拍福利视频在线观看| 亚洲avbb在线观看| 一级a爱片免费观看的视频| av福利片在线| 亚洲精品在线美女| 这个男人来自地球电影免费观看| 日韩国内少妇激情av| 国产精品九九99| www.熟女人妻精品国产| 中文字幕人成人乱码亚洲影| 桃色一区二区三区在线观看| 大型黄色视频在线免费观看| 国产av又大| 一级黄色大片毛片| 人成视频在线观看免费观看| 亚洲自偷自拍图片 自拍| 变态另类丝袜制服| 国产探花在线观看一区二区| 黄片小视频在线播放| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 久久九九热精品免费| 亚洲午夜精品一区,二区,三区| 一个人免费在线观看的高清视频| 亚洲一区二区三区色噜噜| 搡老妇女老女人老熟妇| 搡老熟女国产l中国老女人| 十八禁网站免费在线| svipshipincom国产片| 久久久国产欧美日韩av| 99热6这里只有精品| 精品国产超薄肉色丝袜足j| 免费人成视频x8x8入口观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久午夜电影| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 国产av又大| 久久香蕉精品热| cao死你这个sao货| 人人妻,人人澡人人爽秒播| 久久久久久久精品吃奶| 免费在线观看视频国产中文字幕亚洲| 听说在线观看完整版免费高清| 一级毛片女人18水好多| 国产成年人精品一区二区| 日本在线视频免费播放| avwww免费| 首页视频小说图片口味搜索| 男女午夜视频在线观看| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 久久精品国产亚洲av高清一级| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 观看免费一级毛片| 亚洲男人天堂网一区| 色尼玛亚洲综合影院| 搡老岳熟女国产| 欧美色欧美亚洲另类二区| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片| 又黄又爽又免费观看的视频| 亚洲七黄色美女视频| 久久久久免费精品人妻一区二区| 亚洲av电影在线进入| 久久久精品大字幕| 久久中文看片网| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 免费在线观看成人毛片| 亚洲av成人不卡在线观看播放网| 亚洲欧美激情综合另类| 人人妻,人人澡人人爽秒播| 热99re8久久精品国产| 两个人的视频大全免费| 欧美色视频一区免费| av免费在线观看网站| 亚洲一码二码三码区别大吗| 欧美绝顶高潮抽搐喷水| 免费看美女性在线毛片视频| 一本综合久久免费| 露出奶头的视频| 黄色毛片三级朝国网站| 琪琪午夜伦伦电影理论片6080| 可以在线观看毛片的网站| 亚洲精品色激情综合| 欧美大码av| 他把我摸到了高潮在线观看| 亚洲天堂国产精品一区在线| 宅男免费午夜| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 99精品在免费线老司机午夜| 19禁男女啪啪无遮挡网站| 黄色a级毛片大全视频| 可以免费在线观看a视频的电影网站| 亚洲av熟女| 免费av毛片视频| 久久久久精品国产欧美久久久| 国产一区在线观看成人免费| 一卡2卡三卡四卡精品乱码亚洲| 国产在线观看jvid| 欧洲精品卡2卡3卡4卡5卡区| 在线永久观看黄色视频| 中文在线观看免费www的网站 | 啦啦啦观看免费观看视频高清| 国产99久久九九免费精品| 欧美黄色片欧美黄色片| 窝窝影院91人妻| 老汉色av国产亚洲站长工具| 可以在线观看毛片的网站| 国产午夜精品久久久久久| 成人一区二区视频在线观看| 色综合站精品国产| av免费在线观看网站| 日本 欧美在线| 在线a可以看的网站| a级毛片在线看网站| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 午夜两性在线视频| 国产av又大| 欧美一区二区精品小视频在线| 久久香蕉激情| 日本五十路高清| 桃色一区二区三区在线观看| 久久性视频一级片| 在线免费观看的www视频| 正在播放国产对白刺激| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 亚洲成人久久爱视频| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 男人舔女人的私密视频| 国产视频内射| 精华霜和精华液先用哪个| 亚洲av电影不卡..在线观看| 99久久精品热视频| 精品国产乱子伦一区二区三区| 亚洲熟妇中文字幕五十中出| 国产精品野战在线观看| 最近视频中文字幕2019在线8| 国产精品亚洲美女久久久| 一个人免费在线观看电影 | 亚洲成人中文字幕在线播放| 成人18禁在线播放| 国产欧美日韩精品亚洲av| 日日爽夜夜爽网站| 久久久精品欧美日韩精品| 免费在线观看视频国产中文字幕亚洲| 日本 欧美在线| 久久精品91蜜桃| 好男人在线观看高清免费视频| 悠悠久久av| 人人妻人人看人人澡| 中文在线观看免费www的网站 | 黄色女人牲交| 毛片女人毛片| 亚洲精品在线美女| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 波多野结衣高清无吗| 男插女下体视频免费在线播放| 观看免费一级毛片| 国产爱豆传媒在线观看 | 人妻夜夜爽99麻豆av| a在线观看视频网站| 91在线观看av| 亚洲精品美女久久av网站| 国产69精品久久久久777片 | 美女大奶头视频| 日本撒尿小便嘘嘘汇集6| 久久性视频一级片| 欧美乱码精品一区二区三区| 亚洲av成人av| 亚洲在线自拍视频| 18禁国产床啪视频网站| 国产单亲对白刺激| 国产精品久久久久久精品电影| 免费在线观看成人毛片| 午夜福利高清视频| 久久九九热精品免费| 亚洲色图av天堂| 性色av乱码一区二区三区2| 日韩欧美在线乱码| 欧美一区二区国产精品久久精品 | 老汉色∧v一级毛片| 十八禁人妻一区二区| 麻豆成人av在线观看| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩精品免费视频一区二区三区| www国产在线视频色| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| 成在线人永久免费视频| 国产激情欧美一区二区| 国产精品一区二区三区四区久久| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 制服诱惑二区| av福利片在线观看| 精品免费久久久久久久清纯| 一本综合久久免费| 精品国产乱码久久久久久男人| 国产激情偷乱视频一区二区| 亚洲,欧美精品.| 亚洲人成网站高清观看| 日韩 欧美 亚洲 中文字幕| 亚洲av电影不卡..在线观看| 美女免费视频网站| 久久久久性生活片| 国产三级中文精品| av福利片在线| 不卡一级毛片| 99在线视频只有这里精品首页| 三级国产精品欧美在线观看 | 成年人黄色毛片网站| 在线观看免费视频日本深夜| 欧美黑人巨大hd| 欧美日韩精品网址| 日韩av在线大香蕉| 国产精品99久久99久久久不卡| 99国产精品一区二区蜜桃av| 国内精品一区二区在线观看| 两个人视频免费观看高清| 亚洲熟女毛片儿| 午夜老司机福利片| 欧美黑人精品巨大| 国产精品野战在线观看| 欧美成人性av电影在线观看| 精品一区二区三区视频在线观看免费| 亚洲一区高清亚洲精品| 深夜精品福利| 亚洲专区字幕在线| 亚洲五月婷婷丁香| 欧美日本亚洲视频在线播放| 日韩欧美国产在线观看| 俄罗斯特黄特色一大片| 在线观看免费视频日本深夜| 亚洲成a人片在线一区二区| 两个人免费观看高清视频| 日日夜夜操网爽| 18禁美女被吸乳视频| 亚洲电影在线观看av| 在线看三级毛片| 黄色女人牲交| 久久精品国产综合久久久| a级毛片在线看网站| 日韩精品青青久久久久久| 国产激情久久老熟女| 哪里可以看免费的av片| 白带黄色成豆腐渣| 麻豆国产av国片精品| 搡老岳熟女国产| 免费在线观看日本一区| 日日干狠狠操夜夜爽| 12—13女人毛片做爰片一| 欧美极品一区二区三区四区| 国产精品日韩av在线免费观看| 一本综合久久免费| 精品欧美国产一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕久久专区| 啪啪无遮挡十八禁网站| 久久欧美精品欧美久久欧美| 久久午夜综合久久蜜桃| 叶爱在线成人免费视频播放| 国产一级毛片七仙女欲春2| 成人国语在线视频| 长腿黑丝高跟| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区精品| av欧美777| 欧美一区二区精品小视频在线| 99热这里只有精品一区 | 亚洲精品国产一区二区精华液| 久久精品影院6| 免费无遮挡裸体视频| x7x7x7水蜜桃| 巨乳人妻的诱惑在线观看| 久久 成人 亚洲| a级毛片在线看网站| 欧美+亚洲+日韩+国产| 色尼玛亚洲综合影院| 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡| 久久久久九九精品影院| 亚洲专区中文字幕在线| 老司机午夜福利在线观看视频| 久久久水蜜桃国产精品网| 黑人操中国人逼视频| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看 | av福利片在线| 国产精品久久久人人做人人爽| 国产亚洲精品一区二区www| 国产亚洲av嫩草精品影院| 国产又色又爽无遮挡免费看| 国产激情欧美一区二区| 久久精品成人免费网站| 久久人人精品亚洲av| 夜夜躁狠狠躁天天躁| 国产精品av久久久久免费| 两个人的视频大全免费| 高清在线国产一区| 男女之事视频高清在线观看| 18禁观看日本| 国产精品九九99| 黄色成人免费大全| 99久久精品国产亚洲精品| 长腿黑丝高跟| 又紧又爽又黄一区二区| 日本一区二区免费在线视频| 久久国产乱子伦精品免费另类| 国产久久久一区二区三区| 黄片小视频在线播放| 日韩欧美在线乱码| tocl精华| 美女午夜性视频免费|