• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    堿性固體燃料電池堿性聚合物電解質(zhì)膜的最新研究進展

    2014-10-18 05:28:10侯宏英
    物理化學學報 2014年8期
    關鍵詞:物理化學堿性電解質(zhì)

    侯宏英

    (昆明理工大學材料科學與工程學院,昆明 650093)

    1 Introduction

    The rapid development of fuel cells was triggered by the global fossil energy crisis,and many breakthroughs have been made.However,there still exist some challenges prior to wide com-mercialization.For example,successful application of proton exchange membrane such as Nafion?(Dupont)significantly promoted the development of proton exchange membrane fuel cell(PEMFC).However,the coming commercialization of PEMFC was also postponed by some challenges such as high fuel permeability and high cost of Nafion?membrane,the heavy dependence on the expensive scarce Pt-based catalysts,and high susceptibility to CO-like species poison effect.1-4In the case of conventional alkaline fuel cell(AFC),it has a successful and glorious history to land on the moon together with Apollo spacecraft in 1960s due to fast dynamics and low dependence on Pt-based catalyst,but alkali leakage and carbonation usually disable its long term operation.Therefore,the combination of the advantages of PEMFC and AFC naturally aroused the emergence of alkaline polymer electrolyte membrane fuel cell(APEMFC).For example,APEMFC can possess the compact structure,avoid the leakage of liquid alkaline electrolyte,and inhibit the susceptibility to CO-like species poison effect.Meanwhile,it can also get rid of the heavy dependence on expensive scarce Pt-based catalyst,because more inexpensive non-Pt catalysts exhibited similar activity in alkaline electrode reactions.5,6It was reported that electrochemical reactions in both electrodes were more facile in the alkaline medium than in the acid medium.7-9Therefore,some cheap available non-platinum catalysts such as Pd,10-12Ru,13Au,14,15Ag,16,17Co,18,19Cu,20Ni,21MnO2,22even metal-free carbon nanotubes and graphene nanosheets23-26can exhibit satisfying catalytic activity in the alkaline electrochemical reactions.And also,the loading of catalyst can be as low as possible.27Additionally,the charge carrier in APEMFC is not the proton but the anion,which moves from the cathode to the anode,opposite to the moving direction of the proton in PEMFC.Fuel crossover due to electro-osmosis drag can be avoided accordingly,which can be confirmed by experiment results and theory calculation.28,29Low sensibility to CO-like species poisoning effect of the catalysts in alkaline medium also expanded the range of the fuels suitable for APEMFC,not only including H2and low carbon alcohols(methanol,ethanol,and glycerol),but also other liquid fuels such as sodium borohydride,hydrazine,formate,and ammonia.30-35Therefore,the investigation about APEMFC has been a hot topic.As one of the key components,alkaline polymer electrolyte membrane played a vital role in maintaining the normal operation of APEMFC,and thus the availability of desirable alkaline polymer electrolyte membrane for APEMFC was very crucial and important.In principle,ideal alkaline polymer electrolyte membrane for APEMFC should possess high ionic conductivity,excellent thermal and mechanical stability,chemical inertness,easy availability as well as low cost.Unfortunately,there has not been available benchmark alkaline polymer electrolyte membrane for APEMFC yet,because no actual alkaline membrane material can meet all the requirements as mentioned above.Especially,high alkali-resistance of alkaline membrane is still a challenge,that is,functional quaternized group responsible for the ionic conductivity is easily subjected to the decomposition and degradation in alkaline medium.For this purpose,the intensive efforts to develop the alkaline polymer electrolyte membrane have been made.36-39Especially within recent three years,newer and better results were reported,such as metal-cation-based anion exchange membrane,40water management,41in situ durability,42-44electrode binder for triple-phase structure,45theory analysis46and so on.Herein,in this review,the state-of-the-art alkaline polymer electrolyte membranes for APEMFC mainly in recent three years were covered,and the next development prospects were also predicted.Alkaline polymer electrolyte membranes for APEMFC can be classified into three kinds:(i)quaternized anion exchange membrane;(ii)metal-cation-based anion exchange membrane;(iii)inorganic/organic hybrid alkaline membrane.These membranes will be introduced one by one in terms of synthesis strategy,accompanied with the structure-property relationship as well as the applications in APEMFC.

    2 Anion exchange membrane

    As a counterpart of cation exchange membrane,typical anion exchange membrane(AEM)usually contains cation-anion pairs:fixed positive group and movable anion,thus allowing for the passage of the anion but rejecting the cation.47-49In fact,it was developed prior to alkaline fuel cell and applied in many other fields such as salt electrodialysis,50anion selective electrode,51water treatment,52recovery of waste organic acids53and battery.54Only in recent years,increasing efforts have been made to study the application for APEMFC.Usually,a desirable membrane for APEMFC should possess a stable hydrophobic matrix for the structural mechanical integrity and some continuous hydrophilic channels for anion transport.55Among all the properties,enough ionic conductivity is the most vital to normal operation of fuel cell,because too poor ionic conductivity can result in too high inner resistance and disable the fuel cell.Generally speaking,there are three major strategies to improve the ionic conductivity of anion exchange membrane:(i)increasing the density of cationanion pairs,that is,ion-exchange capacity(IEC)of the polyelectrolyte;(ii)increasing the effective mobility of the charge carrier(OH-);(iii)improving the alkali-resistance of functional groups for ionic conductivity.

    The next is the summary of intensive efforts to pursue desirable anion exchange membranes with potential application for APEMFC.

    2.1 Quaternized anion exchange membrane

    Generally,quaternized anion exchange membrane(QAEM)is composed of three parts:(i)the polymer matrix;(ii)the fixed quaternized group with positive charge;(iii)the movable anion.,,andare three kinds of common positive quaternized groups.QAEM withgroups was the most common anion exchange ionomer,although it was reported that-based anion exchange membrane had higher thermal and chemical stability thanand.56Commercial QAEMs are available from several companies such as Tokuyama?in Japan,57-62Selemion?AMV in Japan,63Morgane?-ADP Solvay S.A.in Belgium,64,65Dupont?in American,66and Fumatech?in Germany,67although many of these materials are not optimized for alkaline fuel cell applications.

    Most of the commercial QAEMs are based on crosslinked polystyrene or their blends with other inert polymers.For example,Tokuyama?anion exchange membrane consists of polystyrene backbone and side chains with terminated―groups,and it is the most popular commercial QAEM.Like in Nafion?membrane,the Schroeder′s paradox phenomenon was also found in Tokuyama?anion exchange membrane,and the water diffusivity of Tokuyama?anion exchange membrane showed same order of magnitude(10-10m2·s-1)as that of Nafion?membrane.68In early literature,the peak power density of alkaline direct alcohol fuel cell with Tokuyama?membrane was low.69,70Recently,new breakthrough in peak power density of 130 mW·cm-2at 80 °C was achieved with 5 mol·L-1KOH and 3 mol·L-1ethanol into the anode.71More surprisingly,in situ stability without significant decline of Pt-free alkaline ethanol fuel cell with this kind of membrane at 60°C can sustain for 520 h,as shown in Fig.1.72

    Quantitative product analysis of ethanol oxidation in alkaline direct ethanol fuel cell with Tokuyama?anion exchange membrane was also performed.It was found that incomplete ethanol oxidation to acetate prevailed over complete oxidation to CO2.73But increasing the operation temperature from 60 to 100°C can improve the current efficiency of CO2from 6.0%to 30.6%.Additionally,considering that the susceptibility of alkaline medium to acid CO2,Suzuki et al.74evaluated the influence of CO2on APEMFC performances.It was confirmed that the anode was more vulnerable than the cathode when CO2was supplied to the anode and cathode,respectively,and high CO2concentration significantly reduced the single cell performance.This result indicated that it was important to remove the carbonate ion species in the triple-phase boundary in order to alleviate the electrode over-potential.Studies on water management showed that cathode flooding also occurred because the water diffusion flux from the anode to the cathode was surplus during the operation of APEMFC.75

    Fig.1 In situ stability test for 520 h of alkaline direct ethanol fuel cell with Tokuyama?A201 membrane at a constant current density of 50 mA·cm-2 at 60 °C72

    Morgane?-ADP membrane is a cross-linked fluorinated polymer with quaternary ammonium group,and it exhibits a higher resistance but a lower methanol diffusion coefficient compared to Nafion?membrane.At 60 °C,the peak power density of alkaline direct methanol fuel cell with this membrane was about 16 mW·cm-2,when the solution containing 2 mol·L-1methanol and 2 mol·L-1NaOH was fed into the anode.65

    In order to pursue more desirable single cell performance of APEMFC,more quaternized anion exchange membranes were designed,optimized,and synthesized in the laboratory.76-84Typically,QAEMs were synthesized via chloromethylation of the pristine polymers and subsequent exposure to trimethylamine(TMA)to form benzyltrimethyl-type quaternary ammonium(QA)head-groups.85In principle,quaternized anion exchange membranes can be synthesized by simple one-step nucleophilic substitution reaction of an aminated polymer(or monomer)with a halogenated monomer(or polymer),and then the resultant materials could be readily quaternized to form a potentially inexpensive QAEM if necessary.86,87Therefore,for functional starting materials with N-containing,Cl-containing,or Br-containing groups,the synthesis of QAEM seems very facile and simple.In the case of nonfunctional starting materials,the functionalizations such as cholormethylation,halogenation,or ammonification are indispensible.Considering the toxicity of chloromethyl methyl ether during the cholormethylation,quaternized anion exchange membrane can be synthesized by two methods:one is prepared with chloromethylether,and the other is prepared without chloromethylether.

    2.1.1 Quaternized anion exchange membrane with chloromethylether

    Generally,the preparation route with chloromethylether includes three steps:(i)the non-functionlized starting polymer is chloromethylaed;(ii)the resultant polymer is quaternized with trimthylamine,and thus quaternary ammonium groups are introduced into the polymer matrix;(iii)the membrane is dipped into KOH or NaOH solution for OH-form.Obviously,this synthesis strategy belongs to post-functionalization,in which some available thermoplastic engineering plastics(such as poly(ether ether ketone),poly(ether sulfone),polyimide and so on)or copolymers from monomers can be the starting polymer materials.88-96During the chloromethylation of the polymer,the most common and classical chloromethylating agents are chloromethyl methyl ether(CMME)and bis-chloromethyl ether(BCME),which can allow for high conversions and yields.For example,a quaternary ammonium polymer was synthesized by chloromethylation of commercial polysulfone,followed by amination process,as shown in Fig.2.97The ionic conductivity of the as-synthesized anion exchange membrane was 0.032 S·cm-1in deionized water at 24 °C,and the alkali-resistance of the polymer in 8.0 mol·L-1KOH solution was also satisfying.

    Fig.2 Preparation route of quaternized commercial polysulfone with chloromethylether97

    Novel anion conductive multi-block copolymers with sequential hydrophobic/hydrophilic structure were synthesized via polycondensation,chloromethylation,quaternization,and final alkalization.98-100Compared with the first method in Fig.2,such a method can offer more choices to design and optimize the structure-property relationship for desirable anion exchange membrane,such as excellent nano-phase separation morphology.Fig.3 showed the synthesis route of anion-conductive multiblock copoly(arylene ether sulfone)s with different chain lengths,hydrophilia and hydrophobicity.101The newest satisfying result was that H2-fueled APEMFC with crosslinked quaternized polysulfone membrane via this method can output the peak power density of 342 mW·cm-2at 70 °C.102

    2.1.2 Quaternized anion exchange membrane without chloromethylether

    Although the route with chloromethylether as mentioned above is efficient and typical,unfortunately,chloromethyl methyl ether and bis-chloromethyl ether used in most cases are well known to be carcinogenic,and thus have been restricted since 1970s.Therefore,more friendly approaches towards their avoidance have been developed.Firstly,some safer alternative chloromethylating agents have been investigated.It was reported that high reactive long chain chloro methyl octyl ether(CMOE),103-106inexpensive 1,4-bis(chloromethoxy)butane,107,108paraformaldehyde and chlo-rotrimethylsilane109-111were applied to perform the chloromethylation.For example,Han et al.112recently achieved chloromethylation of poly(ether ether ketone)(PEEK)by using sulfonated PEEK and chlorotrimethylsilane as the starting polymer and chloromethylating agents,respectively,in which―SO3H groups of sulfonated PEEK can be partially substituted by quaternary group.The ionic crosslinking between remaining―SO3H groups and quaternized groups occurred and resulted in an outstanding alkali-resistance to 1 mol·L-1KOH solution at 80 °C for 30 days.

    Fig.3 Synthetic route of quaternized multiblock poly(arylene ether sulfone)with chloromethylether101

    Beside the strategy of using alternative chloromethylating agents,chloromethylation can also be achieved by directly radiation-grafting vinylbenzyl chloride(VBC)onto the polymer matrix113or by bottom-up poly-condensation of functional VBC and other monomers.114The resultant membrane can be quaternized with tertiary ammonium and ion-exchanged with KOH.In the case of the radiation-grafting method,some available fluorine-containing polymer films such as poly(vinylidenefluoride)(PVDF)115,poly(ethylene-co-tetrafluoro-ethylene)(ETFE),116,117poly(tetrafluoro-ethene-co-hexafluoro-propylene)(FEP),118and poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether)(PFA)119,120membranes were pre-irradiated via plasma bombardment,electron-beam,or γ-ray source in order to induce the formation of the radicals.Then vinylbenzyl chloride was grafted onto these preactivated polymer films,followed by quaternization with amine and alkalization.For example,ETFE-based membrane exhibited the ionic conductivity of 20-40 mS·cm-1at room temperature,moreover,the ionic conductivity did not significantly degrade during the storage for 16 months.121When this kind of membrane was used as anion exchange membrane for H2/O2alkaline fuel cell,the output peak power density was as high as 230 mW·cm-2.122Recently,superior peak power densities of 823 mW·cm-2at 60 °C,718 mW·cm-2at 50 °C,and 648 mW·cm-2at 20 °C forAPEMFC were also achieved as shown in Fig.4.123

    Fig.4 Peak power densities of APEMFCs with the radiationgrafting membranes(5,19,and 23 μm)in the temperature range from 20 to 60°C under air and oxygen123

    Compared to acid Nafion?membrane,these anion exchange membranes exhibited lower fuel permeability,solvent uptakes,and swelling degrees in methanol,ethanol,and ethylene glycol,thus allowing for the use of thinner membrane with lower ionic resistance and offsetting the intrinsically lower OH-conductivity accordingly.In addition,Ko et al.124compared the effects of the base films on the properties of QAEM.It was found that partially fluorinated films such as ETFE and PVDF exhibited better radiation-resistance than fully fluorinated films,because the radiation-inducing radicals were produced mainly via C―H fission in the partially fluorinated films,while it was formed by undesirable C―C fission in the fully fluorinated films.For example,it was reported that polytetrafluoroethylene(PTFE)exclusively underwent main chain fission because C―C bonds are weaker than C―F bonds and break prior to C―F bonds.125Additionally,high cost is a concern of this kind of materials too.It seems that fluorinated polymers may be less suitable polymer substrates for radiation-induced grafting.Therefore,other alternative substrate polymers were recently used for radiation-grafting QAEM.126-129For example,polyethylene-based radiation-grafting QAEM was synthesized,and the obtained QAEM exhibited a maximum ionic conductivity of 47.5 mS·cm-1at 90 °C,while the order of methanol permeability was as low as 10-8cm2·s-1,significantly lower than that of Nafion?membrane,implying potential feasibility for APEMFC.

    Apart from radiation-grafting technology,VBC can be also introduced into the polymer matrix by direct bottom-up polymerization.VBC is an excellent monomer for synthesis of QAEMs via polymerization because of its double functional groups:vinyl group for polymerization and benzyl chloride group for quaternization.130-134Based on this conception,Xu et al.135synthesized the copolymer from the monomers of VBC,methyl methacrylate(MMA)and ethyl acrylate(EA)by free radical polymerization,as shown in Fig.5.By this method,some desirable properties of the as-synthesized QAEM,such as ionic conductivity,ion exchange capacity,mechanical properties,and water uptake,can be easily achieved by tuning the stoichiometric ratio of different monomers.Sometimes,macromolecular crosslinker or PTFE can be used to further improve the mechanical and thermal stability of PVBC.136In addition,considering that a large excess of the solvent used in polymerization and membrane formation may bring about the toxic risk to the environment,it is desirable to develop simple friendly methods for production of quaternized anion exchange membrane.Herein,Wu et al.137,138developed a friendly solvent-free synthesis strategy.In detail,the polymerization started in liquid monomers instead of additional solvents,followed by in situ polymerization and then quaternization for preparation of QAEM.

    Fig.5 Direct bottom-up copolymerization of VBC and other monomers for quaternized anion exchange membrane135 AIBN:azobisisobutronitrile

    Fig.6 Synthesis of poly(amimCl-MMA)membrane in OH-form:co-polymerization and alkalization154

    The fourth preparing route without chloromethylether can be actualized via some available nitrogen-containing,halogen-containing,or oxygen-containing starting materials such as 4-vinylpyridine,halide,chitosan,poly(vinyl alcohol)and so on.139In the case of nitrogen-containing starting materials,the quaternization can be easily achieved by direct SN2 nucleophilic substitution reaction with halohydrocarbon.140,141For example,Wan et al.142synthesized a series of quaternized chitosan derivatives(QCDs)with glycidyltrimethylammonium chloride as a main quaternized agent.After tuning the degree of crosslinking and quaternization,the as-synthesized quaternary chitosan membranes showed controllable crystallinity,swelling behavior,ionic conductivity,and thermal stability,indicating potential applications for APEMFC.Likewise,the bottom-up copolymerization of N-containing monomer and other monomers provided an alternative synthesis route.143,144The resonance effect of the guanidine moiety or imidazole ring can reduce the charge density of the cation,weaken the hydroxide attack to the cation,and improve the alkali-resistance of QAEM.145-148For example,Zhang et al.149designed and prepared a pore-filling membrane via polymerization of 3-methacryloylamino propyl trimethylammonium chloride in a porous substrate.The water movement of APEMFC with this membrane was accurately observed by a water collection method.It was experimentally confirmed for the first time that the water moved from the anode to the cathode,opposite to the moving direction of the proton in acid polymer electrolyte membrane fuel cell.The model calculation also showed that the Ohm resistance of the membrane can reduce as much as possible when the relative humidity was high enough by desirable water movement.149

    Ionic liquids,a new class of benign organic electrolytes,have remarkable physicochemical properties,such as ideal conductivity,wide electrochemical window,low volatility,and excellent thermal and chemical stability.Imidazolium-type ionic liquids have been used as the monomers for QAEM preparation due to their high ionic conductivity,stability and solubility.150-153As shown in Fig.6,novel anion exchange membranes were prepared by copolymerization of imidazolium-type ionic liquids and alkyl acrylates.154The hydroxyl ionic conductivity of the as-synthesized membrane can reach as high as 3.33×10-2S·cm-1in deionized water at 30°C.The ex situ stability tests showed that the onset of mass loss was above 200°C,and the membranes still maintained good ionic conductivity in 6 mol·L-1NaOH solution at 80 °C for 120 h.Such membranes exhibited superior thermal stability and alkali resistance than alkyl quaternary ammonium polymers.

    Halogen-containing starting polymer can be directly quaternized in an aqueous trimethylamine solution for some time,and then final quaternary ammonium anion exchange membrane was obtained via ion-exchanging with KOH solution.155Additionally,nonfunctional polymer plastics such as poly(ether ether ketone)(PEEK),polyether sulfone(PES),and polyphene oxide(PPO)or other copolymers from the monomers can also be used as the starting materials,but it is necessary to perform the halogenations in advance,that is,bromination or chlorination in most cases.156-164By this method,comb-shaped PPO-based QAEM was designed and prepared,and the resultant membrane can maintain the initial ionic conductivity in 1 mol·L-1NaOH solution for as long as 2000 h at 80°C.165A novel PES-based QAEM was also successfully prepared,in which bromination reaction was carried out for preparing the target membranes.The corresponding ionic conductivity at 30 and 80 °C in deionized water was 6.00×10-2and 13.00×10-2S·cm-1,respectively,while its methanol permeability was as low as 1.02×10-9cm2·s-1at 30 °C.166Considering that the flexibility of pendant side chain can promote better micro-phase separation,higher conductivity,and dimensional stability of the conductive polymer,Shen et al.167designed and prepared poly(aryl ether ketone)with methyl groups on pendant phenyls,in which N-bromosuccinimide(NBS)was used for the bromination of the methyl groups on pendant phenyls.The ionic conductivity of the final polymer was 0.024 S·cm-1at 20 °C and 0.0307 S·cm-1at 80°C in deionized water,respectively.Likewise,Lin et al.168,169synthesized PPO-based novel anion exchange membranes containing pendant guanidinium or benzimidazolium groups.The resultant QAEMs exhibited high ionic conductivity,excellent thermal stability and alkali-resistance attributed to the p electron conjugated system of the pendant guanidinium or benzimidazolium head-groups.

    In the case of oxygen-containing starting materials,poly(vinyl alcohol)(PVA)is a kind of common starting material due to its outstanding features:low cost,good film-forming ability,chemical stability,and availability of crosslinking sites.In this case,QAEM can be synthesized by open-ring polycondensation of PVAand bifunctional compounds with epoxy and quaternized groups,in which epoxy group was responsible for combination with PVA main chain,while quaternized group was responsible for the ionic conductivity.As displayed in Fig.7,Ye et al.170quaternized PVA(QPVA)by directly grafting 4-methyl-4-glycidylmorpholinium chloride onto PVA.After crosslinked with glutaraldehyde,the resultant quaternized PVA membrane exhibited high ionic conductivity(7.34×10-3S·cm-1)and low methanol permeability.In addition,in order to further improve the transport property and durable performance of PVA-based QAME,quaternized SiO2was added into the QPVAmatrix.171,172

    Fig.7 Synthetic reaction route for the preparation of QPVA170

    As mentioned above,intensive efforts were made to investigate quaternary anion exchange membranes for APEMFC application,and many significant progresses were made.For example,the highest power density of H2-fueled APEMFC with irradiationgrafting QAEM was as high as 823 mW·cm-2at 60 °C;and the in situ durability for 520 h of commercial Tokuyama?membrane was also achieved.However,up to now,there have not been wide and deep in situ stability tests for APEMFC yet,although a large quantity of new QAEMs was designed and synthesized.Awidely quoted concern with quaternary anion exchange membranes is the stability in the alkaline environment,that is,alkali-resistance,especially at elevated temperatures.173The recognized degradation mechanisms of quaternized groups include:(i)Hofmann elimination;(ii)nucleophilic substitution;(iii)Ylide formation.Hoffman elimination reaction usually results in the loss of quaternized group,wherein hydroxyl ion attacks β-hydrogen to the cation forming a double bond between α-carbon and β-carbon.Density function theory(DFT)calculation also suggested that Hofmann elimination was the most vulnerable pathway to degradation.174Direct nucleophilic displacement occurs via the attack to α-carbon atom of the cation,which can either detach the cation groups from QAEM or convert quaternary ammonium groups into tertiary amines.Degradation through the Ylide pathway begins with hydroxyl ion′s attack to a methyl group of the cations and produces a water molecule along with an Ylide intermediate.

    In order to obtain QAEM with high stability,some strategies were applied:(i)some conjugated head-groups including guanidinium and imidazolium are introduced into QAEM in order to weaken the hydroxide attack to the cation and improve the alkaliresistance,as mentioned above;175(ii)crosslinking among polymer chains for stronger mechanical property.176,177In the case of the second strategy,some reinforced inorganic or organic fillers such as TiO2,178SiO2,179,180ZrO2,181crosslinked polyvinyl alcohol(PVA)182-184or PTFE185-189were also added into the matrix of QAEM for high mechanical stability.For example,Zhao et al.189synthesized polyvinyl benzyl chloride membrane,which was crosslinked with diethylamine and reinforced by PTFE matrix.The obtained target membrane exhibited satisfying ex situ ionic conductivity stability and in situ durability for about 230 h with mild degradation,as shown in Fig.8.

    Additionally,the possible reason resulting in low in situ durability may be also due to the absence of anion exchange ionomer binder for triple-phase boundary in the electrode,which is similar to Nafion?solution in proton exchange membrane fuel cell.As shown in Fig.9,alkaline polymer electrode binder can not only bond the catalyst particles together but also facilitate the ionic transport by building triple-phase boundary.190Therefore,the development of alkaline polymer bond should be vital to assemble metal-cation-free alkaline membrane electrode assembly with long-term stability.191However,for the moment,although there have existed different types of QAEMs in literature as discussed above,the corresponding suitable catalyst binder for APEMFC is not easily available yet.In early literature,192PTFE or Nafion?ionomers were usually used as a temporary strategy to deal with this challenge.For example,Qiao et al.192assembled metal-cationfree APEMFC still with Nafion?solution as electrode binder for constructing triple phase interface of electrochemical reaction,and the peak power density was only 32.7 mW·cm-2at 25 °C.No doubt,this value would be better if suitable alkaline binder counterpart was used.As expected,the latest results showed that all-solid-state H2/O2APEMFC can output the peak power density of 823 mW·cm-2at 60 °C with poly(vinylbenzyl chloride)as electrode binder,which can rival with that of proton exchange membrane fuel cell.123Additionally,layered double hydroxides,aminosilane-based and chloride conductive layer can also be in-corporated into the electrode structure to improve the triple-phase boundary.193-195

    Fig.8 (a)Ionic conductivity stability test,(b)voltage-current density polarization curves,and(c)in situ stability test of alkaline H2/O2fuel cell with crosslinked PTFE-reinforced polyvinyl benzyl chloride membrane189

    2.2 Metal-cation-based anion exchange membrane

    Beside traditional quaternized anion exchange membrane,anion exchange membrane can also be synthesized via the chelation of metal cations with N-containing or O-containing materials,in which metal cations such as Ru2+and K+act as fixed positive groups,and anions acts as movable charge carriers.Based on this idea,novel metal-cation-based anion exchange membrane containing ruthenium complex was designed and synthesized recently.As shown in Fig.10,40each Ru2+can combine with six nitrogen atoms containing lone electron pairs to form ruthenium complex,and such a complex can have two associated counter anions,different from most ammonium-based and phosphoniumbased anion exchange membranes only with single cation-anion pairs.Such a new metal-cation-based anion exchange membrane exhibited higher anion conductivity,mechanical properties,alkaliresistance as well as methanol tolerance than traditional quaternary anion exchange membrane.40

    Fig.9 Schematic for the architecture of ionomer-bindercontaining membrane electrode assembly190 MEA:membrane&electrode assembly

    Crown ethers are ring-shaped heterocyclic compounds containing several ether groups,and their repeating unit is ethyleneoxy group(―CH2CH2O―).Important members of this series are the tetramer(n=4),the pentamer(n=5),and the hexamer(n=6).Crown ethers can strongly combine with certain cations to form complexes.When metal atoms such as sodium or potassium pass through the center of the ring,they can attach themselves to the exposed oxygen atoms like a key in a lock.The denticity of the crown ether influences its affinity for various metal cations.For example,18-crown-6 ether has high affinity for K+,15-crown-5 ether for Na+,and 12-crown-4 ether for Li+,respectively.196The microstructure and ball-and-stick model of 18-crown-6 ether coordinating a potassium ion are shown in Fig.11.Based on this property of crown ether,metal-cation-based anion exchange membrane can be synthesized by chemically grafting pendant 18-crown-6 ether onto the polymer backbone,followed by combination of KOH.197Similar to ruthenium complex,metal cation K+can be fixed into the polymer matrix by chelating with 6 oxygen atoms,while OH-is unsolvated or naked and thus acts as the movable charge carrier.The obtained membrane displayed higher thermal stability,alkali-resistance,and ionic conductivity than quaternized anion exchange membrane,implying a potential application in APEMFC.

    Fig.10 Synthesis of metal-cation-based anion exchange membrane40

    polybenzimidazole(PBI)membrane is well known to possess excellent endurance both in alkaline medium and at high temperature.198,199It is a weak basic polymer due to two imidazole rings in one repeating unit of PBI matrix.Inherently,PBI is an electronic and ionic insulator,but it can become an ionic conductor by being functionalized with the acids200and inorganic hydroxides,201,202apart from quaternization with halogenated hydrocarbons as mentioned above.Compared with acid-doped PBI membrane,there are fewer literature about alkali-doped PBI membrane for alkaline fuel cell.The first investigation about alkali doped PBI membrane for alkaline H2/O2fuel cell was reported in 2000.203Recently,the application of PBI/KOH membrane for alkaline direct ethanol fuel cell was carried out and the satisfying results were achieved in our laboratory.204,205The obtained membrane exhibited excellent thermal stability as well as in situ durability for 336 h in air-breathing Pt-free alkaline direct ethanol fuel cell at 60°C(Fig.12).206When this kind of membrane was used in alkaline direct ethylene glycol fuel cell,the corresponding peak power density can reach as high as 80 mW·cm-2at 60 °C and 112 mW·cm-2at 90 °C,respectively.The power output at 60°C was 67%higher than that of acid direct ethylene glycol fuel cell,mainly attributed to the superior electrochemical kinetics of both ethylene glycol oxidation and oxygen reduction reactions in alkaline medium.207The interaction between KOH and PBI matrix was also explored,and scanning electron microscope(SEM)and energy dispersive X-ray spectrometer(EDX)results showed that the concentration of K element within PBI/KOH membrane was much higher than that of O element.Possible reason may be due to double resources of K element:(i)K+combined with―NH―in PBI matrix,meanwhile,H2O was produced and left as a result of a neutralization between H in―NH―and OH-in the medium(Fig.13),206(ii)K+chelated with pyridine―N in PBI membrane by complexation with OH-as movable charger carrier,thus endowing the membrane with the ionic conductivity.

    Fig.11 Microstructure and ball-and-stick model of 18-crown-6 ether coordinating a potassium ion

    2.3 Organic/inorganic hybrid alkaline membrane

    Fig.12 Lifetime of air breathing Pt-free alkaline direct ethanol fuel cell with PBI/KOH at 60°C 206

    Fig.13 Bond lengths and bond energies of N―K(a)and N―H(b)calculated by density functional theory206

    Recently,organic/inorganic hybrid anion exchange membrane have gained much interest because suitable combination of two components can endow the composite with some remarkable changes in mechanical,thermal,and electrical properties compared to single material especially for those via molecular-level integration.Generally,organic polymers offer structural flexibility,convenient processing,and good film-forming ability,while inorganic phase is responsible for crystalline,high carrier mobility,porous structure for mass transport,thermal and mechanical stabilities.In the case of application for APEMFC,polyvinyl alcohol and chitosan usually act as the organic polymer phase,while KOH is the second inorganic phase.208-211Sometimes,in order to further optimize mechanical property and the porous structure for better transport properties,the third inorganic phase such as SiO2,212carbon nanotubes,213layered double hydroxide,214graphene nanosheets,or organic polymer215-217etc.was also introduced into the composite membrane.For example,hybrid membrane containing graphene nanosheets and poly(vinyl alcohol)(PVA)was designed and prepared for alkaline direct methanol fuel cell,and the transport property of hybrid membrane was explored.The results suggested that graphene nanosheets were uniformly dispersed,resulting in continuous,well-connected and tortuous ion transport channels.The addition of only 0.7%graphene nanosheets into PVAmatrix brought about the increase by 126%in ionic conductivity and 55%reduction in methanol permeability,while the loading of 1.4%graphene increased by 73%the tensile strength.For special consideration into high ionic conductivity,the further quaternization of the third phase was also performed.218Chitosan is a main derivative of chitin and it can be mainly obtained by deacetylating chitin with an alkaline treatment.Although it is a weak-alkaline polymer,its ionic conductivity can be close to 0.001 S·cm-1after full hydration,which is still not high enough for fuel cell.Therefore,chitosan/KOH hybrid membrane for alkaline fuel cell was preliminarily prepared and evaluated.219,220The obtained membrane had a three-layer structure,consisting of a porous intermediate layer and two crosslinked solid surface layers.After being hydrated for 1 h at room temperature,this membrane showed ionic conductivity near 0.01 S·cm-2.

    3 Conclusions and prospect

    Significant progresses about alkaline polymer electrolyte membrane for APEMFC have been made:up to now,the highest peak power density of H2/O2APEMFC with irradiation-grafting QAEM was as high as 823 mW·cm-2at 60 °C,and in situ durability tests for 520 h of commercial Tokuyama?membrane were achieved too.Among various alkaline polymer electrolytes,quaternized anion exchange membrane was still the most promising membrane for APEMFC,although the thermal stability and alkali-resistance need be further enhanced;metal-cation-based anion exchange membrane and organic/inorganic hybrid membrane may be fit for high temperature APEMFC due to their high stability.221

    On the other hand,there still existed some challenges to deal with:(i)soluble anion exchange ionomer electrode binder similar to commercial Nafion?soultion for building triple-phase interface may be one of the effective solutions to achieve better performances of metal-cation-free APEMFC,however,the corresponding investigation need be intensively carried out because there still is not authoritative alkaline counterpart to Nafion?solution for the moment;(ii)although many synthesis strategies of various alkaline polymer membranes were deep and widely investigated,however,there is still no alkaline benchmark counterpart to Nafion?membrane for PEMFC.Additionally,the corresponding in situ durability tests for APEMFC are still scarce and not very satisfying,therefore,the corresponding investigation will be a continuous hot topic in the future.After all,in situ durability is final standard to judge whether an alkaline polymer membrane is suitable for fuel cell application.

    (1)Hou,H.;Di Vona,M.L.;Liu,X.;Sgreccia,E.;Chailan,J.F.;Knauth,P.Int.J.Hydrog.E nergy 2013,38,3346.doi:10.1016/j.ijhydene.2012.12.019

    (2)Hou,H.;Di Vona,M.L.;Knauth,P.ChemSusChem 2011,4,1526.doi:10.1002/cssc.v4.11

    (3)Hou,H.;Di Vona,M.L.;Knauth,P.J.Membr.Sci.2012,423-423,113.

    (4)Jiang,Q.;Jiang,L.;Hou,H.;Qi,J.;Wang,S.;Sun,G.J.Phys.Chem.C 2010,114,19714.doi:10.1021/jp1039755

    (5)Yin,J.;Shan,S.;Ng,M.S.;Yang,L.;Mott,D.;Fang,W.;Kang,N.;Luo,J.;Zhong,C.Langmuir 2013,29,9249.doi:10.1021/la401839m

    (6)Robertson,N.J.;Kostalik,H.A.,IV;Clark,T.J.;Mutolo,P.F.;Abruna,H.D.;Coates,G.W.J.Am.Ch em.S oc.2010,132,3400.doi:10.1021/ja908638d

    (7)Liu,J.P.;Ye,J.Q.;Xu,C.W.;Jiang,S.P.;Tong,Y.X.Electroch em.Commun.2007,9,2334.doi:10.1016/j.elecom.2007.06.036

    (9)Li,X.;Popov,B.N.;Kawahara,T.;Yanagi,H.J.P ower Sources 2011,196,1717.doi:10.1016/j.jpowsour.2010.10.018

    (10)Xiang,F.;Shen,P.K.Acta P hys.-Chim.Sin.2009,25,1933.[方 翔,沈培康.物理化學學報,2009,25,1933.]doi:10.3866/PKU.WHXB20090918

    (11)Yang,Y.Y.;Ren,J.;Zhang,H.X.;Zhou,Z.Y.;Sun,S.G.;Cai,W.B.Lan gmuir 2013,29,1709.doi:10.1021/la305141q

    (12)Ma,L.;He,H.;Hsu,A.;Chen,R.J.Power Sources 2013,241,696.doi:10.1016/j.jpowsour.2013.04.051

    (13)Ohyama,J.;Sato,T.;Satsuma,A.J.Power Sources 2013,225,311.doi:10.1016/j.jpowsour.2012.10.051

    (14)Varcoe,J.R.;Slade,R.C.T.;Wright,G.L.;Chen,Y.J.Phys.Chem.B 2006,110,21041.doi:10.1021/jp064898b

    (15)Zhang,Z.;Xin,L.;Li,W.Int.J.Hydrog.Energy 2012,37,9292.

    (16)Guo,J.;Zhou,J.;Chu,D.;Chen,R.J.P hys.Chem.C 2013,117,4006.doi:10.1021/jp310655y

    (17)Wang,Z.;Xin,L.;Zhao,X.;Qiu,Y.;Zhang,Z.;Baturina,O.A.;Li,W.Renewable Energy 2014,62,556.doi:10.1016/j.renene.2013.08.005

    (18)Mamlouk,M.;Kumar,S.M.S.;Gouerec,P.;Scott,K.J.Power Sources 2011,196,7594.doi:10.1016/j.jpowsour.2011.04.045

    (19)Qiao,J.;Xu,L.;Liu,Y.;Xu,P.;Shi,J.;Liu,S.;Tian,B.E lectrochim.Acta 2013,96,298.doi:10.1016/j.electacta.2013.02.030

    (20)Heli,H.;Jafarian,M.;Mahjani,M.G.;Gobal,F.Electrochim.A cta 2004,49,4999.doi:10.1016/j.electacta.2004.06.015

    (21)Sakamoto,T.;Asazawa,K.;Yamada,K.;Tanaka,H.Catalysis Today 2011,164,181.doi:10.1016/j.cattod.2010.11.012

    (22)Verma,A.;Jha,A.K.;Basu,S.J.P ower Sources 2005,141,30.doi:10.1016/j.jpowsour.2004.09.005

    (23)Rao,C.V.;Ishikawa,Y.J.P hys.Chem.C 2012,116,4340.doi:10.1021/jp210840a

    (24)Huang,D.;Zhang,B.;Zhang,Y.;Zhan,F.;Xu,X.;Shen,Y.;Wang,M.J.Mater.Chem.A 2013,1,1415.doi:10.1039/c2ta00552b

    (25)Yang,S.;Feng,X.;Wang,X.;Müllen,K.An gew.Chem.Int.E dit.2011,50,5339.doi:10.1002/anie.201100170

    (26)Chen,P.;Xiao,T.;Qian,Y.;Li,S.;Yu,S.Ad v.Mater.2013,25,3192.doi:10.1002/adma.201300515

    (27)Li,Y.S.;Zhao,T.S.Int.J.H ydrog.Energy 2012,37,15334.doi:10.1016/j.ijhydene.2012.07.119

    (28)Wang,Y.;Li,L.;Hu,L.;Zhuang,L.;Lu,J.T.;Xu,B.Q.E lectrochem.Commun.2003,5,662.doi:10.1016/S1388-2481(03)00148-6

    (29)Bahrami,H.;Faghri,A.J.Power S ources 2012,218,286.doi:10.1016/j.jpowsour.2012.06.057

    (30)Bambagioni,V.;Bianchini,C.;Marchionni,A.;Filippi,J.;Vizza,F.;Teddy,J.;Serp,P.;Zhiani,M.J.P ower Sources 2009,190,241.doi:10.1016/j.jpowsour.2009.01.044

    (31)Ilie,A.;Simoes,M.;Baranton,S.;Coutanceau,C.;Martemianov,S.J.P ower Sources 2011,196,4965.doi:10.1016/j.jpowsour.2011.02.003

    (32)Zhang,Z.;Xin,L.;Li,W.A ppl.Catal.B:Environ.2012,119-120,40.

    (33)Bartrom,A.M.;Haan,J.L.J.Power Sources 2012,214,68.doi:10.1016/j.jpowsour.2012.04.032

    (34)Suzuki,S.;Muroyama,H.;Matsui,T.;Eguchi,K.J.Power Sources 2012,208,257.doi:10.1016/j.jpowsour.2012.02.043

    (35)Sakamoto,T.;Asazawa,K.;Chinchilla,J.S.;Martinez,U.;Halevi,B.;Atanassov,P.;Strasser,P.;Tanaka,H.J.Power Sources 2014,247,605.doi:10.1016/j.jpowsour.2013.08.107

    (36)Qiao,J.;Fu,J.;Liu,L.;Zhang,J.;Xie,J.;Li,G.Solid State Ionics 2012,214,6.doi:10.1016/j.ssi.2012.02.059

    (37)Xia,Z.;Yuan,S.;Jiang,G.;Guo,X.;Fang,J.;Liu,L.;Qiao,J.;Yin,J.J.Membr.Sci.2012,390-391,152.

    (38)Couture,G.;Alaaeddine,A.;Boschet,F.;Ameduri,B.P rog.Polym.Sci.2011,36,1521.doi:10.1016/j.progpolymsci.2011.04.004

    (39)Merle,G.;Wessling,M.;Nijmeijer,K.J.Memb r.Sci.2011,377,1.doi:10.1016/j.memsci.2011.04.043

    (40)Zha,Y.;Miller,M.L.D.;Johnson,Z.D.;Hickner,M.A.;Tew,G.N.J.Am.Chem.Soc.2012,134,4493.doi:10.1021/ja211365r

    (41)Huo,S.;Deng,H.;Chang,Y.;Jiao,K.Int.J.H ydrog.Energy 2012,37,18389.doi:10.1016/j.ijhydene.2012.09.074

    (42)Kang,S.;Jung,D.;Shin,J.;Lim,S.;Kim,S.K.;Shul,Y.;Peck,D.H.J.Memb r.Sci.2013,447,36.doi:10.1016/j.memsci.2013.07.005

    (43)Fujimoto,C.;Kim,D.S.;Hibbs,M.;Wrobleski,D.;Kim,Y.S.J.Membr.Sci.2012,423-424,438.

    (44)Piana,M.;Boccia,M.;Filpi,A.;Flammia,E.;Miller,H.A.;Orsini,M.;Salusti,F.;Santiccioli,S.;Ciardelli,F.;Pucci,A.J.Power Sources 2010,195,5875.doi:10.1016/j.jpowsour.2009.12.085

    (45)Li,Y.S.;Zhao,T.S.;Liang,Z.X.J.P ower Sources 2009,190,223.doi:10.1016/j.jpowsour.2009.01.055

    (46)Deng,H.;Huo,S.;Chang,Y.;Zhou,Y.;Jiao,K.Int.J.H ydro g.Energy 2013,38,6509.doi:10.1016/j.ijhydene.2013.03.045

    (47)Jung,H.;Fujii,K.;Tamaki,T.;Ohashi,H.;Ito,T.;Yamaguchi,T.J.Memb r.Sci.2011,373,107.doi:10.1016/j.memsci.2011.02.044

    (48)Gu,S.;Cai,R.;Yan,Y.Chem.Commun.2011,47,2856.doi:10.1039/c0cc04335d

    (49)Gu,S.;Cai,R.;Luo,T.;Chen,Z.;Sun,M.;Liu,Y.;He,G.;Yan,Y.Angew.Chem.Int.Edit.2009,48,6499.doi:10.1002/anie.v48:35

    (50)Yazicigil,Z.;Oztekin,Y.Desalination 2006,190,71.doi:10.1016/j.desal.2005.07.016

    (51)Grekovich,A.L.;Mikhelson,K.N.J.Electroanal.2002,14,1391.doi:10.1002/1521-4109(200211)14:19/20<1391::AIDELAN1391>3.0.CO;2-S

    (52)Koo,J.S.;Kwak,N.S.;Hwang,T.S.J.Membr.Sci.2012,423-424,293.

    (53)Wang,Z.X.;Luo,Y.B.;Yu,P.J.Membr.Sci.2006,280,134.doi:10.1016/j.memsci.2006.01.015

    (54)Hwang,G.J.;Ohya,H.J.Membr.Sci.1997,32,55.

    (55)Zhang,M.;Kim,H.K.;Chalkova,E.;Mark,F.;Lvov,S.N.;Chung,T.C.M.Macromolecules 2011,44,5937.doi:10.1021/ma200836d

    (56)Noonan,K.J.T.;Hugar,K.M.;Kostalik,H.A.,IV;Lobkovsky,E.B.;Abrun,H.D.;Coates,G.W.J.Am.Chem.Soc.2012,134,18161.doi:10.1021/ja307466s

    (57)He,Q.;Ren,X.J.Power Sources 2012,220,373.doi:10.1016/j.jpowsour.2012.07.039

    (58)Kim,J.H.;Kim,H.K.;Hwang,K.T.;Lee,J.Y.Int.J.H ydro g.E nergy 2010,35,768.doi:10.1016/j.ijhydene.2009.10.100

    (59)Prakash,G.K.S.;Krause,F.C.;Viva,F.A.;Narayanan,S.R.;Olah,G.A.J.P ower Sources 2011,196,7967.doi:10.1016/j.jpowsour.2011.05.056

    (60)Leng,Y.J.;Chen,G.;Mendoza,A.J.;Tighe,T.B.;Hickner,M.A.;Wang,C.Y.J.Am.Chem.Soc.2012,134,9054.doi:10.1021/ja302439z

    (61)Li,Y.S.;He,Y.L.;Yang,W.W.Int.J.Hydrog.E nergy 2013,38,13427.doi:10.1016/j.ijhydene.2013.07.042

    (62)Wang,X.;McClure,J.P.;Fedkiw,P.S.Electroch im.Acta 2012,79,126.doi:10.1016/j.electacta.2012.06.098

    (63)Giffin,G.A.;Lavina,S.;Pace,G.;Di Noto V.J.Phys.Chem.C 2012,116,23965.doi:10.1021/jp3094879

    (64)Follain,N.;Roualdes,S.;Marais,S.;Frugier,J.;Reinholdt,M.J.Phys.Chem.C 2012,116,8510.doi:10.1021/jp2109835

    (65)Scott,K.;Yu,E.;Vlachogiannopoulos,G.;Shivare,M.;Duteanu,N.J.P ower Sources 2008,175,452.doi:10.1016/j.jpowsour.2007.09.027

    (66)Frenzel,I.;Holdik,H.;Stamatialis,D.;Pourcelly,G.;Wessling,M.J.Membr.Sci.2005,261,49.doi:10.1016/j.memsci.2005.03.031

    (67)Aarnio,A.S.;Hietala,S.;Rauhala,T.;Kallio,T.J.Power Sources 2011,196,6153.doi:10.1016/j.jpowsour.2011.03.028(68)Li,Y.S.;Zhao,T.S.;Yang,W.W.Int.J.H ydrog.Energy 2010,35,5656.

    (69)Matsuoka,K.;Iriyama,Y.;Abe,T.;Matsuoka,M.;Ogumi,Z.J.Power Sources 2005,150,27.doi:10.1016/j.jpowsour.2005.02.020

    (70)Li,Y.S.;Zhao,T.S.;Liang,Z.X.J.Power Sources 2009,187,387.doi:10.1016/j.jpowsour.2008.10.132

    (71)Li,Y.S.;Zhao,T.S.Int.J.H ydrog.Energy 2011,36,7707.doi:10.1016/j.ijhydene.2011.03.090

    (72)Li,Y.S.;Zhao,T.S.Int.J.H ydrog.Energy 2012,37,4413.doi:10.1016/j.ijhydene.2011.11.086

    (73)Shen,S.Y.;Zhao,T.S.;Wu,Q.X.Int.J.H ydrog.Energy 2012,37,575.doi:10.1016/j.ijhydene.2011.09.077

    (74)Suzuki,S.;Muroyama,H.;Matsui,T.;Eguchi,K.Electrochim.A cta 2013,88,552.doi:10.1016/j.electacta.2012.10.105

    (75)Li,Y.S.;Zhao,T.S.;Chen,R.J.Power Sources 2011,196,133.doi:10.1016/j.jpowsour.2010.06.111

    (76)Cao,Y.C.;Wang,X.;Scott,K.J.Power Sources 2012,201,226.doi:10.1016/j.jpowsour.2011.10.113

    (77)Price,S.C.;Ren,X.;Jackson,A.C.;Ye,Y.;Elabd,Y.A.;Beyer,F.L.Macromolecules 2013,46,7332.doi:10.1021/ma400995n

    (78)Tripathi,B.P.;Kumar,M.;Shahi,V.K.J.Membr.Sci.2010,360,90.doi:10.1016/j.memsci.2010.05.005

    (79)Tanaka,M.;Koike,M.;Miyatake,K.;Watanabe,M.Macromolecules 2010,43,2657.doi:10.1021/ma902479d

    (80)Li,N.;Zhang,Q.,Wang,C.;Lee,Y.M.;Guiver,M.D.Macromolecules 2012,45,2411.doi:10.1021/ma202681z

    (81)Wang,J.;Wang,J.;Li,S.;Zhang,S.J.Membr.Sci.2011,368,246.doi:10.1016/j.memsci.2010.11.058

    (82)Mamlouk,M.;Scott,K.;Horsfall,J.A.;Williams,C.Int.J.H ydrog.Energy 2011,36,7191.doi:10.1016/j.ijhydene.2011.03.074

    (83)Zhang,J.;Qiao,J.;Jiang,G.;Liu,L.;Liu,Y.J.Power Sources 2013,240,359.doi:10.1016/j.jpowsour.2013.03.162

    (84)Tanaka,M.;Koike,M.;Miyatake,K.;Watanabe,M.Polym.Ch em.2011,2,99.doi:10.1039/c0py00238k

    (85)Sun,L.;Guo,J.;Zhou,J.;Xu,Q.;Chu,D.;Chen,R.J.Power Sources 2012,202,70.doi:10.1016/j.jpowsour.2011.11.023

    (86)Lee,K.M.;Wycisk,R.;Litt,M.;Pintauro,P.N.J.Membr.Sci.2011,383,254.doi:10.1016/j.memsci.2011.08.062

    (87)Maesa,A.M.;Pandeya,T.P.;Vandiver,M.A.;Lundquist,L.K.;Yang,Y.;Horan,J.L.;Krosovsky,A.;Liberatore,M.W.;Seifert,S.;Herring,A.M.Electrochim.A cta 2013,110,260.doi:10.1016/j.electacta.2013.04.033

    (88)Zeng,L.;Tang,Z.K.;Zhao,T.S.A ppl.Energy 2014,115,405.doi:10.1016/j.apenergy.2013.11.039

    (89)Li,X.;Yu,Y.;Liu,Q.;Meng,Y.ACS A ppl.Mater.Interfaces 2012,4,3627.doi:10.1021/am3007005

    (90)Zhou,J.;Guo,J.;Chu,D.;Chen,R.J.Power Sources 2012,219,272.doi:10.1016/j.jpowsour.2012.07.051

    (91)Zeng,Q.H.;Liu,Q.L.;Broadwell,I.;Zhu,A.M.;Xiong,Y.;Tu,X.P.J.Memb r.Sci.2010,349,237.doi:10.1016/j.memsci.2009.11.051

    (92)Seo,D.W.;Lim,Y.D.;Hossain,M.A.;Lee,S.H.;Lee,H.C.;Jang,H.H.;Choi,S.Y.;Kim,W.G.Int.J.H ydro g.Energy 2012,38,579.

    (93)Abuin,G.C.;Nonjola,P.;Franceschini,E.A.;Izraelevitch,F.H.;Mathe,M.K.;Corti,H.R.Int.J.Hydrog.Energy 2010,35,5849.doi:10.1016/j.ijhydene.2009.12.128

    (94)Seo,D.W.;Hossain,M.A.;Lee,D.H.;Lim,Y.D.;Lee,S.H.;Lee,H.C.;Hong,T.W.;Kim,W.G.Electrochim.A cta 2012,86,360.doi:10.1016/j.electacta.2012.04.065

    (95)Zhao,Z.;Gong,F.;Zhang,S.;Li,S.J.P ower Sources 2012,218,368.doi:10.1016/j.jpowsour.2012.07.011

    (96)Zarrin,H.;Wu,J.;Fowler,M.;Chen,Z.J.Memb r.Sci.2012,394-395,193.

    (97)Wang,G.;Weng,Y.;Chu,D.;Chen,R.;Xie,D.J.Memb r.Sci.2009,332,63.

    (98)Hossain,M.A.;Lim,Y.;Lee,S.;Jang,H.;Choi,S.;Jeon,Y.;Lim,J.;Kim,W.G.Int.J.H ydrog.Energy 2014,39,2731.

    (99)Li,X.;Yu,Y.;Liu,Q.;Meng,Y.J.Membr.Sci.2013,436,202.doi:10.1016/j.memsci.2013.02.041

    (100)Tanaka,M.;Fukasawa,K.;Nishino,E.;Yamaguchi,S.;Yamada,K.;Tanaka,H.;Bae,B.;Miyatake,K.;Watanabe,M.J.A m.Chem.Soc.2011,133,10646.doi:10.1021/ja204166e

    (101)Park,D.Y.;Kohl,P.A.;Beckham,H.W.J.Phys.Chem.C 2013,117,15468.doi:10.1021/jp311987v

    (102)Zeng,L.;Zhao,T.S.Electrochem.Commun.2013,34,278.doi:10.1016/j.elecom.2013.07.015

    (103)Mahendiravarman,E.;Sangeetha,D.Int.J.H ydrog.Energ y 2013,38,2471.

    (104)Yan,X.;He,G.;Gu,S.;Wu,X.;Du,L.;Zhang,H.J.Membr.Sci.2011,375,204.doi:10.1016/j.memsci.2011.03.046

    (105)Yan,X.;He,G.;Gu,S.;Wu,X.;Du,L.;Wang,Y.Int.J.H ydrog.Energ y 2012,37,5216.doi:10.1016/j.ijhydene.2011.12.069

    (106)Yan,X.;Wang,Y.;He,G.;Hu,Z.;Wu,X.Int.J.H ydrog.Energy 2012,38,7964;.

    (107)Lu,W.;Shao,Z.;Zhang,G.;Li,J.;Zhao,Y.;Yi,B.Solid State Ionics 2013,245-246,8.

    (108)Lu,W.;Shao,Z.;Zhang,G.;Zhao,Y.;Li,J.;Yi,B.Int.J.H ydrog.Energ y 2013,38,9285.doi:10.1016/j.ijhydene.2013.05.070

    (109)Vinodh,R.;Purushothaman,M.;Sangeetha,D.Int.J.H ydrog.Energy 2011,36,291.

    (110)Wang,X.;Li,M.;Golding,B.T.;Sadeghi,M.;Cao,Y.;Yu,E.H.;Scott,K.Int.J.H ydro g.Energy 2011,36,10022.doi:10.1016/j.ijhydene.2011.05.054

    (111)Jasti,A.;Prakash,S.;Shahi,V.K.J.Membr.Sci.2013,428,470.doi:10.1016/j.memsci.2012.11.016

    (112)Han,J.;Peng,H.;Pan,J.;Wei,L.;Li,G.;Chen,C.;Xiao,L.;Lu,J.;Zhuang,L.ACS Appl.Mater.Interfaces 2014,5,13405.

    (113)Mamlouk,M.;Scott,K.J.Power Sources 2012,211,140-146.doi:10.1016/j.jpowsour.2012.03.100

    (114)Luo,Y.;Guo,J.;Liu,Y.;Shao,Q.;Wang,C.;Chu,D.J.Membr.Sci.2012,423-424,209.

    (115)Danks,T.N.;Slade,R.C.T.;Varcoe,J.R.J.Mater.Chem.2003,13,712.doi:10.1039/b212164f

    (116)Ko,B.S.;Sohn,J.Y.;Shin,J.Polymer 2012,53,4652.doi:10.1016/j.polymer.2012.08.002

    (117)Fang,J.;Yang,Y.;Lu,X.;Ye,M.;Li,W.;Zhang,Y.Int.J.H ydrog.Energ y 2012,37,594.doi:10.1016/j.ijhydene.2011.09.112

    (118)Varcoe,J.R.;Slade,R.C.T.Eletrochem.Commun.2006,8,839.doi:10.1016/j.elecom.2006.03.027

    (119)Liu,H.;Yang,S.;Wang,S.;Fang,J.;Jiang,L.;Sun,G.J.Membr.Sci.2011,369,277.doi:10.1016/j.memsci.2010.12.002

    (120)Liu,H.;Wang,S.L.;Jiang,L.H.;Sun,G.Q.Scienta Sinica Chimica 2011,41,1857.[柳 鶴,王素力,姜魯華,孫公權.中國科學:化學,2011,41,1857.]doi:10.1360/032011-590

    (121)Zikewski,J.P.;Mudri,N.H.;Varcoe,J.R.Phys.Chem.2013,89,64.

    (122)Poynton,S.D.;Kizewski,J.P.;Slade,R.C.T.;Varcoe,J.R.S olid State Ionics 2010,181,219.doi:10.1016/j.ssi.2009.01.019

    (123)Mamlouk,M.;Horsfall,J.A.;Williams,C.;Scott,K.Int.J.H ydrog.Energy 2012,37,11912.doi:10.1016/j.ijhydene.2012.05.117

    (124)Ko,B.S.;Sohn,J.Y.;Nho,Y.C.;Shin,J.Nuclear Instruments Methods in Physics Research B 2011,269,2509.doi:10.1016/j.nimb.2011.07.022

    (125)Ameduri,B.Ch em.Rev.2009,109,6632.doi:10.1021/cr800187m

    (126)Mamlouk,M.;Horsfall,J.A.;Williams,C.;Scott,K.Int.J.H ydrog.Energy 2012,37,11912.doi:10.1016/j.ijhydene.2012.05.117

    (127)Sherazi,T.A.;Sohn,J.Y.;Lee,Y.M.;Guiver,M.D.J.Memb r.S ci.2013,441,148.doi:10.1016/j.memsci.2013.03.053

    (128)Hu,J.;Zhang,C.;Jiang,L.;Fang,S.;Zhang,X.;Wang,X.;Meng,Y.J.Power Sources 2014,248,831.doi:10.1016/j.jpowsour.2013.09.099

    (129)Hu,J.;Zhang,C.;Cong,J.;Toyoda,H.;Nagatsu,M.;Meng,Y.J.P ower Sources 2011,196,4483.doi:10.1016/j.jpowsour.2011.01.034

    (130)Lin,X.;Liu,Y.;Poynton,S.D.;Ong,A.L.;Varcoe,J.R.;Wu,L.;Li,Y.;Liang,X.;Li,Q.;Xu,T.J.Power Sources 2013,233,259.doi:10.1016/j.jpowsour.2013.01.059

    (131)Sudre,G.;Inceoglu,S.;Cotanda,P.;Balsara,N.P.Macromolecules 2013,46,1519.doi:10.1021/ma302357k

    (132)Hu,J.;Meng,Y.;Zhang,C.;Fang,S.Thin Solid F ilms 2011,519,2155.doi:10.1016/j.tsf.2010.11.028

    (133)Zhang,C.;Hu,J.;Cong,J.;Zhao,Y.;Shen,W.;Toyoda,H.;Nagatsu,M.;Meng,Y.J.P ower Sources 2011,196,5386.doi:10.1016/j.jpowsour.2011.02.073

    (134)Zhang,Y.;Fang,J.;Wu,Y.;Xu,H.;Chi,X.;Li,W.,Yang,Y.;Yan,G.;Zhuang,Y.J.Colloid Interface Sci.2102,381,59.

    (135)Xu,H.;Fang,J.;Guo,M.;Lu,X.;Wei,X.;Tu,S.J.Membr.S ci.2010,354,206.doi:10.1016/j.memsci.2010.02.028

    (136)Lu,W.;Shao,Z.G.;Zhang,G.;Zhao,Y.;Yi,B.J.Power S ources 2014,248,905.doi:10.1016/j.jpowsour.2013.08.141

    (137)Wu,L.;Zhou,G.;Liu,X.;Zhang,Z.;Li,C.;Xu,T.J.Membr.S ci.2011,371,155.doi:10.1016/j.memsci.2011.01.036

    (138)Lin,X.;Gong,M.;Liu,Y.;Wu,L.;Li,Y.;Liang,X.;Li,Q.;Xu,T.J.Membr.Sci.2013,425-426,190.

    (139)Henkensmeier,D.;Cho,H.;Brela,M.;Michalak,A.;Dyck,A.;Germe,W.;Duong,N.M.H.;Jang,J.H.;Kim,H.J.;Woo,N.S.;Lim,T.H.Int.J.Hydrog.E nergy 2014,39,2842.

    (140)Hou,H.;Wang,S.;Liu,H.;Sun,L.;Jin,W.;Jing,M.;Jiang,L.;Sun,G.Int.J.H ydro g.Energy 2011,35,11955.

    (141)Wang,J.;He,R.;Che,Q.J.Colloid Interface Sci.2011,361,219.doi:10.1016/j.jcis.2011.05.039

    (142)Wan,Y.;Peppley,B.;Creber,K.A.M.;Bui,V.T.J.Power S ources 2010,195,3785.doi:10.1016/j.jpowsour.2009.11.123

    (143)Wang,J.;Wang,J.;Zhang,S.J.Membr.Sci.2012,415-416,205.

    (144)Zhang,Q.;Zhang,Q.;Wang,J.;Zhang,S.;Li,S.Polymer 2010,51,5407.doi:10.1016/j.polymer.2010.09.049

    (145)Qiu,B.;Lin,B.;Si,Z.;Qiu,L.;Chu,F.;Zhao,J.;Yan,F.J.Power S ources 2012,217,329.doi:10.1016/j.jpowsour.2012.06.041

    (146)Kim,D.;Labouriau,A.;Guiver,M.D.;Kim,Y.Chem.Mater.2011,23,3795.doi:10.1021/cm2016164

    (147)Yan,X.;Gu,S.;He,G.;Wu,X.;Benziger,J.J.P ower Sources 2014,250,90.doi:10.1016/j.jpowsour.2013.10.140

    (148)Liu,L.;Li,Q.;Dai,J.;Wang,H.;Jin,B.;Bai,R.J.Membr.Sci.2014,453,52.doi:10.1016/j.memsci.2013.10.054

    (149)Zhang,H.;Ohashi,H.;Tamaki,T.;Yamaguchi,T.J.P hys.Chem.C 2012,116,7650.doi:10.1021/jp211084b

    (150)Ye,Y.;Sharick,S.;Davis,E.M.;Winey,K.I.;Elabd,Y.A.ACS Macro.Lett.2013,2,575.doi:10.1021/mz400210a

    (151)Ye,Y.;Elabd,Y.A.Macromolecules 2011,44,8494.doi:10.1021/ma201864u

    (152)Lin,B.;Qiu,L.;Lu,J.;Yan,F.Chem.Mater.2010,22,6718.doi:10.1021/cm102957g

    (153)Lin,B.;Qiu,L.;Qiu,B.;Peng,Y.;Yan,F.Macromolecules 2011,44,9642.doi:10.1021/ma202159d

    (154)Guo,M.;Fang,J.;Xu,H.;Li,W.;Lu,X.;Lan,C.;Li,K.J.Membr.Sci.2010,362,97.doi:10.1016/j.memsci.2010.06.026

    (155)Li,X.;Yu,Y.;Liu,Q.;Meng,Y.Int.J.H ydrog.Energy 2013,38,11067.doi:10.1016/j.ijhydene.2013.01.006

    (156)Hu,Q.;Shang,Y.;Wang,Y.;Xu,M.;Wang,S.;Xie,X.G.;Liu,Y.;Zhang,H.;Wang,J.;Mao,Z.Int.J.H ydrog.Energy 2012,37,12659.doi:10.1016/j.ijhydene.2012.05.077

    (157)Chen,D.;Hickner,M.A.Macromolecules 2013,46,9270.doi:10.1021/ma401620m

    (158)Yan,J.;Hickner,M.A.Macromolecules 2010,43,2349.doi:10.1021/ma902430y

    (159)Xu,S.;Zhang,G.;Zhang,Y.;Zhao,C.;Ma,W.;Sun,H.;Zhang,N.;Zhang,L.;Jiang,H.;Na,H.J.P ower Sources 2012,209,228.doi:10.1016/j.jpowsour.2012.02.076

    (160)Katzfub,A.;Gogel,V.;Jorissen,L.;Kerres,J.J.Membr.Sci.2013,425-426,131.

    (161)Tanaka,M.;Koike,M.;Miyatake,K.;Watanabe,M.Polym.Chem.2011,2,99.doi:10.1039/c0py00238k

    (162)Wang,W.;Wang,S.;Li,W.;Xie,X.;Lv,Y.Int.J.Hydrog.Energ y 2013,38,11045.doi:10.1016/j.ijhydene.2013.03.166

    (163)Rao,A.H.N.;Thankamony,R.L.;Kim,H.J.;Nam,S.;Kim,T.H.Polymer 2013,54,111.doi:10.1016/j.polymer.2012.11.023

    (164)Li,C.;Wang,S.;Wang,W.;Xie,X.;Lv,Y.;Deng,C.Int.J.H ydrog.Energ y 2013,38,11038.

    (165)Li,N.;Leng,Y.;Hickner,M.A.;Wang,C.Y.J.Am.Chem.Soc.2013,135,10124.doi:10.1021/ja403671u

    (166)Zhao,C.H.;Gong,Y.;Liu,Q.L.;Zhang,Q.G.;Zhu,A.M.Int.J.H ydro g.Energy 2012,37,11383.doi:10.1016/j.ijhydene.2012.04.163

    (167)Shen,K.;Pang,J.;Feng,S.;Wang,Y.;Jiang,Z.J.Membr.Sci.2013,440,20.

    (168)Lin,X.;Wu,L.;Liu,Y.;Ong,A.L.;Poynton,S.D.;Varcoe,J.R.;Xu,T.J.P ower Sources 2012,217,373.doi:10.1016/j.jpowsour.2012.05.062

    (169)Lin,X.;Liang,X.;Poynton,S.D.;Varcoe,J.R.;Ong,A.L.;Ran,J.;Li,Y.;Li,Q.;Xu,T.J.Membr.Sci.2013,443,193.doi:10.1016/j.memsci.2013.04.059

    (170)Ye,L.;Zhai,L.;Fang,J.;Liu,J.;Li,C.;Guan,R.Solid State Ionics 2013,240,1.doi:10.1016/j.ssi.2013.03.019

    (171)Yang,C.C.;Chiu,S.S.;Kuo,S.C.;Liou,T.H.J.Power S ources 2012,199,37.doi:10.1016/j.jpowsour.2011.10.020

    (172)Wang,J.;Li,S.;Zhang,S.Macromolecules 2010,43,3890.doi:10.1021/ma100260a

    (173)Chen,D.;Hickner,M.A.AC S Appl.Mater.Interfaces 2012,4,5775.doi:10.1021/am301557w

    (174)Long,H.;Kim,K.;Pivovar,B.S.J.Phys.Chem.C 2012,116,9419.doi:10.1021/jp3014964

    (175)Kim,D.S.;Fujimoto,C.H.;Hibbs,M.R.;Labouriau,A.;Choe,Y.K.;Kim,Y.S.Macromolecules 2013,46,7826.doi:10.1021/ma401568f

    (176)Luo,Y.;Guo,J.;Wang,C.;Chu,D.E lectrochem.Commun.2012,16,65.doi:10.1016/j.elecom.2012.01.005

    (177)Pan,J.;Chen,C.;Zhuang,L.;Lu,J.Accounts Chem.Res.2012,45,473.doi:10.1021/ar200201x

    (178)Nonjola,P.T.;Mathe,M.K.;Modibedi,R.M.Int.J.Hydrog.Energy 2013,38,5115.doi:10.1016/j.ijhydene.2013.02.028

    (179)Wu,Y.;Wu,C.;Varcoe,J.R.;Poynton,S.D.;Xu,T.;Fu,Y.J.P ower Sources 2010,195,3069.doi:10.1016/j.jpowsour.2009.11.118

    (180)XU,T.W.;Wu,Y.H.;Luo,J.X.Membrane Science Tech nolo gy 2011,31,192.[徐銅文,吳永會,羅婧藝.膜科學與技術,2011,31,192.]

    (181)Li,X.;Yu,Y.;Meng,Y.AC S Appl.Mater.Interfaces 2013,5,1414.doi:10.1021/am302844x

    (182)Zhou,T.;Zhang,J.;Qiao,J.;Liu,L.;Jiang,G.;Zhang,J.;Liu,Y.J.Power Sources 2013,227,291.doi:10.1016/j.jpowsour.2012.11.041

    (183)Zhou,T.;Zhang,J.;Fu,J.;Jiang,G.;Zhang,J.;Qiao,J.S ynthetic Metals 2013,167,43.doi:10.1016/j.synthmet.2013.02.008

    (184)Qiao,J.;Fu,J.;Liu,L.;Liu,Y.;Sheng,J.Int.J.H ydro g.Energy 2012,37,4580.doi:10.1016/j.ijhydene.2011.06.038

    (185)Zhao,Y.;Yu,H.;Xing,D.;Lu,W.;Shao,Z.;Yi,B.J.Membr.S ci.2012,421-422,311.

    (186)Guo,T.Y.;Zeng,Q.H.;Zhao,C.H.;Liu,Q.L.;Zhu,A.M.;Broadwell,I.J.Membr.Sci.2011,371,268.doi:10.1016/j.memsci.2011.01.043

    (187)Cao,Y.C.;Scott,K.;Wang,X.Int.J.Hyd rog.Energy 2012,37,12689.

    (188)Maurya,S.;Shin,S.H.;Kim,M.K.;Yun,S.H.;Moon,S.H.J.Membr.Sci.2013,443,28.doi:10.1016/j.memsci.2013.04.035

    (189)Zhao,Y.;Pan,J.;Yu,H.;Yang,D.;Li,J.;Zhuang,L.Int.J.H ydrog.Energ y 2013,38,1983.doi:10.1016/j.ijhydene.2012.11.055

    (190)Zhang,F.;Zhang,H.;Qu,C.;Ren,J.J.P ower Sources 2011,196,3099.doi:10.1016/j.jpowsour.2010.11.102

    (191)Switzer,E.E.O.;lson,T.S.;Datye,A.K.;Atanassov,P.;Hibbs,M.R.;Fujimoto,C.;Cornelius,C.J.E lectrochim.A cta 2010,55,3404.doi:10.1016/j.electacta.2009.12.073

    (192)Qiao,J.;Zhang,J.;Zhang,J.J.P ower Sources 2013,237,1.doi:10.1016/j.jpowsour.2013.02.059

    (193)Ranganathan,S.;Easton,E.B.Int.J.H ydrog.Energy 2010,35,1001.doi:10.1016/j.ijhydene.2009.11.077

    (194)Ranganathan,S.;Easton,E.B.Int.J.H ydrog.Energy 2010,35,4871.

    (195)Miyazaki,K.;Abe,T.;Nishio,K.;Nakanishi,H.;Ogumi,Z.J.Power S ources 2010,195,6500.doi:10.1016/j.jpowsour.2010.04.023

    (196)Bhattacharyya,A.;Goswami,A.J.P hys.Chem.B 2009,113,12958.doi:10.1021/jp9053605

    (197)Zhuang,L.;Huang,A.B.;Lu,S.F.;Tao,J.T.;Xiao,C.B.A Kind of Preparation Method of Strongly Alkaline Polymer Electrolyte Membrane.CN Patent CN1560117,2005-01-05.[莊 林,黃愛賓,盧善富,陸君濤,肖超渤.一種強堿性聚合物電解質(zhì)膜的制備方法:中國,CN1560117[P].2005-01-05.]

    (198)Tomlin,D.W.;Fratini,A.V.;Hunsaker,M.;Adams,W.W.Polymer 2000,41,9003.doi:10.1016/S0032-3861(00)00242-1

    (199)Henkensmeier,D.;Cho,H.R.;Kim,H.J.;Kirchner,C.N.;Leppin,J.;Dyck,A.P olym.Degrad.S tabi.2012,97,264.doi:10.1016/j.polymdegradstab.2011.12.024

    (200)Hu,J.W.;Zhang,H.M.;Zhai,Y.F.;Liu,G.;Yi,B.L.Int.J.H ydrog.Energ y 2006,31,1855.doi:10.1016/j.ijhydene.2006.05.001

    (201)Leykin,A.Y.;Shkrebko,O.A.;Tarasevich,M.R.J.Membr.Sci.2009,328,86.doi:10.1016/j.memsci.2008.11.047

    (202)Luo,H.;Vaivars,G.;Agboola,B.;Mu,S.;Mathe,M.Solid State Ionics 2012,208,52.doi:10.1016/j.ssi.2011.11.029

    (203)Xing,B.;Savadogo,Q.Electrochem.Commun.2000,2,697.doi:10.1016/S1388-2481(00)00107-7

    (204)Hou,H.;Sun,G.;He,R.;Wu,Z.;Sun,B.J.Power Sources2008,182,95.doi:10.1016/j.jpowsour.2008.04.010

    (205)Hou,H.;Sun,G.;He,R.;Wu,Z.;Sun,B.;Jin,W.;Liu,H.;Xin,Q.Int.J.H ydro g.Energy 2008,33,7172.

    (206)Hou,H.;Wang,S.;Jiang,Q.;Jin,W.;Jiang,L.;Sun,G.J.P ower Sources 2011,196,3244.doi:10.1016/j.jpowsour.2010.11.104

    (207)An,L.;Zeng,L.;Zhao,T.S.Int.J.Hydrog.E nergy 2013,38,10602.doi:10.1016/j.ijhydene.2013.06.042

    (208)Merle,G.;Hosseiny,S.S.;Wessling,M.;Nijmeijer,K.J.Membr.Sci.2012,409-410,191.

    (209)Yang,J.M.;Chiu,H.C.J.Membr.Sci.2012,419-420,65.

    (210)Nikol,V.M.;Zugi,D.L.;Maksi,A.D.;Saponji,D.P.;Kaninski,M.P.M.Int.J.Hydrog.Energy 2011,36,110041.

    (211)Wu,Y.H.Preparation,Characterizations and Application of Organic-Inorganic Hybrid Anion-Exchange Membranes.Ph.D.Dissertation,University of Science and Technology of China,Hefei,2009.[吳永會.有機-無機雜化陰離子交換膜的制備、表征和應用[D].合肥:中國科技大學,2009.]

    (212)Wu,Y.;Wu,C.;Li,Y.;Xu,T.;Fu,Y.J.Membr.Sci.2010,350,322.doi:10.1016/j.memsci.2010.01.007

    (213)Pan,W.H.;Lue,S.J.;Chang,C.M.;Liu,Y.L.J.Membr.Sci.2011,376,225.doi:10.1016/j.memsci.2011.04.026

    (214)Zeng,L.;Zhao,T.S.;Li,Y.S.Int.J.Hydrog.E nergy 2012,37,18425.doi:10.1016/j.ijhydene.2012.09.089

    (215)Ye,Y.;Cheng,M.;Xie,X.;Rick,J.;Huang,Y.;Chang,F.;Hwang,B.J.Power Sources 2013,239,424.doi:10.1016/j.jpowsour.2013.03.021

    (216)Fu,J.;Qiao,J.L.;Ma,J.X.Acta Phys.-Chim.Sin.2010,26,2975.[傅 婧,喬錦麗,馬建新.物理化學學報,2010,26,2975.]doi:10.3866/PKU.WHXB20101014

    (217)Liu,L.L.;Ding,L.;Xu,L.;Qiao,J.L.;Sheng,J.Acta Phys.-Chim.Sin.2011,27,2665.[劉玲玲,丁 蕾,徐 莉,喬錦麗,盛 嘉.物理化學學報,2011,27,2665.]doi:10.3866/PKU.WHXB20111106

    (218)Wang,E.D.;Zhao,T.S.;Yang,W.W.Int.J.Hydrog.Energy 2010,35,2183.doi:10.1016/j.ijhydene.2009.12.179

    (219)Yang,C.C.;Chiu,S.J.;Lee,K.T.;Chien,W.C.;Lin,C.T.;Huang,C.A.J.Power Sources 2008,184,44.

    (220)Yang,C.C.;Chiu,S.J.;Lin,C.T.J.Power Sources 2008,177,40.doi:10.1016/j.jpowsour.2007.11.010

    (221)An,L.;Zhao,T.S.;Wu,Q.X.;Zeng,L.Int.J.Hydrog.E nergy 2012,37,14536.doi:10.1016/j.ijhydene.2012.06.105

    猜你喜歡
    物理化學堿性電解質(zhì)
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
    陶瓷學報(2021年1期)2021-04-13 01:33:40
    Chemical Concepts from Density Functional Theory
    堿性磷酸酶鈣-鈷法染色的不同包埋方法比較
    電解質(zhì)溶液高考熱點直擊
    堿性土壤有效磷測定的影響因素及其控制
    堿性溶液中鉑、鈀和金析氧性能比較
    堿性介質(zhì)中甲醇在PdMo/MWCNT上的電化學氧化
    電源技術(2015年2期)2015-08-22 11:27:56
    Li2S-P2S5及Li2S-SiS2基硫化物固體電解質(zhì)研究進展
    電源技術(2015年9期)2015-06-05 09:36:06
    亚洲性夜色夜夜综合| 久久久久九九精品影院| 美女扒开内裤让男人捅视频| 亚洲午夜理论影院| 老熟妇仑乱视频hdxx| 草草在线视频免费看| 免费女性裸体啪啪无遮挡网站| 两性夫妻黄色片| 精品午夜福利视频在线观看一区| 国内久久婷婷六月综合欲色啪| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区三区四区久久 | 一二三四社区在线视频社区8| 国产一区二区三区在线臀色熟女| 青草久久国产| 欧美中文日本在线观看视频| www.精华液| 精品高清国产在线一区| 变态另类成人亚洲欧美熟女| 精品电影一区二区在线| 午夜福利欧美成人| 久久久精品欧美日韩精品| 欧美日韩乱码在线| 日韩大码丰满熟妇| 精品无人区乱码1区二区| 国产激情久久老熟女| 久久国产精品人妻蜜桃| 可以在线观看毛片的网站| 看片在线看免费视频| 精品高清国产在线一区| 天天一区二区日本电影三级| 欧美黄色淫秽网站| 99久久精品国产亚洲精品| 久久精品国产99精品国产亚洲性色| 日本三级黄在线观看| 久久青草综合色| 色老头精品视频在线观看| 国产精品1区2区在线观看.| 不卡一级毛片| 国产亚洲欧美在线一区二区| 国产视频内射| 精品国产国语对白av| 999久久久国产精品视频| 岛国在线观看网站| 嫩草影视91久久| 日韩欧美 国产精品| 国产野战对白在线观看| 欧美在线黄色| 亚洲自拍偷在线| 国产亚洲精品一区二区www| 日韩精品中文字幕看吧| 精品一区二区三区视频在线观看免费| 91成人精品电影| 亚洲熟妇中文字幕五十中出| 黄频高清免费视频| 免费在线观看亚洲国产| 成人三级做爰电影| 黄色毛片三级朝国网站| 激情在线观看视频在线高清| 久久精品91蜜桃| 国产高清激情床上av| 亚洲av成人av| 久久天躁狠狠躁夜夜2o2o| 精品一区二区三区四区五区乱码| 亚洲欧美精品综合久久99| www.精华液| 99久久99久久久精品蜜桃| 一边摸一边抽搐一进一小说| 成人亚洲精品一区在线观看| 这个男人来自地球电影免费观看| 国产日本99.免费观看| 免费看日本二区| 久久青草综合色| 亚洲国产精品合色在线| 久热爱精品视频在线9| 国产精品久久久av美女十八| 国内揄拍国产精品人妻在线 | av超薄肉色丝袜交足视频| 久久久国产成人精品二区| 国产成人啪精品午夜网站| 久久久久久久久中文| 亚洲精品在线美女| 国产精品亚洲一级av第二区| 国产精品香港三级国产av潘金莲| 亚洲国产看品久久| 国产精品自产拍在线观看55亚洲| 国产亚洲av嫩草精品影院| 日本三级黄在线观看| 色老头精品视频在线观看| 丁香欧美五月| 丝袜美腿诱惑在线| 久久久精品国产亚洲av高清涩受| 亚洲欧美日韩高清在线视频| netflix在线观看网站| 成人永久免费在线观看视频| 久久精品人妻少妇| 一a级毛片在线观看| 国产一区二区在线av高清观看| 18禁裸乳无遮挡免费网站照片 | 啦啦啦韩国在线观看视频| 亚洲欧美精品综合一区二区三区| 亚洲精品一区av在线观看| 国内少妇人妻偷人精品xxx网站 | 最近在线观看免费完整版| 亚洲免费av在线视频| 精品一区二区三区av网在线观看| 国产成+人综合+亚洲专区| 身体一侧抽搐| 午夜福利欧美成人| 露出奶头的视频| 久久性视频一级片| 校园春色视频在线观看| 色综合婷婷激情| 欧美三级亚洲精品| 国内揄拍国产精品人妻在线 | 国产亚洲欧美98| 欧美 亚洲 国产 日韩一| 午夜成年电影在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品,欧美在线| 麻豆国产av国片精品| 国产成人av激情在线播放| 中文字幕精品免费在线观看视频| 麻豆av在线久日| 久久久国产成人免费| www国产在线视频色| 看免费av毛片| 男男h啪啪无遮挡| 少妇 在线观看| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 久久人妻福利社区极品人妻图片| 亚洲熟妇熟女久久| 97人妻精品一区二区三区麻豆 | 成人三级黄色视频| 久久精品aⅴ一区二区三区四区| АⅤ资源中文在线天堂| 一级片免费观看大全| 午夜免费激情av| 可以在线观看的亚洲视频| 国内精品久久久久精免费| 久久精品亚洲精品国产色婷小说| 亚洲专区国产一区二区| 亚洲av成人不卡在线观看播放网| 午夜a级毛片| 亚洲精品美女久久av网站| 视频在线观看一区二区三区| 亚洲第一欧美日韩一区二区三区| 亚洲精品av麻豆狂野| 久久香蕉精品热| 国产免费av片在线观看野外av| 听说在线观看完整版免费高清| av在线天堂中文字幕| www.www免费av| 亚洲精品国产一区二区精华液| 国产亚洲精品av在线| 亚洲国产欧美日韩在线播放| 国产精品九九99| 国内精品久久久久久久电影| 香蕉久久夜色| 人人妻,人人澡人人爽秒播| 男女做爰动态图高潮gif福利片| 亚洲成av片中文字幕在线观看| 真人做人爱边吃奶动态| 欧美激情久久久久久爽电影| 亚洲 国产 在线| 亚洲精品久久成人aⅴ小说| 18禁美女被吸乳视频| 欧美成狂野欧美在线观看| 免费在线观看成人毛片| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩亚洲国产一区二区在线观看| 高清在线国产一区| 两性午夜刺激爽爽歪歪视频在线观看 | 成人手机av| 两人在一起打扑克的视频| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 岛国视频午夜一区免费看| 一区二区三区精品91| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 嫩草影院新地址| 亚洲在线自拍视频| 亚洲欧美成人综合另类久久久 | 亚洲婷婷狠狠爱综合网| 免费一级毛片在线播放高清视频| 日韩欧美一区二区三区在线观看| 夜夜夜夜夜久久久久| 亚洲专区国产一区二区| 观看美女的网站| 天堂影院成人在线观看| 精品人妻视频免费看| 插阴视频在线观看视频| 不卡视频在线观看欧美| 亚洲av成人av| 久久久久精品国产欧美久久久| 22中文网久久字幕| 丝袜美腿在线中文| 日日摸夜夜添夜夜添av毛片| 亚洲自偷自拍三级| 亚洲av不卡在线观看| 悠悠久久av| а√天堂www在线а√下载| av在线老鸭窝| 午夜a级毛片| 最近2019中文字幕mv第一页| 亚洲经典国产精华液单| 一级毛片久久久久久久久女| 精品国内亚洲2022精品成人| 一进一出好大好爽视频| 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区| 性插视频无遮挡在线免费观看| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 在线看三级毛片| 精品不卡国产一区二区三区| 最近中文字幕高清免费大全6| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 午夜爱爱视频在线播放| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 国产在线精品亚洲第一网站| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 亚洲性夜色夜夜综合| 真实男女啪啪啪动态图| 热99在线观看视频| 久久草成人影院| 三级国产精品欧美在线观看| 一个人观看的视频www高清免费观看| av专区在线播放| 国产高清激情床上av| 久久精品国产亚洲网站| 高清午夜精品一区二区三区 | 校园春色视频在线观看| 亚洲真实伦在线观看| 国内精品久久久久精免费| 日韩,欧美,国产一区二区三区 | 午夜a级毛片| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看 | 亚洲性夜色夜夜综合| 十八禁国产超污无遮挡网站| 99久久精品热视频| 色av中文字幕| 无遮挡黄片免费观看| 在现免费观看毛片| 欧美日韩综合久久久久久| 乱人视频在线观看| 日韩欧美国产在线观看| 久久精品国产自在天天线| 热99re8久久精品国产| 亚洲成人av在线免费| 欧美性感艳星| 亚洲人成网站在线观看播放| 亚洲精品粉嫩美女一区| 成人综合一区亚洲| 精品乱码久久久久久99久播| 别揉我奶头 嗯啊视频| 自拍偷自拍亚洲精品老妇| 男人和女人高潮做爰伦理| 搞女人的毛片| 欧美性感艳星| 欧美日本视频| a级毛片a级免费在线| 日韩欧美国产在线观看| 久久99热这里只有精品18| 国产69精品久久久久777片| 悠悠久久av| 最后的刺客免费高清国语| 精品少妇黑人巨大在线播放 | 免费电影在线观看免费观看| 99热这里只有精品一区| 亚洲精品在线观看二区| 午夜激情欧美在线| 久久精品人妻少妇| 亚洲国产色片| 国内精品美女久久久久久| 精品久久久久久久末码| 亚洲av五月六月丁香网| 日日摸夜夜添夜夜爱| 午夜日韩欧美国产| 亚洲av免费在线观看| 精品99又大又爽又粗少妇毛片| 97碰自拍视频| 午夜激情欧美在线| 午夜福利高清视频| 最近在线观看免费完整版| 三级男女做爰猛烈吃奶摸视频| 一夜夜www| 亚洲av中文字字幕乱码综合| 国产国拍精品亚洲av在线观看| 亚洲人成网站在线播| 亚洲第一区二区三区不卡| 一级毛片电影观看 | 又黄又爽又刺激的免费视频.| av.在线天堂| a级毛片a级免费在线| 特大巨黑吊av在线直播| 国产精品久久久久久久电影| 久久久久久久午夜电影| 老司机午夜福利在线观看视频| 精品不卡国产一区二区三区| 变态另类丝袜制服| 国产亚洲欧美98| 一级黄色大片毛片| 少妇的逼好多水| 欧美中文日本在线观看视频| 日本黄色视频三级网站网址| 亚洲最大成人av| 欧洲精品卡2卡3卡4卡5卡区| 麻豆久久精品国产亚洲av| 激情 狠狠 欧美| 亚洲不卡免费看| 22中文网久久字幕| 日韩高清综合在线| 熟女电影av网| 久久九九热精品免费| 小说图片视频综合网站| 18禁裸乳无遮挡免费网站照片| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 内射极品少妇av片p| 黄色视频,在线免费观看| 一级毛片aaaaaa免费看小| 国产精品一区二区三区四区久久| 日韩大尺度精品在线看网址| 天堂√8在线中文| 十八禁国产超污无遮挡网站| 国产高清视频在线观看网站| 联通29元200g的流量卡| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 日韩强制内射视频| 尾随美女入室| 男女之事视频高清在线观看| 少妇熟女aⅴ在线视频| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影| 一个人观看的视频www高清免费观看| 日韩,欧美,国产一区二区三区 | 亚洲最大成人av| 国产在线男女| 中文字幕熟女人妻在线| 日日摸夜夜添夜夜添av毛片| 一个人免费在线观看电影| 亚洲,欧美,日韩| 久久综合国产亚洲精品| 亚洲最大成人中文| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 18禁在线无遮挡免费观看视频 | 一本一本综合久久| 成人毛片a级毛片在线播放| 99在线视频只有这里精品首页| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 悠悠久久av| av女优亚洲男人天堂| 亚洲成人久久性| 别揉我奶头~嗯~啊~动态视频| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 日本黄大片高清| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 一本一本综合久久| 日本免费一区二区三区高清不卡| 三级毛片av免费| 欧美又色又爽又黄视频| 久久精品国产99精品国产亚洲性色| 亚洲自拍偷在线| 国产精品伦人一区二区| 国产不卡一卡二| 校园春色视频在线观看| 久久久久久久久大av| 老女人水多毛片| 亚洲18禁久久av| 中文字幕久久专区| 丰满乱子伦码专区| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 天天一区二区日本电影三级| 久久6这里有精品| 国产精品一区二区三区四区免费观看 | 淫妇啪啪啪对白视频| 欧美精品国产亚洲| 麻豆一二三区av精品| 日韩强制内射视频| 免费看光身美女| 少妇猛男粗大的猛烈进出视频 | 亚洲国产日韩欧美精品在线观看| 嫩草影院新地址| 大香蕉久久网| 亚洲精品久久国产高清桃花| 国产一级毛片七仙女欲春2| 国产欧美日韩一区二区精品| 国产精品久久久久久亚洲av鲁大| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 久久久久久久久久久丰满| 国产精品免费一区二区三区在线| 99热这里只有是精品50| 色综合站精品国产| 久久精品国产亚洲av涩爱 | 蜜桃久久精品国产亚洲av| 菩萨蛮人人尽说江南好唐韦庄 | av女优亚洲男人天堂| 大型黄色视频在线免费观看| 免费在线观看成人毛片| 美女大奶头视频| 国产单亲对白刺激| 国产免费一级a男人的天堂| 看非洲黑人一级黄片| 我的女老师完整版在线观看| 午夜激情福利司机影院| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 99精品在免费线老司机午夜| 久久国产乱子免费精品| 99久久精品国产国产毛片| 午夜日韩欧美国产| 国产男人的电影天堂91| 国产精品一二三区在线看| 国产女主播在线喷水免费视频网站 | 国产高清视频在线观看网站| 亚洲不卡免费看| 久久国产乱子免费精品| 在线看三级毛片| 大型黄色视频在线免费观看| 久久久色成人| 九九在线视频观看精品| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 亚洲精品粉嫩美女一区| 成人永久免费在线观看视频| 精品久久久久久久末码| 国产高潮美女av| 国产中年淑女户外野战色| 搡老岳熟女国产| 在线播放国产精品三级| 九色成人免费人妻av| 亚洲国产日韩欧美精品在线观看| 熟女电影av网| 国产成人aa在线观看| 最好的美女福利视频网| 亚洲精品乱码久久久v下载方式| 久久久成人免费电影| 日本在线视频免费播放| 91av网一区二区| 99久国产av精品国产电影| 日本黄色片子视频| 悠悠久久av| 一级毛片我不卡| 一个人看的www免费观看视频| 亚洲av第一区精品v没综合| 97超碰精品成人国产| 欧美一区二区国产精品久久精品| 亚洲国产精品国产精品| avwww免费| 亚洲精品国产av成人精品 | 精品久久久久久久人妻蜜臀av| 九九久久精品国产亚洲av麻豆| 欧美成人免费av一区二区三区| 成人美女网站在线观看视频| 波野结衣二区三区在线| 日本爱情动作片www.在线观看 | 婷婷六月久久综合丁香| 极品教师在线视频| av国产免费在线观看| 日韩 亚洲 欧美在线| 悠悠久久av| 久久久国产成人免费| 成人av一区二区三区在线看| 成人av在线播放网站| 12—13女人毛片做爰片一| 1024手机看黄色片| 亚洲国产高清在线一区二区三| 日韩制服骚丝袜av| 国内精品宾馆在线| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 日本欧美国产在线视频| 国产在线男女| 色哟哟·www| 波多野结衣巨乳人妻| 亚洲最大成人av| 97超碰精品成人国产| 少妇被粗大猛烈的视频| 性插视频无遮挡在线免费观看| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜爱| 九九在线视频观看精品| 老司机影院成人| 久久热精品热| 国内精品宾馆在线| 国产高清视频在线播放一区| 别揉我奶头~嗯~啊~动态视频| 国产午夜福利久久久久久| 乱系列少妇在线播放| 久久欧美精品欧美久久欧美| 中出人妻视频一区二区| 在线观看一区二区三区| 99久久成人亚洲精品观看| 国产精品一及| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 欧美一级a爱片免费观看看| 国产精品三级大全| 特级一级黄色大片| 中国美女看黄片| 麻豆久久精品国产亚洲av| 国产麻豆成人av免费视频| 人人妻,人人澡人人爽秒播| 女的被弄到高潮叫床怎么办| 99久久中文字幕三级久久日本| 中文字幕久久专区| 亚洲性夜色夜夜综合| 搞女人的毛片| 97热精品久久久久久| 三级国产精品欧美在线观看| 国产成人aa在线观看| 国产精品福利在线免费观看| 国产69精品久久久久777片| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av天美| 亚洲自偷自拍三级| av专区在线播放| 成人漫画全彩无遮挡| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 成人特级黄色片久久久久久久| 在现免费观看毛片| 一进一出抽搐gif免费好疼| 最近的中文字幕免费完整| av在线观看视频网站免费| 特大巨黑吊av在线直播| 日日撸夜夜添| 人妻丰满熟妇av一区二区三区| 亚洲无线在线观看| 看免费成人av毛片| 18禁在线无遮挡免费观看视频 | 亚洲精品影视一区二区三区av| 九九在线视频观看精品| 简卡轻食公司| 97人妻精品一区二区三区麻豆| 乱码一卡2卡4卡精品| 久久精品综合一区二区三区| 精品少妇黑人巨大在线播放 | 日韩三级伦理在线观看| 波多野结衣巨乳人妻| 天美传媒精品一区二区| 一级黄色大片毛片| 一本一本综合久久| 日本与韩国留学比较| 日本在线视频免费播放| 国产男人的电影天堂91| 欧美日本视频| 美女内射精品一级片tv| av在线蜜桃| 国产亚洲欧美98| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 丰满乱子伦码专区| 中文资源天堂在线| 69av精品久久久久久| 久久精品91蜜桃| 久久久久性生活片| 亚洲成人中文字幕在线播放| 老女人水多毛片| 激情 狠狠 欧美| 网址你懂的国产日韩在线| 1024手机看黄色片| 亚洲自拍偷在线| 最近最新中文字幕大全电影3| 综合色av麻豆| h日本视频在线播放| 久99久视频精品免费| 国产精品无大码| 国产高清三级在线| 露出奶头的视频| 人人妻人人澡人人爽人人夜夜 | 国产亚洲欧美98| 精品国产三级普通话版| 男女那种视频在线观看| 91狼人影院| 中国国产av一级| 国产伦一二天堂av在线观看| 亚洲av熟女| 成人特级黄色片久久久久久久| 韩国av在线不卡| 精品久久久久久久久亚洲| 午夜精品国产一区二区电影 | 国产在视频线在精品| 丝袜美腿在线中文| 久久午夜福利片| 精品99又大又爽又粗少妇毛片| 亚洲无线观看免费| 一级a爱片免费观看的视频| 最近2019中文字幕mv第一页| 国产亚洲精品久久久久久毛片| 少妇猛男粗大的猛烈进出视频 | 日本五十路高清| 99久国产av精品国产电影| 亚洲专区国产一区二区| 午夜福利在线观看吧| 久久久久国产精品人妻aⅴ院| 搡老妇女老女人老熟妇| 看片在线看免费视频| 亚洲熟妇熟女久久| 亚洲欧美日韩高清在线视频|