• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    堿性固體燃料電池堿性聚合物電解質(zhì)膜的最新研究進展

    2014-10-18 05:28:10侯宏英
    物理化學學報 2014年8期
    關鍵詞:物理化學堿性電解質(zhì)

    侯宏英

    (昆明理工大學材料科學與工程學院,昆明 650093)

    1 Introduction

    The rapid development of fuel cells was triggered by the global fossil energy crisis,and many breakthroughs have been made.However,there still exist some challenges prior to wide com-mercialization.For example,successful application of proton exchange membrane such as Nafion?(Dupont)significantly promoted the development of proton exchange membrane fuel cell(PEMFC).However,the coming commercialization of PEMFC was also postponed by some challenges such as high fuel permeability and high cost of Nafion?membrane,the heavy dependence on the expensive scarce Pt-based catalysts,and high susceptibility to CO-like species poison effect.1-4In the case of conventional alkaline fuel cell(AFC),it has a successful and glorious history to land on the moon together with Apollo spacecraft in 1960s due to fast dynamics and low dependence on Pt-based catalyst,but alkali leakage and carbonation usually disable its long term operation.Therefore,the combination of the advantages of PEMFC and AFC naturally aroused the emergence of alkaline polymer electrolyte membrane fuel cell(APEMFC).For example,APEMFC can possess the compact structure,avoid the leakage of liquid alkaline electrolyte,and inhibit the susceptibility to CO-like species poison effect.Meanwhile,it can also get rid of the heavy dependence on expensive scarce Pt-based catalyst,because more inexpensive non-Pt catalysts exhibited similar activity in alkaline electrode reactions.5,6It was reported that electrochemical reactions in both electrodes were more facile in the alkaline medium than in the acid medium.7-9Therefore,some cheap available non-platinum catalysts such as Pd,10-12Ru,13Au,14,15Ag,16,17Co,18,19Cu,20Ni,21MnO2,22even metal-free carbon nanotubes and graphene nanosheets23-26can exhibit satisfying catalytic activity in the alkaline electrochemical reactions.And also,the loading of catalyst can be as low as possible.27Additionally,the charge carrier in APEMFC is not the proton but the anion,which moves from the cathode to the anode,opposite to the moving direction of the proton in PEMFC.Fuel crossover due to electro-osmosis drag can be avoided accordingly,which can be confirmed by experiment results and theory calculation.28,29Low sensibility to CO-like species poisoning effect of the catalysts in alkaline medium also expanded the range of the fuels suitable for APEMFC,not only including H2and low carbon alcohols(methanol,ethanol,and glycerol),but also other liquid fuels such as sodium borohydride,hydrazine,formate,and ammonia.30-35Therefore,the investigation about APEMFC has been a hot topic.As one of the key components,alkaline polymer electrolyte membrane played a vital role in maintaining the normal operation of APEMFC,and thus the availability of desirable alkaline polymer electrolyte membrane for APEMFC was very crucial and important.In principle,ideal alkaline polymer electrolyte membrane for APEMFC should possess high ionic conductivity,excellent thermal and mechanical stability,chemical inertness,easy availability as well as low cost.Unfortunately,there has not been available benchmark alkaline polymer electrolyte membrane for APEMFC yet,because no actual alkaline membrane material can meet all the requirements as mentioned above.Especially,high alkali-resistance of alkaline membrane is still a challenge,that is,functional quaternized group responsible for the ionic conductivity is easily subjected to the decomposition and degradation in alkaline medium.For this purpose,the intensive efforts to develop the alkaline polymer electrolyte membrane have been made.36-39Especially within recent three years,newer and better results were reported,such as metal-cation-based anion exchange membrane,40water management,41in situ durability,42-44electrode binder for triple-phase structure,45theory analysis46and so on.Herein,in this review,the state-of-the-art alkaline polymer electrolyte membranes for APEMFC mainly in recent three years were covered,and the next development prospects were also predicted.Alkaline polymer electrolyte membranes for APEMFC can be classified into three kinds:(i)quaternized anion exchange membrane;(ii)metal-cation-based anion exchange membrane;(iii)inorganic/organic hybrid alkaline membrane.These membranes will be introduced one by one in terms of synthesis strategy,accompanied with the structure-property relationship as well as the applications in APEMFC.

    2 Anion exchange membrane

    As a counterpart of cation exchange membrane,typical anion exchange membrane(AEM)usually contains cation-anion pairs:fixed positive group and movable anion,thus allowing for the passage of the anion but rejecting the cation.47-49In fact,it was developed prior to alkaline fuel cell and applied in many other fields such as salt electrodialysis,50anion selective electrode,51water treatment,52recovery of waste organic acids53and battery.54Only in recent years,increasing efforts have been made to study the application for APEMFC.Usually,a desirable membrane for APEMFC should possess a stable hydrophobic matrix for the structural mechanical integrity and some continuous hydrophilic channels for anion transport.55Among all the properties,enough ionic conductivity is the most vital to normal operation of fuel cell,because too poor ionic conductivity can result in too high inner resistance and disable the fuel cell.Generally speaking,there are three major strategies to improve the ionic conductivity of anion exchange membrane:(i)increasing the density of cationanion pairs,that is,ion-exchange capacity(IEC)of the polyelectrolyte;(ii)increasing the effective mobility of the charge carrier(OH-);(iii)improving the alkali-resistance of functional groups for ionic conductivity.

    The next is the summary of intensive efforts to pursue desirable anion exchange membranes with potential application for APEMFC.

    2.1 Quaternized anion exchange membrane

    Generally,quaternized anion exchange membrane(QAEM)is composed of three parts:(i)the polymer matrix;(ii)the fixed quaternized group with positive charge;(iii)the movable anion.,,andare three kinds of common positive quaternized groups.QAEM withgroups was the most common anion exchange ionomer,although it was reported that-based anion exchange membrane had higher thermal and chemical stability thanand.56Commercial QAEMs are available from several companies such as Tokuyama?in Japan,57-62Selemion?AMV in Japan,63Morgane?-ADP Solvay S.A.in Belgium,64,65Dupont?in American,66and Fumatech?in Germany,67although many of these materials are not optimized for alkaline fuel cell applications.

    Most of the commercial QAEMs are based on crosslinked polystyrene or their blends with other inert polymers.For example,Tokuyama?anion exchange membrane consists of polystyrene backbone and side chains with terminated―groups,and it is the most popular commercial QAEM.Like in Nafion?membrane,the Schroeder′s paradox phenomenon was also found in Tokuyama?anion exchange membrane,and the water diffusivity of Tokuyama?anion exchange membrane showed same order of magnitude(10-10m2·s-1)as that of Nafion?membrane.68In early literature,the peak power density of alkaline direct alcohol fuel cell with Tokuyama?membrane was low.69,70Recently,new breakthrough in peak power density of 130 mW·cm-2at 80 °C was achieved with 5 mol·L-1KOH and 3 mol·L-1ethanol into the anode.71More surprisingly,in situ stability without significant decline of Pt-free alkaline ethanol fuel cell with this kind of membrane at 60°C can sustain for 520 h,as shown in Fig.1.72

    Quantitative product analysis of ethanol oxidation in alkaline direct ethanol fuel cell with Tokuyama?anion exchange membrane was also performed.It was found that incomplete ethanol oxidation to acetate prevailed over complete oxidation to CO2.73But increasing the operation temperature from 60 to 100°C can improve the current efficiency of CO2from 6.0%to 30.6%.Additionally,considering that the susceptibility of alkaline medium to acid CO2,Suzuki et al.74evaluated the influence of CO2on APEMFC performances.It was confirmed that the anode was more vulnerable than the cathode when CO2was supplied to the anode and cathode,respectively,and high CO2concentration significantly reduced the single cell performance.This result indicated that it was important to remove the carbonate ion species in the triple-phase boundary in order to alleviate the electrode over-potential.Studies on water management showed that cathode flooding also occurred because the water diffusion flux from the anode to the cathode was surplus during the operation of APEMFC.75

    Fig.1 In situ stability test for 520 h of alkaline direct ethanol fuel cell with Tokuyama?A201 membrane at a constant current density of 50 mA·cm-2 at 60 °C72

    Morgane?-ADP membrane is a cross-linked fluorinated polymer with quaternary ammonium group,and it exhibits a higher resistance but a lower methanol diffusion coefficient compared to Nafion?membrane.At 60 °C,the peak power density of alkaline direct methanol fuel cell with this membrane was about 16 mW·cm-2,when the solution containing 2 mol·L-1methanol and 2 mol·L-1NaOH was fed into the anode.65

    In order to pursue more desirable single cell performance of APEMFC,more quaternized anion exchange membranes were designed,optimized,and synthesized in the laboratory.76-84Typically,QAEMs were synthesized via chloromethylation of the pristine polymers and subsequent exposure to trimethylamine(TMA)to form benzyltrimethyl-type quaternary ammonium(QA)head-groups.85In principle,quaternized anion exchange membranes can be synthesized by simple one-step nucleophilic substitution reaction of an aminated polymer(or monomer)with a halogenated monomer(or polymer),and then the resultant materials could be readily quaternized to form a potentially inexpensive QAEM if necessary.86,87Therefore,for functional starting materials with N-containing,Cl-containing,or Br-containing groups,the synthesis of QAEM seems very facile and simple.In the case of nonfunctional starting materials,the functionalizations such as cholormethylation,halogenation,or ammonification are indispensible.Considering the toxicity of chloromethyl methyl ether during the cholormethylation,quaternized anion exchange membrane can be synthesized by two methods:one is prepared with chloromethylether,and the other is prepared without chloromethylether.

    2.1.1 Quaternized anion exchange membrane with chloromethylether

    Generally,the preparation route with chloromethylether includes three steps:(i)the non-functionlized starting polymer is chloromethylaed;(ii)the resultant polymer is quaternized with trimthylamine,and thus quaternary ammonium groups are introduced into the polymer matrix;(iii)the membrane is dipped into KOH or NaOH solution for OH-form.Obviously,this synthesis strategy belongs to post-functionalization,in which some available thermoplastic engineering plastics(such as poly(ether ether ketone),poly(ether sulfone),polyimide and so on)or copolymers from monomers can be the starting polymer materials.88-96During the chloromethylation of the polymer,the most common and classical chloromethylating agents are chloromethyl methyl ether(CMME)and bis-chloromethyl ether(BCME),which can allow for high conversions and yields.For example,a quaternary ammonium polymer was synthesized by chloromethylation of commercial polysulfone,followed by amination process,as shown in Fig.2.97The ionic conductivity of the as-synthesized anion exchange membrane was 0.032 S·cm-1in deionized water at 24 °C,and the alkali-resistance of the polymer in 8.0 mol·L-1KOH solution was also satisfying.

    Fig.2 Preparation route of quaternized commercial polysulfone with chloromethylether97

    Novel anion conductive multi-block copolymers with sequential hydrophobic/hydrophilic structure were synthesized via polycondensation,chloromethylation,quaternization,and final alkalization.98-100Compared with the first method in Fig.2,such a method can offer more choices to design and optimize the structure-property relationship for desirable anion exchange membrane,such as excellent nano-phase separation morphology.Fig.3 showed the synthesis route of anion-conductive multiblock copoly(arylene ether sulfone)s with different chain lengths,hydrophilia and hydrophobicity.101The newest satisfying result was that H2-fueled APEMFC with crosslinked quaternized polysulfone membrane via this method can output the peak power density of 342 mW·cm-2at 70 °C.102

    2.1.2 Quaternized anion exchange membrane without chloromethylether

    Although the route with chloromethylether as mentioned above is efficient and typical,unfortunately,chloromethyl methyl ether and bis-chloromethyl ether used in most cases are well known to be carcinogenic,and thus have been restricted since 1970s.Therefore,more friendly approaches towards their avoidance have been developed.Firstly,some safer alternative chloromethylating agents have been investigated.It was reported that high reactive long chain chloro methyl octyl ether(CMOE),103-106inexpensive 1,4-bis(chloromethoxy)butane,107,108paraformaldehyde and chlo-rotrimethylsilane109-111were applied to perform the chloromethylation.For example,Han et al.112recently achieved chloromethylation of poly(ether ether ketone)(PEEK)by using sulfonated PEEK and chlorotrimethylsilane as the starting polymer and chloromethylating agents,respectively,in which―SO3H groups of sulfonated PEEK can be partially substituted by quaternary group.The ionic crosslinking between remaining―SO3H groups and quaternized groups occurred and resulted in an outstanding alkali-resistance to 1 mol·L-1KOH solution at 80 °C for 30 days.

    Fig.3 Synthetic route of quaternized multiblock poly(arylene ether sulfone)with chloromethylether101

    Beside the strategy of using alternative chloromethylating agents,chloromethylation can also be achieved by directly radiation-grafting vinylbenzyl chloride(VBC)onto the polymer matrix113or by bottom-up poly-condensation of functional VBC and other monomers.114The resultant membrane can be quaternized with tertiary ammonium and ion-exchanged with KOH.In the case of the radiation-grafting method,some available fluorine-containing polymer films such as poly(vinylidenefluoride)(PVDF)115,poly(ethylene-co-tetrafluoro-ethylene)(ETFE),116,117poly(tetrafluoro-ethene-co-hexafluoro-propylene)(FEP),118and poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether)(PFA)119,120membranes were pre-irradiated via plasma bombardment,electron-beam,or γ-ray source in order to induce the formation of the radicals.Then vinylbenzyl chloride was grafted onto these preactivated polymer films,followed by quaternization with amine and alkalization.For example,ETFE-based membrane exhibited the ionic conductivity of 20-40 mS·cm-1at room temperature,moreover,the ionic conductivity did not significantly degrade during the storage for 16 months.121When this kind of membrane was used as anion exchange membrane for H2/O2alkaline fuel cell,the output peak power density was as high as 230 mW·cm-2.122Recently,superior peak power densities of 823 mW·cm-2at 60 °C,718 mW·cm-2at 50 °C,and 648 mW·cm-2at 20 °C forAPEMFC were also achieved as shown in Fig.4.123

    Fig.4 Peak power densities of APEMFCs with the radiationgrafting membranes(5,19,and 23 μm)in the temperature range from 20 to 60°C under air and oxygen123

    Compared to acid Nafion?membrane,these anion exchange membranes exhibited lower fuel permeability,solvent uptakes,and swelling degrees in methanol,ethanol,and ethylene glycol,thus allowing for the use of thinner membrane with lower ionic resistance and offsetting the intrinsically lower OH-conductivity accordingly.In addition,Ko et al.124compared the effects of the base films on the properties of QAEM.It was found that partially fluorinated films such as ETFE and PVDF exhibited better radiation-resistance than fully fluorinated films,because the radiation-inducing radicals were produced mainly via C―H fission in the partially fluorinated films,while it was formed by undesirable C―C fission in the fully fluorinated films.For example,it was reported that polytetrafluoroethylene(PTFE)exclusively underwent main chain fission because C―C bonds are weaker than C―F bonds and break prior to C―F bonds.125Additionally,high cost is a concern of this kind of materials too.It seems that fluorinated polymers may be less suitable polymer substrates for radiation-induced grafting.Therefore,other alternative substrate polymers were recently used for radiation-grafting QAEM.126-129For example,polyethylene-based radiation-grafting QAEM was synthesized,and the obtained QAEM exhibited a maximum ionic conductivity of 47.5 mS·cm-1at 90 °C,while the order of methanol permeability was as low as 10-8cm2·s-1,significantly lower than that of Nafion?membrane,implying potential feasibility for APEMFC.

    Apart from radiation-grafting technology,VBC can be also introduced into the polymer matrix by direct bottom-up polymerization.VBC is an excellent monomer for synthesis of QAEMs via polymerization because of its double functional groups:vinyl group for polymerization and benzyl chloride group for quaternization.130-134Based on this conception,Xu et al.135synthesized the copolymer from the monomers of VBC,methyl methacrylate(MMA)and ethyl acrylate(EA)by free radical polymerization,as shown in Fig.5.By this method,some desirable properties of the as-synthesized QAEM,such as ionic conductivity,ion exchange capacity,mechanical properties,and water uptake,can be easily achieved by tuning the stoichiometric ratio of different monomers.Sometimes,macromolecular crosslinker or PTFE can be used to further improve the mechanical and thermal stability of PVBC.136In addition,considering that a large excess of the solvent used in polymerization and membrane formation may bring about the toxic risk to the environment,it is desirable to develop simple friendly methods for production of quaternized anion exchange membrane.Herein,Wu et al.137,138developed a friendly solvent-free synthesis strategy.In detail,the polymerization started in liquid monomers instead of additional solvents,followed by in situ polymerization and then quaternization for preparation of QAEM.

    Fig.5 Direct bottom-up copolymerization of VBC and other monomers for quaternized anion exchange membrane135 AIBN:azobisisobutronitrile

    Fig.6 Synthesis of poly(amimCl-MMA)membrane in OH-form:co-polymerization and alkalization154

    The fourth preparing route without chloromethylether can be actualized via some available nitrogen-containing,halogen-containing,or oxygen-containing starting materials such as 4-vinylpyridine,halide,chitosan,poly(vinyl alcohol)and so on.139In the case of nitrogen-containing starting materials,the quaternization can be easily achieved by direct SN2 nucleophilic substitution reaction with halohydrocarbon.140,141For example,Wan et al.142synthesized a series of quaternized chitosan derivatives(QCDs)with glycidyltrimethylammonium chloride as a main quaternized agent.After tuning the degree of crosslinking and quaternization,the as-synthesized quaternary chitosan membranes showed controllable crystallinity,swelling behavior,ionic conductivity,and thermal stability,indicating potential applications for APEMFC.Likewise,the bottom-up copolymerization of N-containing monomer and other monomers provided an alternative synthesis route.143,144The resonance effect of the guanidine moiety or imidazole ring can reduce the charge density of the cation,weaken the hydroxide attack to the cation,and improve the alkali-resistance of QAEM.145-148For example,Zhang et al.149designed and prepared a pore-filling membrane via polymerization of 3-methacryloylamino propyl trimethylammonium chloride in a porous substrate.The water movement of APEMFC with this membrane was accurately observed by a water collection method.It was experimentally confirmed for the first time that the water moved from the anode to the cathode,opposite to the moving direction of the proton in acid polymer electrolyte membrane fuel cell.The model calculation also showed that the Ohm resistance of the membrane can reduce as much as possible when the relative humidity was high enough by desirable water movement.149

    Ionic liquids,a new class of benign organic electrolytes,have remarkable physicochemical properties,such as ideal conductivity,wide electrochemical window,low volatility,and excellent thermal and chemical stability.Imidazolium-type ionic liquids have been used as the monomers for QAEM preparation due to their high ionic conductivity,stability and solubility.150-153As shown in Fig.6,novel anion exchange membranes were prepared by copolymerization of imidazolium-type ionic liquids and alkyl acrylates.154The hydroxyl ionic conductivity of the as-synthesized membrane can reach as high as 3.33×10-2S·cm-1in deionized water at 30°C.The ex situ stability tests showed that the onset of mass loss was above 200°C,and the membranes still maintained good ionic conductivity in 6 mol·L-1NaOH solution at 80 °C for 120 h.Such membranes exhibited superior thermal stability and alkali resistance than alkyl quaternary ammonium polymers.

    Halogen-containing starting polymer can be directly quaternized in an aqueous trimethylamine solution for some time,and then final quaternary ammonium anion exchange membrane was obtained via ion-exchanging with KOH solution.155Additionally,nonfunctional polymer plastics such as poly(ether ether ketone)(PEEK),polyether sulfone(PES),and polyphene oxide(PPO)or other copolymers from the monomers can also be used as the starting materials,but it is necessary to perform the halogenations in advance,that is,bromination or chlorination in most cases.156-164By this method,comb-shaped PPO-based QAEM was designed and prepared,and the resultant membrane can maintain the initial ionic conductivity in 1 mol·L-1NaOH solution for as long as 2000 h at 80°C.165A novel PES-based QAEM was also successfully prepared,in which bromination reaction was carried out for preparing the target membranes.The corresponding ionic conductivity at 30 and 80 °C in deionized water was 6.00×10-2and 13.00×10-2S·cm-1,respectively,while its methanol permeability was as low as 1.02×10-9cm2·s-1at 30 °C.166Considering that the flexibility of pendant side chain can promote better micro-phase separation,higher conductivity,and dimensional stability of the conductive polymer,Shen et al.167designed and prepared poly(aryl ether ketone)with methyl groups on pendant phenyls,in which N-bromosuccinimide(NBS)was used for the bromination of the methyl groups on pendant phenyls.The ionic conductivity of the final polymer was 0.024 S·cm-1at 20 °C and 0.0307 S·cm-1at 80°C in deionized water,respectively.Likewise,Lin et al.168,169synthesized PPO-based novel anion exchange membranes containing pendant guanidinium or benzimidazolium groups.The resultant QAEMs exhibited high ionic conductivity,excellent thermal stability and alkali-resistance attributed to the p electron conjugated system of the pendant guanidinium or benzimidazolium head-groups.

    In the case of oxygen-containing starting materials,poly(vinyl alcohol)(PVA)is a kind of common starting material due to its outstanding features:low cost,good film-forming ability,chemical stability,and availability of crosslinking sites.In this case,QAEM can be synthesized by open-ring polycondensation of PVAand bifunctional compounds with epoxy and quaternized groups,in which epoxy group was responsible for combination with PVA main chain,while quaternized group was responsible for the ionic conductivity.As displayed in Fig.7,Ye et al.170quaternized PVA(QPVA)by directly grafting 4-methyl-4-glycidylmorpholinium chloride onto PVA.After crosslinked with glutaraldehyde,the resultant quaternized PVA membrane exhibited high ionic conductivity(7.34×10-3S·cm-1)and low methanol permeability.In addition,in order to further improve the transport property and durable performance of PVA-based QAME,quaternized SiO2was added into the QPVAmatrix.171,172

    Fig.7 Synthetic reaction route for the preparation of QPVA170

    As mentioned above,intensive efforts were made to investigate quaternary anion exchange membranes for APEMFC application,and many significant progresses were made.For example,the highest power density of H2-fueled APEMFC with irradiationgrafting QAEM was as high as 823 mW·cm-2at 60 °C;and the in situ durability for 520 h of commercial Tokuyama?membrane was also achieved.However,up to now,there have not been wide and deep in situ stability tests for APEMFC yet,although a large quantity of new QAEMs was designed and synthesized.Awidely quoted concern with quaternary anion exchange membranes is the stability in the alkaline environment,that is,alkali-resistance,especially at elevated temperatures.173The recognized degradation mechanisms of quaternized groups include:(i)Hofmann elimination;(ii)nucleophilic substitution;(iii)Ylide formation.Hoffman elimination reaction usually results in the loss of quaternized group,wherein hydroxyl ion attacks β-hydrogen to the cation forming a double bond between α-carbon and β-carbon.Density function theory(DFT)calculation also suggested that Hofmann elimination was the most vulnerable pathway to degradation.174Direct nucleophilic displacement occurs via the attack to α-carbon atom of the cation,which can either detach the cation groups from QAEM or convert quaternary ammonium groups into tertiary amines.Degradation through the Ylide pathway begins with hydroxyl ion′s attack to a methyl group of the cations and produces a water molecule along with an Ylide intermediate.

    In order to obtain QAEM with high stability,some strategies were applied:(i)some conjugated head-groups including guanidinium and imidazolium are introduced into QAEM in order to weaken the hydroxide attack to the cation and improve the alkaliresistance,as mentioned above;175(ii)crosslinking among polymer chains for stronger mechanical property.176,177In the case of the second strategy,some reinforced inorganic or organic fillers such as TiO2,178SiO2,179,180ZrO2,181crosslinked polyvinyl alcohol(PVA)182-184or PTFE185-189were also added into the matrix of QAEM for high mechanical stability.For example,Zhao et al.189synthesized polyvinyl benzyl chloride membrane,which was crosslinked with diethylamine and reinforced by PTFE matrix.The obtained target membrane exhibited satisfying ex situ ionic conductivity stability and in situ durability for about 230 h with mild degradation,as shown in Fig.8.

    Additionally,the possible reason resulting in low in situ durability may be also due to the absence of anion exchange ionomer binder for triple-phase boundary in the electrode,which is similar to Nafion?solution in proton exchange membrane fuel cell.As shown in Fig.9,alkaline polymer electrode binder can not only bond the catalyst particles together but also facilitate the ionic transport by building triple-phase boundary.190Therefore,the development of alkaline polymer bond should be vital to assemble metal-cation-free alkaline membrane electrode assembly with long-term stability.191However,for the moment,although there have existed different types of QAEMs in literature as discussed above,the corresponding suitable catalyst binder for APEMFC is not easily available yet.In early literature,192PTFE or Nafion?ionomers were usually used as a temporary strategy to deal with this challenge.For example,Qiao et al.192assembled metal-cationfree APEMFC still with Nafion?solution as electrode binder for constructing triple phase interface of electrochemical reaction,and the peak power density was only 32.7 mW·cm-2at 25 °C.No doubt,this value would be better if suitable alkaline binder counterpart was used.As expected,the latest results showed that all-solid-state H2/O2APEMFC can output the peak power density of 823 mW·cm-2at 60 °C with poly(vinylbenzyl chloride)as electrode binder,which can rival with that of proton exchange membrane fuel cell.123Additionally,layered double hydroxides,aminosilane-based and chloride conductive layer can also be in-corporated into the electrode structure to improve the triple-phase boundary.193-195

    Fig.8 (a)Ionic conductivity stability test,(b)voltage-current density polarization curves,and(c)in situ stability test of alkaline H2/O2fuel cell with crosslinked PTFE-reinforced polyvinyl benzyl chloride membrane189

    2.2 Metal-cation-based anion exchange membrane

    Beside traditional quaternized anion exchange membrane,anion exchange membrane can also be synthesized via the chelation of metal cations with N-containing or O-containing materials,in which metal cations such as Ru2+and K+act as fixed positive groups,and anions acts as movable charge carriers.Based on this idea,novel metal-cation-based anion exchange membrane containing ruthenium complex was designed and synthesized recently.As shown in Fig.10,40each Ru2+can combine with six nitrogen atoms containing lone electron pairs to form ruthenium complex,and such a complex can have two associated counter anions,different from most ammonium-based and phosphoniumbased anion exchange membranes only with single cation-anion pairs.Such a new metal-cation-based anion exchange membrane exhibited higher anion conductivity,mechanical properties,alkaliresistance as well as methanol tolerance than traditional quaternary anion exchange membrane.40

    Fig.9 Schematic for the architecture of ionomer-bindercontaining membrane electrode assembly190 MEA:membrane&electrode assembly

    Crown ethers are ring-shaped heterocyclic compounds containing several ether groups,and their repeating unit is ethyleneoxy group(―CH2CH2O―).Important members of this series are the tetramer(n=4),the pentamer(n=5),and the hexamer(n=6).Crown ethers can strongly combine with certain cations to form complexes.When metal atoms such as sodium or potassium pass through the center of the ring,they can attach themselves to the exposed oxygen atoms like a key in a lock.The denticity of the crown ether influences its affinity for various metal cations.For example,18-crown-6 ether has high affinity for K+,15-crown-5 ether for Na+,and 12-crown-4 ether for Li+,respectively.196The microstructure and ball-and-stick model of 18-crown-6 ether coordinating a potassium ion are shown in Fig.11.Based on this property of crown ether,metal-cation-based anion exchange membrane can be synthesized by chemically grafting pendant 18-crown-6 ether onto the polymer backbone,followed by combination of KOH.197Similar to ruthenium complex,metal cation K+can be fixed into the polymer matrix by chelating with 6 oxygen atoms,while OH-is unsolvated or naked and thus acts as the movable charge carrier.The obtained membrane displayed higher thermal stability,alkali-resistance,and ionic conductivity than quaternized anion exchange membrane,implying a potential application in APEMFC.

    Fig.10 Synthesis of metal-cation-based anion exchange membrane40

    polybenzimidazole(PBI)membrane is well known to possess excellent endurance both in alkaline medium and at high temperature.198,199It is a weak basic polymer due to two imidazole rings in one repeating unit of PBI matrix.Inherently,PBI is an electronic and ionic insulator,but it can become an ionic conductor by being functionalized with the acids200and inorganic hydroxides,201,202apart from quaternization with halogenated hydrocarbons as mentioned above.Compared with acid-doped PBI membrane,there are fewer literature about alkali-doped PBI membrane for alkaline fuel cell.The first investigation about alkali doped PBI membrane for alkaline H2/O2fuel cell was reported in 2000.203Recently,the application of PBI/KOH membrane for alkaline direct ethanol fuel cell was carried out and the satisfying results were achieved in our laboratory.204,205The obtained membrane exhibited excellent thermal stability as well as in situ durability for 336 h in air-breathing Pt-free alkaline direct ethanol fuel cell at 60°C(Fig.12).206When this kind of membrane was used in alkaline direct ethylene glycol fuel cell,the corresponding peak power density can reach as high as 80 mW·cm-2at 60 °C and 112 mW·cm-2at 90 °C,respectively.The power output at 60°C was 67%higher than that of acid direct ethylene glycol fuel cell,mainly attributed to the superior electrochemical kinetics of both ethylene glycol oxidation and oxygen reduction reactions in alkaline medium.207The interaction between KOH and PBI matrix was also explored,and scanning electron microscope(SEM)and energy dispersive X-ray spectrometer(EDX)results showed that the concentration of K element within PBI/KOH membrane was much higher than that of O element.Possible reason may be due to double resources of K element:(i)K+combined with―NH―in PBI matrix,meanwhile,H2O was produced and left as a result of a neutralization between H in―NH―and OH-in the medium(Fig.13),206(ii)K+chelated with pyridine―N in PBI membrane by complexation with OH-as movable charger carrier,thus endowing the membrane with the ionic conductivity.

    Fig.11 Microstructure and ball-and-stick model of 18-crown-6 ether coordinating a potassium ion

    2.3 Organic/inorganic hybrid alkaline membrane

    Fig.12 Lifetime of air breathing Pt-free alkaline direct ethanol fuel cell with PBI/KOH at 60°C 206

    Fig.13 Bond lengths and bond energies of N―K(a)and N―H(b)calculated by density functional theory206

    Recently,organic/inorganic hybrid anion exchange membrane have gained much interest because suitable combination of two components can endow the composite with some remarkable changes in mechanical,thermal,and electrical properties compared to single material especially for those via molecular-level integration.Generally,organic polymers offer structural flexibility,convenient processing,and good film-forming ability,while inorganic phase is responsible for crystalline,high carrier mobility,porous structure for mass transport,thermal and mechanical stabilities.In the case of application for APEMFC,polyvinyl alcohol and chitosan usually act as the organic polymer phase,while KOH is the second inorganic phase.208-211Sometimes,in order to further optimize mechanical property and the porous structure for better transport properties,the third inorganic phase such as SiO2,212carbon nanotubes,213layered double hydroxide,214graphene nanosheets,or organic polymer215-217etc.was also introduced into the composite membrane.For example,hybrid membrane containing graphene nanosheets and poly(vinyl alcohol)(PVA)was designed and prepared for alkaline direct methanol fuel cell,and the transport property of hybrid membrane was explored.The results suggested that graphene nanosheets were uniformly dispersed,resulting in continuous,well-connected and tortuous ion transport channels.The addition of only 0.7%graphene nanosheets into PVAmatrix brought about the increase by 126%in ionic conductivity and 55%reduction in methanol permeability,while the loading of 1.4%graphene increased by 73%the tensile strength.For special consideration into high ionic conductivity,the further quaternization of the third phase was also performed.218Chitosan is a main derivative of chitin and it can be mainly obtained by deacetylating chitin with an alkaline treatment.Although it is a weak-alkaline polymer,its ionic conductivity can be close to 0.001 S·cm-1after full hydration,which is still not high enough for fuel cell.Therefore,chitosan/KOH hybrid membrane for alkaline fuel cell was preliminarily prepared and evaluated.219,220The obtained membrane had a three-layer structure,consisting of a porous intermediate layer and two crosslinked solid surface layers.After being hydrated for 1 h at room temperature,this membrane showed ionic conductivity near 0.01 S·cm-2.

    3 Conclusions and prospect

    Significant progresses about alkaline polymer electrolyte membrane for APEMFC have been made:up to now,the highest peak power density of H2/O2APEMFC with irradiation-grafting QAEM was as high as 823 mW·cm-2at 60 °C,and in situ durability tests for 520 h of commercial Tokuyama?membrane were achieved too.Among various alkaline polymer electrolytes,quaternized anion exchange membrane was still the most promising membrane for APEMFC,although the thermal stability and alkali-resistance need be further enhanced;metal-cation-based anion exchange membrane and organic/inorganic hybrid membrane may be fit for high temperature APEMFC due to their high stability.221

    On the other hand,there still existed some challenges to deal with:(i)soluble anion exchange ionomer electrode binder similar to commercial Nafion?soultion for building triple-phase interface may be one of the effective solutions to achieve better performances of metal-cation-free APEMFC,however,the corresponding investigation need be intensively carried out because there still is not authoritative alkaline counterpart to Nafion?solution for the moment;(ii)although many synthesis strategies of various alkaline polymer membranes were deep and widely investigated,however,there is still no alkaline benchmark counterpart to Nafion?membrane for PEMFC.Additionally,the corresponding in situ durability tests for APEMFC are still scarce and not very satisfying,therefore,the corresponding investigation will be a continuous hot topic in the future.After all,in situ durability is final standard to judge whether an alkaline polymer membrane is suitable for fuel cell application.

    (1)Hou,H.;Di Vona,M.L.;Liu,X.;Sgreccia,E.;Chailan,J.F.;Knauth,P.Int.J.Hydrog.E nergy 2013,38,3346.doi:10.1016/j.ijhydene.2012.12.019

    (2)Hou,H.;Di Vona,M.L.;Knauth,P.ChemSusChem 2011,4,1526.doi:10.1002/cssc.v4.11

    (3)Hou,H.;Di Vona,M.L.;Knauth,P.J.Membr.Sci.2012,423-423,113.

    (4)Jiang,Q.;Jiang,L.;Hou,H.;Qi,J.;Wang,S.;Sun,G.J.Phys.Chem.C 2010,114,19714.doi:10.1021/jp1039755

    (5)Yin,J.;Shan,S.;Ng,M.S.;Yang,L.;Mott,D.;Fang,W.;Kang,N.;Luo,J.;Zhong,C.Langmuir 2013,29,9249.doi:10.1021/la401839m

    (6)Robertson,N.J.;Kostalik,H.A.,IV;Clark,T.J.;Mutolo,P.F.;Abruna,H.D.;Coates,G.W.J.Am.Ch em.S oc.2010,132,3400.doi:10.1021/ja908638d

    (7)Liu,J.P.;Ye,J.Q.;Xu,C.W.;Jiang,S.P.;Tong,Y.X.Electroch em.Commun.2007,9,2334.doi:10.1016/j.elecom.2007.06.036

    (9)Li,X.;Popov,B.N.;Kawahara,T.;Yanagi,H.J.P ower Sources 2011,196,1717.doi:10.1016/j.jpowsour.2010.10.018

    (10)Xiang,F.;Shen,P.K.Acta P hys.-Chim.Sin.2009,25,1933.[方 翔,沈培康.物理化學學報,2009,25,1933.]doi:10.3866/PKU.WHXB20090918

    (11)Yang,Y.Y.;Ren,J.;Zhang,H.X.;Zhou,Z.Y.;Sun,S.G.;Cai,W.B.Lan gmuir 2013,29,1709.doi:10.1021/la305141q

    (12)Ma,L.;He,H.;Hsu,A.;Chen,R.J.Power Sources 2013,241,696.doi:10.1016/j.jpowsour.2013.04.051

    (13)Ohyama,J.;Sato,T.;Satsuma,A.J.Power Sources 2013,225,311.doi:10.1016/j.jpowsour.2012.10.051

    (14)Varcoe,J.R.;Slade,R.C.T.;Wright,G.L.;Chen,Y.J.Phys.Chem.B 2006,110,21041.doi:10.1021/jp064898b

    (15)Zhang,Z.;Xin,L.;Li,W.Int.J.Hydrog.Energy 2012,37,9292.

    (16)Guo,J.;Zhou,J.;Chu,D.;Chen,R.J.P hys.Chem.C 2013,117,4006.doi:10.1021/jp310655y

    (17)Wang,Z.;Xin,L.;Zhao,X.;Qiu,Y.;Zhang,Z.;Baturina,O.A.;Li,W.Renewable Energy 2014,62,556.doi:10.1016/j.renene.2013.08.005

    (18)Mamlouk,M.;Kumar,S.M.S.;Gouerec,P.;Scott,K.J.Power Sources 2011,196,7594.doi:10.1016/j.jpowsour.2011.04.045

    (19)Qiao,J.;Xu,L.;Liu,Y.;Xu,P.;Shi,J.;Liu,S.;Tian,B.E lectrochim.Acta 2013,96,298.doi:10.1016/j.electacta.2013.02.030

    (20)Heli,H.;Jafarian,M.;Mahjani,M.G.;Gobal,F.Electrochim.A cta 2004,49,4999.doi:10.1016/j.electacta.2004.06.015

    (21)Sakamoto,T.;Asazawa,K.;Yamada,K.;Tanaka,H.Catalysis Today 2011,164,181.doi:10.1016/j.cattod.2010.11.012

    (22)Verma,A.;Jha,A.K.;Basu,S.J.P ower Sources 2005,141,30.doi:10.1016/j.jpowsour.2004.09.005

    (23)Rao,C.V.;Ishikawa,Y.J.P hys.Chem.C 2012,116,4340.doi:10.1021/jp210840a

    (24)Huang,D.;Zhang,B.;Zhang,Y.;Zhan,F.;Xu,X.;Shen,Y.;Wang,M.J.Mater.Chem.A 2013,1,1415.doi:10.1039/c2ta00552b

    (25)Yang,S.;Feng,X.;Wang,X.;Müllen,K.An gew.Chem.Int.E dit.2011,50,5339.doi:10.1002/anie.201100170

    (26)Chen,P.;Xiao,T.;Qian,Y.;Li,S.;Yu,S.Ad v.Mater.2013,25,3192.doi:10.1002/adma.201300515

    (27)Li,Y.S.;Zhao,T.S.Int.J.H ydrog.Energy 2012,37,15334.doi:10.1016/j.ijhydene.2012.07.119

    (28)Wang,Y.;Li,L.;Hu,L.;Zhuang,L.;Lu,J.T.;Xu,B.Q.E lectrochem.Commun.2003,5,662.doi:10.1016/S1388-2481(03)00148-6

    (29)Bahrami,H.;Faghri,A.J.Power S ources 2012,218,286.doi:10.1016/j.jpowsour.2012.06.057

    (30)Bambagioni,V.;Bianchini,C.;Marchionni,A.;Filippi,J.;Vizza,F.;Teddy,J.;Serp,P.;Zhiani,M.J.P ower Sources 2009,190,241.doi:10.1016/j.jpowsour.2009.01.044

    (31)Ilie,A.;Simoes,M.;Baranton,S.;Coutanceau,C.;Martemianov,S.J.P ower Sources 2011,196,4965.doi:10.1016/j.jpowsour.2011.02.003

    (32)Zhang,Z.;Xin,L.;Li,W.A ppl.Catal.B:Environ.2012,119-120,40.

    (33)Bartrom,A.M.;Haan,J.L.J.Power Sources 2012,214,68.doi:10.1016/j.jpowsour.2012.04.032

    (34)Suzuki,S.;Muroyama,H.;Matsui,T.;Eguchi,K.J.Power Sources 2012,208,257.doi:10.1016/j.jpowsour.2012.02.043

    (35)Sakamoto,T.;Asazawa,K.;Chinchilla,J.S.;Martinez,U.;Halevi,B.;Atanassov,P.;Strasser,P.;Tanaka,H.J.Power Sources 2014,247,605.doi:10.1016/j.jpowsour.2013.08.107

    (36)Qiao,J.;Fu,J.;Liu,L.;Zhang,J.;Xie,J.;Li,G.Solid State Ionics 2012,214,6.doi:10.1016/j.ssi.2012.02.059

    (37)Xia,Z.;Yuan,S.;Jiang,G.;Guo,X.;Fang,J.;Liu,L.;Qiao,J.;Yin,J.J.Membr.Sci.2012,390-391,152.

    (38)Couture,G.;Alaaeddine,A.;Boschet,F.;Ameduri,B.P rog.Polym.Sci.2011,36,1521.doi:10.1016/j.progpolymsci.2011.04.004

    (39)Merle,G.;Wessling,M.;Nijmeijer,K.J.Memb r.Sci.2011,377,1.doi:10.1016/j.memsci.2011.04.043

    (40)Zha,Y.;Miller,M.L.D.;Johnson,Z.D.;Hickner,M.A.;Tew,G.N.J.Am.Chem.Soc.2012,134,4493.doi:10.1021/ja211365r

    (41)Huo,S.;Deng,H.;Chang,Y.;Jiao,K.Int.J.H ydrog.Energy 2012,37,18389.doi:10.1016/j.ijhydene.2012.09.074

    (42)Kang,S.;Jung,D.;Shin,J.;Lim,S.;Kim,S.K.;Shul,Y.;Peck,D.H.J.Memb r.Sci.2013,447,36.doi:10.1016/j.memsci.2013.07.005

    (43)Fujimoto,C.;Kim,D.S.;Hibbs,M.;Wrobleski,D.;Kim,Y.S.J.Membr.Sci.2012,423-424,438.

    (44)Piana,M.;Boccia,M.;Filpi,A.;Flammia,E.;Miller,H.A.;Orsini,M.;Salusti,F.;Santiccioli,S.;Ciardelli,F.;Pucci,A.J.Power Sources 2010,195,5875.doi:10.1016/j.jpowsour.2009.12.085

    (45)Li,Y.S.;Zhao,T.S.;Liang,Z.X.J.P ower Sources 2009,190,223.doi:10.1016/j.jpowsour.2009.01.055

    (46)Deng,H.;Huo,S.;Chang,Y.;Zhou,Y.;Jiao,K.Int.J.H ydro g.Energy 2013,38,6509.doi:10.1016/j.ijhydene.2013.03.045

    (47)Jung,H.;Fujii,K.;Tamaki,T.;Ohashi,H.;Ito,T.;Yamaguchi,T.J.Memb r.Sci.2011,373,107.doi:10.1016/j.memsci.2011.02.044

    (48)Gu,S.;Cai,R.;Yan,Y.Chem.Commun.2011,47,2856.doi:10.1039/c0cc04335d

    (49)Gu,S.;Cai,R.;Luo,T.;Chen,Z.;Sun,M.;Liu,Y.;He,G.;Yan,Y.Angew.Chem.Int.Edit.2009,48,6499.doi:10.1002/anie.v48:35

    (50)Yazicigil,Z.;Oztekin,Y.Desalination 2006,190,71.doi:10.1016/j.desal.2005.07.016

    (51)Grekovich,A.L.;Mikhelson,K.N.J.Electroanal.2002,14,1391.doi:10.1002/1521-4109(200211)14:19/20<1391::AIDELAN1391>3.0.CO;2-S

    (52)Koo,J.S.;Kwak,N.S.;Hwang,T.S.J.Membr.Sci.2012,423-424,293.

    (53)Wang,Z.X.;Luo,Y.B.;Yu,P.J.Membr.Sci.2006,280,134.doi:10.1016/j.memsci.2006.01.015

    (54)Hwang,G.J.;Ohya,H.J.Membr.Sci.1997,32,55.

    (55)Zhang,M.;Kim,H.K.;Chalkova,E.;Mark,F.;Lvov,S.N.;Chung,T.C.M.Macromolecules 2011,44,5937.doi:10.1021/ma200836d

    (56)Noonan,K.J.T.;Hugar,K.M.;Kostalik,H.A.,IV;Lobkovsky,E.B.;Abrun,H.D.;Coates,G.W.J.Am.Chem.Soc.2012,134,18161.doi:10.1021/ja307466s

    (57)He,Q.;Ren,X.J.Power Sources 2012,220,373.doi:10.1016/j.jpowsour.2012.07.039

    (58)Kim,J.H.;Kim,H.K.;Hwang,K.T.;Lee,J.Y.Int.J.H ydro g.E nergy 2010,35,768.doi:10.1016/j.ijhydene.2009.10.100

    (59)Prakash,G.K.S.;Krause,F.C.;Viva,F.A.;Narayanan,S.R.;Olah,G.A.J.P ower Sources 2011,196,7967.doi:10.1016/j.jpowsour.2011.05.056

    (60)Leng,Y.J.;Chen,G.;Mendoza,A.J.;Tighe,T.B.;Hickner,M.A.;Wang,C.Y.J.Am.Chem.Soc.2012,134,9054.doi:10.1021/ja302439z

    (61)Li,Y.S.;He,Y.L.;Yang,W.W.Int.J.Hydrog.E nergy 2013,38,13427.doi:10.1016/j.ijhydene.2013.07.042

    (62)Wang,X.;McClure,J.P.;Fedkiw,P.S.Electroch im.Acta 2012,79,126.doi:10.1016/j.electacta.2012.06.098

    (63)Giffin,G.A.;Lavina,S.;Pace,G.;Di Noto V.J.Phys.Chem.C 2012,116,23965.doi:10.1021/jp3094879

    (64)Follain,N.;Roualdes,S.;Marais,S.;Frugier,J.;Reinholdt,M.J.Phys.Chem.C 2012,116,8510.doi:10.1021/jp2109835

    (65)Scott,K.;Yu,E.;Vlachogiannopoulos,G.;Shivare,M.;Duteanu,N.J.P ower Sources 2008,175,452.doi:10.1016/j.jpowsour.2007.09.027

    (66)Frenzel,I.;Holdik,H.;Stamatialis,D.;Pourcelly,G.;Wessling,M.J.Membr.Sci.2005,261,49.doi:10.1016/j.memsci.2005.03.031

    (67)Aarnio,A.S.;Hietala,S.;Rauhala,T.;Kallio,T.J.Power Sources 2011,196,6153.doi:10.1016/j.jpowsour.2011.03.028(68)Li,Y.S.;Zhao,T.S.;Yang,W.W.Int.J.H ydrog.Energy 2010,35,5656.

    (69)Matsuoka,K.;Iriyama,Y.;Abe,T.;Matsuoka,M.;Ogumi,Z.J.Power Sources 2005,150,27.doi:10.1016/j.jpowsour.2005.02.020

    (70)Li,Y.S.;Zhao,T.S.;Liang,Z.X.J.Power Sources 2009,187,387.doi:10.1016/j.jpowsour.2008.10.132

    (71)Li,Y.S.;Zhao,T.S.Int.J.H ydrog.Energy 2011,36,7707.doi:10.1016/j.ijhydene.2011.03.090

    (72)Li,Y.S.;Zhao,T.S.Int.J.H ydrog.Energy 2012,37,4413.doi:10.1016/j.ijhydene.2011.11.086

    (73)Shen,S.Y.;Zhao,T.S.;Wu,Q.X.Int.J.H ydrog.Energy 2012,37,575.doi:10.1016/j.ijhydene.2011.09.077

    (74)Suzuki,S.;Muroyama,H.;Matsui,T.;Eguchi,K.Electrochim.A cta 2013,88,552.doi:10.1016/j.electacta.2012.10.105

    (75)Li,Y.S.;Zhao,T.S.;Chen,R.J.Power Sources 2011,196,133.doi:10.1016/j.jpowsour.2010.06.111

    (76)Cao,Y.C.;Wang,X.;Scott,K.J.Power Sources 2012,201,226.doi:10.1016/j.jpowsour.2011.10.113

    (77)Price,S.C.;Ren,X.;Jackson,A.C.;Ye,Y.;Elabd,Y.A.;Beyer,F.L.Macromolecules 2013,46,7332.doi:10.1021/ma400995n

    (78)Tripathi,B.P.;Kumar,M.;Shahi,V.K.J.Membr.Sci.2010,360,90.doi:10.1016/j.memsci.2010.05.005

    (79)Tanaka,M.;Koike,M.;Miyatake,K.;Watanabe,M.Macromolecules 2010,43,2657.doi:10.1021/ma902479d

    (80)Li,N.;Zhang,Q.,Wang,C.;Lee,Y.M.;Guiver,M.D.Macromolecules 2012,45,2411.doi:10.1021/ma202681z

    (81)Wang,J.;Wang,J.;Li,S.;Zhang,S.J.Membr.Sci.2011,368,246.doi:10.1016/j.memsci.2010.11.058

    (82)Mamlouk,M.;Scott,K.;Horsfall,J.A.;Williams,C.Int.J.H ydrog.Energy 2011,36,7191.doi:10.1016/j.ijhydene.2011.03.074

    (83)Zhang,J.;Qiao,J.;Jiang,G.;Liu,L.;Liu,Y.J.Power Sources 2013,240,359.doi:10.1016/j.jpowsour.2013.03.162

    (84)Tanaka,M.;Koike,M.;Miyatake,K.;Watanabe,M.Polym.Ch em.2011,2,99.doi:10.1039/c0py00238k

    (85)Sun,L.;Guo,J.;Zhou,J.;Xu,Q.;Chu,D.;Chen,R.J.Power Sources 2012,202,70.doi:10.1016/j.jpowsour.2011.11.023

    (86)Lee,K.M.;Wycisk,R.;Litt,M.;Pintauro,P.N.J.Membr.Sci.2011,383,254.doi:10.1016/j.memsci.2011.08.062

    (87)Maesa,A.M.;Pandeya,T.P.;Vandiver,M.A.;Lundquist,L.K.;Yang,Y.;Horan,J.L.;Krosovsky,A.;Liberatore,M.W.;Seifert,S.;Herring,A.M.Electrochim.A cta 2013,110,260.doi:10.1016/j.electacta.2013.04.033

    (88)Zeng,L.;Tang,Z.K.;Zhao,T.S.A ppl.Energy 2014,115,405.doi:10.1016/j.apenergy.2013.11.039

    (89)Li,X.;Yu,Y.;Liu,Q.;Meng,Y.ACS A ppl.Mater.Interfaces 2012,4,3627.doi:10.1021/am3007005

    (90)Zhou,J.;Guo,J.;Chu,D.;Chen,R.J.Power Sources 2012,219,272.doi:10.1016/j.jpowsour.2012.07.051

    (91)Zeng,Q.H.;Liu,Q.L.;Broadwell,I.;Zhu,A.M.;Xiong,Y.;Tu,X.P.J.Memb r.Sci.2010,349,237.doi:10.1016/j.memsci.2009.11.051

    (92)Seo,D.W.;Lim,Y.D.;Hossain,M.A.;Lee,S.H.;Lee,H.C.;Jang,H.H.;Choi,S.Y.;Kim,W.G.Int.J.H ydro g.Energy 2012,38,579.

    (93)Abuin,G.C.;Nonjola,P.;Franceschini,E.A.;Izraelevitch,F.H.;Mathe,M.K.;Corti,H.R.Int.J.Hydrog.Energy 2010,35,5849.doi:10.1016/j.ijhydene.2009.12.128

    (94)Seo,D.W.;Hossain,M.A.;Lee,D.H.;Lim,Y.D.;Lee,S.H.;Lee,H.C.;Hong,T.W.;Kim,W.G.Electrochim.A cta 2012,86,360.doi:10.1016/j.electacta.2012.04.065

    (95)Zhao,Z.;Gong,F.;Zhang,S.;Li,S.J.P ower Sources 2012,218,368.doi:10.1016/j.jpowsour.2012.07.011

    (96)Zarrin,H.;Wu,J.;Fowler,M.;Chen,Z.J.Memb r.Sci.2012,394-395,193.

    (97)Wang,G.;Weng,Y.;Chu,D.;Chen,R.;Xie,D.J.Memb r.Sci.2009,332,63.

    (98)Hossain,M.A.;Lim,Y.;Lee,S.;Jang,H.;Choi,S.;Jeon,Y.;Lim,J.;Kim,W.G.Int.J.H ydrog.Energy 2014,39,2731.

    (99)Li,X.;Yu,Y.;Liu,Q.;Meng,Y.J.Membr.Sci.2013,436,202.doi:10.1016/j.memsci.2013.02.041

    (100)Tanaka,M.;Fukasawa,K.;Nishino,E.;Yamaguchi,S.;Yamada,K.;Tanaka,H.;Bae,B.;Miyatake,K.;Watanabe,M.J.A m.Chem.Soc.2011,133,10646.doi:10.1021/ja204166e

    (101)Park,D.Y.;Kohl,P.A.;Beckham,H.W.J.Phys.Chem.C 2013,117,15468.doi:10.1021/jp311987v

    (102)Zeng,L.;Zhao,T.S.Electrochem.Commun.2013,34,278.doi:10.1016/j.elecom.2013.07.015

    (103)Mahendiravarman,E.;Sangeetha,D.Int.J.H ydrog.Energ y 2013,38,2471.

    (104)Yan,X.;He,G.;Gu,S.;Wu,X.;Du,L.;Zhang,H.J.Membr.Sci.2011,375,204.doi:10.1016/j.memsci.2011.03.046

    (105)Yan,X.;He,G.;Gu,S.;Wu,X.;Du,L.;Wang,Y.Int.J.H ydrog.Energ y 2012,37,5216.doi:10.1016/j.ijhydene.2011.12.069

    (106)Yan,X.;Wang,Y.;He,G.;Hu,Z.;Wu,X.Int.J.H ydrog.Energy 2012,38,7964;.

    (107)Lu,W.;Shao,Z.;Zhang,G.;Li,J.;Zhao,Y.;Yi,B.Solid State Ionics 2013,245-246,8.

    (108)Lu,W.;Shao,Z.;Zhang,G.;Zhao,Y.;Li,J.;Yi,B.Int.J.H ydrog.Energ y 2013,38,9285.doi:10.1016/j.ijhydene.2013.05.070

    (109)Vinodh,R.;Purushothaman,M.;Sangeetha,D.Int.J.H ydrog.Energy 2011,36,291.

    (110)Wang,X.;Li,M.;Golding,B.T.;Sadeghi,M.;Cao,Y.;Yu,E.H.;Scott,K.Int.J.H ydro g.Energy 2011,36,10022.doi:10.1016/j.ijhydene.2011.05.054

    (111)Jasti,A.;Prakash,S.;Shahi,V.K.J.Membr.Sci.2013,428,470.doi:10.1016/j.memsci.2012.11.016

    (112)Han,J.;Peng,H.;Pan,J.;Wei,L.;Li,G.;Chen,C.;Xiao,L.;Lu,J.;Zhuang,L.ACS Appl.Mater.Interfaces 2014,5,13405.

    (113)Mamlouk,M.;Scott,K.J.Power Sources 2012,211,140-146.doi:10.1016/j.jpowsour.2012.03.100

    (114)Luo,Y.;Guo,J.;Liu,Y.;Shao,Q.;Wang,C.;Chu,D.J.Membr.Sci.2012,423-424,209.

    (115)Danks,T.N.;Slade,R.C.T.;Varcoe,J.R.J.Mater.Chem.2003,13,712.doi:10.1039/b212164f

    (116)Ko,B.S.;Sohn,J.Y.;Shin,J.Polymer 2012,53,4652.doi:10.1016/j.polymer.2012.08.002

    (117)Fang,J.;Yang,Y.;Lu,X.;Ye,M.;Li,W.;Zhang,Y.Int.J.H ydrog.Energ y 2012,37,594.doi:10.1016/j.ijhydene.2011.09.112

    (118)Varcoe,J.R.;Slade,R.C.T.Eletrochem.Commun.2006,8,839.doi:10.1016/j.elecom.2006.03.027

    (119)Liu,H.;Yang,S.;Wang,S.;Fang,J.;Jiang,L.;Sun,G.J.Membr.Sci.2011,369,277.doi:10.1016/j.memsci.2010.12.002

    (120)Liu,H.;Wang,S.L.;Jiang,L.H.;Sun,G.Q.Scienta Sinica Chimica 2011,41,1857.[柳 鶴,王素力,姜魯華,孫公權.中國科學:化學,2011,41,1857.]doi:10.1360/032011-590

    (121)Zikewski,J.P.;Mudri,N.H.;Varcoe,J.R.Phys.Chem.2013,89,64.

    (122)Poynton,S.D.;Kizewski,J.P.;Slade,R.C.T.;Varcoe,J.R.S olid State Ionics 2010,181,219.doi:10.1016/j.ssi.2009.01.019

    (123)Mamlouk,M.;Horsfall,J.A.;Williams,C.;Scott,K.Int.J.H ydrog.Energy 2012,37,11912.doi:10.1016/j.ijhydene.2012.05.117

    (124)Ko,B.S.;Sohn,J.Y.;Nho,Y.C.;Shin,J.Nuclear Instruments Methods in Physics Research B 2011,269,2509.doi:10.1016/j.nimb.2011.07.022

    (125)Ameduri,B.Ch em.Rev.2009,109,6632.doi:10.1021/cr800187m

    (126)Mamlouk,M.;Horsfall,J.A.;Williams,C.;Scott,K.Int.J.H ydrog.Energy 2012,37,11912.doi:10.1016/j.ijhydene.2012.05.117

    (127)Sherazi,T.A.;Sohn,J.Y.;Lee,Y.M.;Guiver,M.D.J.Memb r.S ci.2013,441,148.doi:10.1016/j.memsci.2013.03.053

    (128)Hu,J.;Zhang,C.;Jiang,L.;Fang,S.;Zhang,X.;Wang,X.;Meng,Y.J.Power Sources 2014,248,831.doi:10.1016/j.jpowsour.2013.09.099

    (129)Hu,J.;Zhang,C.;Cong,J.;Toyoda,H.;Nagatsu,M.;Meng,Y.J.P ower Sources 2011,196,4483.doi:10.1016/j.jpowsour.2011.01.034

    (130)Lin,X.;Liu,Y.;Poynton,S.D.;Ong,A.L.;Varcoe,J.R.;Wu,L.;Li,Y.;Liang,X.;Li,Q.;Xu,T.J.Power Sources 2013,233,259.doi:10.1016/j.jpowsour.2013.01.059

    (131)Sudre,G.;Inceoglu,S.;Cotanda,P.;Balsara,N.P.Macromolecules 2013,46,1519.doi:10.1021/ma302357k

    (132)Hu,J.;Meng,Y.;Zhang,C.;Fang,S.Thin Solid F ilms 2011,519,2155.doi:10.1016/j.tsf.2010.11.028

    (133)Zhang,C.;Hu,J.;Cong,J.;Zhao,Y.;Shen,W.;Toyoda,H.;Nagatsu,M.;Meng,Y.J.P ower Sources 2011,196,5386.doi:10.1016/j.jpowsour.2011.02.073

    (134)Zhang,Y.;Fang,J.;Wu,Y.;Xu,H.;Chi,X.;Li,W.,Yang,Y.;Yan,G.;Zhuang,Y.J.Colloid Interface Sci.2102,381,59.

    (135)Xu,H.;Fang,J.;Guo,M.;Lu,X.;Wei,X.;Tu,S.J.Membr.S ci.2010,354,206.doi:10.1016/j.memsci.2010.02.028

    (136)Lu,W.;Shao,Z.G.;Zhang,G.;Zhao,Y.;Yi,B.J.Power S ources 2014,248,905.doi:10.1016/j.jpowsour.2013.08.141

    (137)Wu,L.;Zhou,G.;Liu,X.;Zhang,Z.;Li,C.;Xu,T.J.Membr.S ci.2011,371,155.doi:10.1016/j.memsci.2011.01.036

    (138)Lin,X.;Gong,M.;Liu,Y.;Wu,L.;Li,Y.;Liang,X.;Li,Q.;Xu,T.J.Membr.Sci.2013,425-426,190.

    (139)Henkensmeier,D.;Cho,H.;Brela,M.;Michalak,A.;Dyck,A.;Germe,W.;Duong,N.M.H.;Jang,J.H.;Kim,H.J.;Woo,N.S.;Lim,T.H.Int.J.Hydrog.E nergy 2014,39,2842.

    (140)Hou,H.;Wang,S.;Liu,H.;Sun,L.;Jin,W.;Jing,M.;Jiang,L.;Sun,G.Int.J.H ydro g.Energy 2011,35,11955.

    (141)Wang,J.;He,R.;Che,Q.J.Colloid Interface Sci.2011,361,219.doi:10.1016/j.jcis.2011.05.039

    (142)Wan,Y.;Peppley,B.;Creber,K.A.M.;Bui,V.T.J.Power S ources 2010,195,3785.doi:10.1016/j.jpowsour.2009.11.123

    (143)Wang,J.;Wang,J.;Zhang,S.J.Membr.Sci.2012,415-416,205.

    (144)Zhang,Q.;Zhang,Q.;Wang,J.;Zhang,S.;Li,S.Polymer 2010,51,5407.doi:10.1016/j.polymer.2010.09.049

    (145)Qiu,B.;Lin,B.;Si,Z.;Qiu,L.;Chu,F.;Zhao,J.;Yan,F.J.Power S ources 2012,217,329.doi:10.1016/j.jpowsour.2012.06.041

    (146)Kim,D.;Labouriau,A.;Guiver,M.D.;Kim,Y.Chem.Mater.2011,23,3795.doi:10.1021/cm2016164

    (147)Yan,X.;Gu,S.;He,G.;Wu,X.;Benziger,J.J.P ower Sources 2014,250,90.doi:10.1016/j.jpowsour.2013.10.140

    (148)Liu,L.;Li,Q.;Dai,J.;Wang,H.;Jin,B.;Bai,R.J.Membr.Sci.2014,453,52.doi:10.1016/j.memsci.2013.10.054

    (149)Zhang,H.;Ohashi,H.;Tamaki,T.;Yamaguchi,T.J.P hys.Chem.C 2012,116,7650.doi:10.1021/jp211084b

    (150)Ye,Y.;Sharick,S.;Davis,E.M.;Winey,K.I.;Elabd,Y.A.ACS Macro.Lett.2013,2,575.doi:10.1021/mz400210a

    (151)Ye,Y.;Elabd,Y.A.Macromolecules 2011,44,8494.doi:10.1021/ma201864u

    (152)Lin,B.;Qiu,L.;Lu,J.;Yan,F.Chem.Mater.2010,22,6718.doi:10.1021/cm102957g

    (153)Lin,B.;Qiu,L.;Qiu,B.;Peng,Y.;Yan,F.Macromolecules 2011,44,9642.doi:10.1021/ma202159d

    (154)Guo,M.;Fang,J.;Xu,H.;Li,W.;Lu,X.;Lan,C.;Li,K.J.Membr.Sci.2010,362,97.doi:10.1016/j.memsci.2010.06.026

    (155)Li,X.;Yu,Y.;Liu,Q.;Meng,Y.Int.J.H ydrog.Energy 2013,38,11067.doi:10.1016/j.ijhydene.2013.01.006

    (156)Hu,Q.;Shang,Y.;Wang,Y.;Xu,M.;Wang,S.;Xie,X.G.;Liu,Y.;Zhang,H.;Wang,J.;Mao,Z.Int.J.H ydrog.Energy 2012,37,12659.doi:10.1016/j.ijhydene.2012.05.077

    (157)Chen,D.;Hickner,M.A.Macromolecules 2013,46,9270.doi:10.1021/ma401620m

    (158)Yan,J.;Hickner,M.A.Macromolecules 2010,43,2349.doi:10.1021/ma902430y

    (159)Xu,S.;Zhang,G.;Zhang,Y.;Zhao,C.;Ma,W.;Sun,H.;Zhang,N.;Zhang,L.;Jiang,H.;Na,H.J.P ower Sources 2012,209,228.doi:10.1016/j.jpowsour.2012.02.076

    (160)Katzfub,A.;Gogel,V.;Jorissen,L.;Kerres,J.J.Membr.Sci.2013,425-426,131.

    (161)Tanaka,M.;Koike,M.;Miyatake,K.;Watanabe,M.Polym.Chem.2011,2,99.doi:10.1039/c0py00238k

    (162)Wang,W.;Wang,S.;Li,W.;Xie,X.;Lv,Y.Int.J.Hydrog.Energ y 2013,38,11045.doi:10.1016/j.ijhydene.2013.03.166

    (163)Rao,A.H.N.;Thankamony,R.L.;Kim,H.J.;Nam,S.;Kim,T.H.Polymer 2013,54,111.doi:10.1016/j.polymer.2012.11.023

    (164)Li,C.;Wang,S.;Wang,W.;Xie,X.;Lv,Y.;Deng,C.Int.J.H ydrog.Energ y 2013,38,11038.

    (165)Li,N.;Leng,Y.;Hickner,M.A.;Wang,C.Y.J.Am.Chem.Soc.2013,135,10124.doi:10.1021/ja403671u

    (166)Zhao,C.H.;Gong,Y.;Liu,Q.L.;Zhang,Q.G.;Zhu,A.M.Int.J.H ydro g.Energy 2012,37,11383.doi:10.1016/j.ijhydene.2012.04.163

    (167)Shen,K.;Pang,J.;Feng,S.;Wang,Y.;Jiang,Z.J.Membr.Sci.2013,440,20.

    (168)Lin,X.;Wu,L.;Liu,Y.;Ong,A.L.;Poynton,S.D.;Varcoe,J.R.;Xu,T.J.P ower Sources 2012,217,373.doi:10.1016/j.jpowsour.2012.05.062

    (169)Lin,X.;Liang,X.;Poynton,S.D.;Varcoe,J.R.;Ong,A.L.;Ran,J.;Li,Y.;Li,Q.;Xu,T.J.Membr.Sci.2013,443,193.doi:10.1016/j.memsci.2013.04.059

    (170)Ye,L.;Zhai,L.;Fang,J.;Liu,J.;Li,C.;Guan,R.Solid State Ionics 2013,240,1.doi:10.1016/j.ssi.2013.03.019

    (171)Yang,C.C.;Chiu,S.S.;Kuo,S.C.;Liou,T.H.J.Power S ources 2012,199,37.doi:10.1016/j.jpowsour.2011.10.020

    (172)Wang,J.;Li,S.;Zhang,S.Macromolecules 2010,43,3890.doi:10.1021/ma100260a

    (173)Chen,D.;Hickner,M.A.AC S Appl.Mater.Interfaces 2012,4,5775.doi:10.1021/am301557w

    (174)Long,H.;Kim,K.;Pivovar,B.S.J.Phys.Chem.C 2012,116,9419.doi:10.1021/jp3014964

    (175)Kim,D.S.;Fujimoto,C.H.;Hibbs,M.R.;Labouriau,A.;Choe,Y.K.;Kim,Y.S.Macromolecules 2013,46,7826.doi:10.1021/ma401568f

    (176)Luo,Y.;Guo,J.;Wang,C.;Chu,D.E lectrochem.Commun.2012,16,65.doi:10.1016/j.elecom.2012.01.005

    (177)Pan,J.;Chen,C.;Zhuang,L.;Lu,J.Accounts Chem.Res.2012,45,473.doi:10.1021/ar200201x

    (178)Nonjola,P.T.;Mathe,M.K.;Modibedi,R.M.Int.J.Hydrog.Energy 2013,38,5115.doi:10.1016/j.ijhydene.2013.02.028

    (179)Wu,Y.;Wu,C.;Varcoe,J.R.;Poynton,S.D.;Xu,T.;Fu,Y.J.P ower Sources 2010,195,3069.doi:10.1016/j.jpowsour.2009.11.118

    (180)XU,T.W.;Wu,Y.H.;Luo,J.X.Membrane Science Tech nolo gy 2011,31,192.[徐銅文,吳永會,羅婧藝.膜科學與技術,2011,31,192.]

    (181)Li,X.;Yu,Y.;Meng,Y.AC S Appl.Mater.Interfaces 2013,5,1414.doi:10.1021/am302844x

    (182)Zhou,T.;Zhang,J.;Qiao,J.;Liu,L.;Jiang,G.;Zhang,J.;Liu,Y.J.Power Sources 2013,227,291.doi:10.1016/j.jpowsour.2012.11.041

    (183)Zhou,T.;Zhang,J.;Fu,J.;Jiang,G.;Zhang,J.;Qiao,J.S ynthetic Metals 2013,167,43.doi:10.1016/j.synthmet.2013.02.008

    (184)Qiao,J.;Fu,J.;Liu,L.;Liu,Y.;Sheng,J.Int.J.H ydro g.Energy 2012,37,4580.doi:10.1016/j.ijhydene.2011.06.038

    (185)Zhao,Y.;Yu,H.;Xing,D.;Lu,W.;Shao,Z.;Yi,B.J.Membr.S ci.2012,421-422,311.

    (186)Guo,T.Y.;Zeng,Q.H.;Zhao,C.H.;Liu,Q.L.;Zhu,A.M.;Broadwell,I.J.Membr.Sci.2011,371,268.doi:10.1016/j.memsci.2011.01.043

    (187)Cao,Y.C.;Scott,K.;Wang,X.Int.J.Hyd rog.Energy 2012,37,12689.

    (188)Maurya,S.;Shin,S.H.;Kim,M.K.;Yun,S.H.;Moon,S.H.J.Membr.Sci.2013,443,28.doi:10.1016/j.memsci.2013.04.035

    (189)Zhao,Y.;Pan,J.;Yu,H.;Yang,D.;Li,J.;Zhuang,L.Int.J.H ydrog.Energ y 2013,38,1983.doi:10.1016/j.ijhydene.2012.11.055

    (190)Zhang,F.;Zhang,H.;Qu,C.;Ren,J.J.P ower Sources 2011,196,3099.doi:10.1016/j.jpowsour.2010.11.102

    (191)Switzer,E.E.O.;lson,T.S.;Datye,A.K.;Atanassov,P.;Hibbs,M.R.;Fujimoto,C.;Cornelius,C.J.E lectrochim.A cta 2010,55,3404.doi:10.1016/j.electacta.2009.12.073

    (192)Qiao,J.;Zhang,J.;Zhang,J.J.P ower Sources 2013,237,1.doi:10.1016/j.jpowsour.2013.02.059

    (193)Ranganathan,S.;Easton,E.B.Int.J.H ydrog.Energy 2010,35,1001.doi:10.1016/j.ijhydene.2009.11.077

    (194)Ranganathan,S.;Easton,E.B.Int.J.H ydrog.Energy 2010,35,4871.

    (195)Miyazaki,K.;Abe,T.;Nishio,K.;Nakanishi,H.;Ogumi,Z.J.Power S ources 2010,195,6500.doi:10.1016/j.jpowsour.2010.04.023

    (196)Bhattacharyya,A.;Goswami,A.J.P hys.Chem.B 2009,113,12958.doi:10.1021/jp9053605

    (197)Zhuang,L.;Huang,A.B.;Lu,S.F.;Tao,J.T.;Xiao,C.B.A Kind of Preparation Method of Strongly Alkaline Polymer Electrolyte Membrane.CN Patent CN1560117,2005-01-05.[莊 林,黃愛賓,盧善富,陸君濤,肖超渤.一種強堿性聚合物電解質(zhì)膜的制備方法:中國,CN1560117[P].2005-01-05.]

    (198)Tomlin,D.W.;Fratini,A.V.;Hunsaker,M.;Adams,W.W.Polymer 2000,41,9003.doi:10.1016/S0032-3861(00)00242-1

    (199)Henkensmeier,D.;Cho,H.R.;Kim,H.J.;Kirchner,C.N.;Leppin,J.;Dyck,A.P olym.Degrad.S tabi.2012,97,264.doi:10.1016/j.polymdegradstab.2011.12.024

    (200)Hu,J.W.;Zhang,H.M.;Zhai,Y.F.;Liu,G.;Yi,B.L.Int.J.H ydrog.Energ y 2006,31,1855.doi:10.1016/j.ijhydene.2006.05.001

    (201)Leykin,A.Y.;Shkrebko,O.A.;Tarasevich,M.R.J.Membr.Sci.2009,328,86.doi:10.1016/j.memsci.2008.11.047

    (202)Luo,H.;Vaivars,G.;Agboola,B.;Mu,S.;Mathe,M.Solid State Ionics 2012,208,52.doi:10.1016/j.ssi.2011.11.029

    (203)Xing,B.;Savadogo,Q.Electrochem.Commun.2000,2,697.doi:10.1016/S1388-2481(00)00107-7

    (204)Hou,H.;Sun,G.;He,R.;Wu,Z.;Sun,B.J.Power Sources2008,182,95.doi:10.1016/j.jpowsour.2008.04.010

    (205)Hou,H.;Sun,G.;He,R.;Wu,Z.;Sun,B.;Jin,W.;Liu,H.;Xin,Q.Int.J.H ydro g.Energy 2008,33,7172.

    (206)Hou,H.;Wang,S.;Jiang,Q.;Jin,W.;Jiang,L.;Sun,G.J.P ower Sources 2011,196,3244.doi:10.1016/j.jpowsour.2010.11.104

    (207)An,L.;Zeng,L.;Zhao,T.S.Int.J.Hydrog.E nergy 2013,38,10602.doi:10.1016/j.ijhydene.2013.06.042

    (208)Merle,G.;Hosseiny,S.S.;Wessling,M.;Nijmeijer,K.J.Membr.Sci.2012,409-410,191.

    (209)Yang,J.M.;Chiu,H.C.J.Membr.Sci.2012,419-420,65.

    (210)Nikol,V.M.;Zugi,D.L.;Maksi,A.D.;Saponji,D.P.;Kaninski,M.P.M.Int.J.Hydrog.Energy 2011,36,110041.

    (211)Wu,Y.H.Preparation,Characterizations and Application of Organic-Inorganic Hybrid Anion-Exchange Membranes.Ph.D.Dissertation,University of Science and Technology of China,Hefei,2009.[吳永會.有機-無機雜化陰離子交換膜的制備、表征和應用[D].合肥:中國科技大學,2009.]

    (212)Wu,Y.;Wu,C.;Li,Y.;Xu,T.;Fu,Y.J.Membr.Sci.2010,350,322.doi:10.1016/j.memsci.2010.01.007

    (213)Pan,W.H.;Lue,S.J.;Chang,C.M.;Liu,Y.L.J.Membr.Sci.2011,376,225.doi:10.1016/j.memsci.2011.04.026

    (214)Zeng,L.;Zhao,T.S.;Li,Y.S.Int.J.Hydrog.E nergy 2012,37,18425.doi:10.1016/j.ijhydene.2012.09.089

    (215)Ye,Y.;Cheng,M.;Xie,X.;Rick,J.;Huang,Y.;Chang,F.;Hwang,B.J.Power Sources 2013,239,424.doi:10.1016/j.jpowsour.2013.03.021

    (216)Fu,J.;Qiao,J.L.;Ma,J.X.Acta Phys.-Chim.Sin.2010,26,2975.[傅 婧,喬錦麗,馬建新.物理化學學報,2010,26,2975.]doi:10.3866/PKU.WHXB20101014

    (217)Liu,L.L.;Ding,L.;Xu,L.;Qiao,J.L.;Sheng,J.Acta Phys.-Chim.Sin.2011,27,2665.[劉玲玲,丁 蕾,徐 莉,喬錦麗,盛 嘉.物理化學學報,2011,27,2665.]doi:10.3866/PKU.WHXB20111106

    (218)Wang,E.D.;Zhao,T.S.;Yang,W.W.Int.J.Hydrog.Energy 2010,35,2183.doi:10.1016/j.ijhydene.2009.12.179

    (219)Yang,C.C.;Chiu,S.J.;Lee,K.T.;Chien,W.C.;Lin,C.T.;Huang,C.A.J.Power Sources 2008,184,44.

    (220)Yang,C.C.;Chiu,S.J.;Lin,C.T.J.Power Sources 2008,177,40.doi:10.1016/j.jpowsour.2007.11.010

    (221)An,L.;Zhao,T.S.;Wu,Q.X.;Zeng,L.Int.J.Hydrog.E nergy 2012,37,14536.doi:10.1016/j.ijhydene.2012.06.105

    猜你喜歡
    物理化學堿性電解質(zhì)
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
    陶瓷學報(2021年1期)2021-04-13 01:33:40
    Chemical Concepts from Density Functional Theory
    堿性磷酸酶鈣-鈷法染色的不同包埋方法比較
    電解質(zhì)溶液高考熱點直擊
    堿性土壤有效磷測定的影響因素及其控制
    堿性溶液中鉑、鈀和金析氧性能比較
    堿性介質(zhì)中甲醇在PdMo/MWCNT上的電化學氧化
    電源技術(2015年2期)2015-08-22 11:27:56
    Li2S-P2S5及Li2S-SiS2基硫化物固體電解質(zhì)研究進展
    電源技術(2015年9期)2015-06-05 09:36:06
    精品福利观看| 侵犯人妻中文字幕一二三四区| 男女边摸边吃奶| 久久久久久免费高清国产稀缺| 国产高清不卡午夜福利| 婷婷色综合www| 欧美亚洲 丝袜 人妻 在线| 精品少妇一区二区三区视频日本电影| 日韩伦理黄色片| 精品国产一区二区三区久久久樱花| 久久亚洲精品不卡| 精品亚洲乱码少妇综合久久| 另类精品久久| 亚洲午夜精品一区,二区,三区| 啦啦啦在线免费观看视频4| 国产精品 欧美亚洲| 国产成人91sexporn| 精品国产超薄肉色丝袜足j| 国产在视频线精品| 国产免费视频播放在线视频| 中国国产av一级| √禁漫天堂资源中文www| 免费不卡黄色视频| 国产极品粉嫩免费观看在线| 母亲3免费完整高清在线观看| 久久中文字幕一级| 精品人妻熟女毛片av久久网站| 青春草视频在线免费观看| 午夜影院在线不卡| 美女午夜性视频免费| 日本五十路高清| 亚洲图色成人| 久久人人97超碰香蕉20202| 韩国高清视频一区二区三区| 日韩免费高清中文字幕av| 黄色毛片三级朝国网站| 久久 成人 亚洲| 亚洲 欧美一区二区三区| 久久影院123| 精品第一国产精品| av又黄又爽大尺度在线免费看| 国产亚洲午夜精品一区二区久久| 成人手机av| 国产一卡二卡三卡精品| 国产精品久久久久久精品电影小说| 色视频在线一区二区三区| 婷婷色麻豆天堂久久| h视频一区二区三区| 好男人视频免费观看在线| 别揉我奶头~嗯~啊~动态视频 | 精品国产乱码久久久久久小说| 成年动漫av网址| 亚洲国产最新在线播放| 日本午夜av视频| 91字幕亚洲| 久久国产精品人妻蜜桃| 99国产精品一区二区蜜桃av | 国产免费福利视频在线观看| av天堂在线播放| 精品少妇一区二区三区视频日本电影| 中文乱码字字幕精品一区二区三区| 亚洲国产最新在线播放| 精品少妇内射三级| 91精品国产国语对白视频| 看免费av毛片| xxxhd国产人妻xxx| 精品久久蜜臀av无| 91麻豆av在线| 日韩中文字幕视频在线看片| 一级毛片 在线播放| 在线观看免费午夜福利视频| 一区在线观看完整版| 亚洲精品自拍成人| 人成视频在线观看免费观看| 日本a在线网址| 天堂中文最新版在线下载| 色94色欧美一区二区| 黄色一级大片看看| 视频区欧美日本亚洲| av有码第一页| 免费高清在线观看日韩| 亚洲国产日韩一区二区| 18禁国产床啪视频网站| 国产91精品成人一区二区三区 | 亚洲欧洲国产日韩| a级毛片在线看网站| 你懂的网址亚洲精品在线观看| 捣出白浆h1v1| 另类亚洲欧美激情| 国产在线一区二区三区精| 国产成人欧美| 丰满饥渴人妻一区二区三| 午夜激情av网站| 侵犯人妻中文字幕一二三四区| 国产精品久久久久久精品电影小说| 在线观看免费高清a一片| 成人18禁高潮啪啪吃奶动态图| 一边亲一边摸免费视频| 国产97色在线日韩免费| 一边亲一边摸免费视频| 精品欧美一区二区三区在线| 久久久久视频综合| av视频免费观看在线观看| 亚洲精品国产av成人精品| 黄色a级毛片大全视频| 欧美精品av麻豆av| 亚洲欧洲精品一区二区精品久久久| 丝袜美腿诱惑在线| 亚洲国产成人一精品久久久| 欧美少妇被猛烈插入视频| 免费观看人在逋| 国产在线一区二区三区精| 啦啦啦在线免费观看视频4| 嫁个100分男人电影在线观看 | 成人亚洲精品一区在线观看| 美女视频免费永久观看网站| 久久久久久久久免费视频了| 中国美女看黄片| 午夜影院在线不卡| 亚洲一区中文字幕在线| 亚洲精品久久午夜乱码| 丰满迷人的少妇在线观看| av天堂久久9| 亚洲国产精品一区三区| 久久综合国产亚洲精品| 一级毛片女人18水好多 | 亚洲成人免费av在线播放| 成年动漫av网址| 亚洲精品一二三| 尾随美女入室| 老汉色av国产亚洲站长工具| 热99久久久久精品小说推荐| 亚洲成人国产一区在线观看 | 69精品国产乱码久久久| 又大又黄又爽视频免费| 欧美精品一区二区免费开放| 欧美日韩福利视频一区二区| av福利片在线| 精品国产一区二区久久| 操出白浆在线播放| 成人黄色视频免费在线看| 亚洲人成电影免费在线| 成人国语在线视频| 夫妻午夜视频| 欧美久久黑人一区二区| av国产久精品久网站免费入址| 亚洲欧美清纯卡通| 水蜜桃什么品种好| 丝袜在线中文字幕| 精品人妻1区二区| 午夜福利视频在线观看免费| 欧美97在线视频| 一区福利在线观看| 91精品三级在线观看| 老司机影院毛片| 狠狠婷婷综合久久久久久88av| 电影成人av| 最黄视频免费看| 日韩大片免费观看网站| 欧美中文综合在线视频| 高潮久久久久久久久久久不卡| 亚洲中文日韩欧美视频| 女性被躁到高潮视频| 亚洲精品在线美女| 乱人伦中国视频| 国产淫语在线视频| 黄片小视频在线播放| 国产亚洲精品久久久久5区| 后天国语完整版免费观看| 久久免费观看电影| 夫妻性生交免费视频一级片| 亚洲黑人精品在线| 国产熟女午夜一区二区三区| 国产麻豆69| 青春草亚洲视频在线观看| 99久久综合免费| 国产黄色视频一区二区在线观看| 老汉色∧v一级毛片| 日韩欧美一区视频在线观看| 看免费成人av毛片| 精品免费久久久久久久清纯 | 最新的欧美精品一区二区| 七月丁香在线播放| 亚洲第一青青草原| 精品亚洲乱码少妇综合久久| 精品一品国产午夜福利视频| 亚洲国产日韩一区二区| 精品免费久久久久久久清纯 | 国产黄色免费在线视频| 首页视频小说图片口味搜索 | 蜜桃在线观看..| 99精国产麻豆久久婷婷| 亚洲精品久久久久久婷婷小说| bbb黄色大片| 国产精品免费大片| 91九色精品人成在线观看| 亚洲中文字幕日韩| 精品人妻1区二区| 国产精品二区激情视频| 日本a在线网址| 波多野结衣一区麻豆| 成人三级做爰电影| 久久精品国产综合久久久| 亚洲熟女毛片儿| 人妻 亚洲 视频| 欧美激情极品国产一区二区三区| 国产福利在线免费观看视频| 最黄视频免费看| 黑人猛操日本美女一级片| 一级毛片我不卡| 九色亚洲精品在线播放| av天堂在线播放| 99国产精品免费福利视频| 亚洲av日韩在线播放| 日本wwww免费看| xxxhd国产人妻xxx| a 毛片基地| 久久精品国产a三级三级三级| 国产淫语在线视频| 久久中文字幕一级| 亚洲天堂av无毛| √禁漫天堂资源中文www| 中文字幕av电影在线播放| 少妇 在线观看| 亚洲国产毛片av蜜桃av| 亚洲精品美女久久久久99蜜臀 | 一本久久精品| 999久久久国产精品视频| 人人妻人人爽人人添夜夜欢视频| 亚洲黑人精品在线| 七月丁香在线播放| 久久青草综合色| 欧美日韩av久久| 精品亚洲乱码少妇综合久久| 亚洲视频免费观看视频| 国产福利在线免费观看视频| 老司机午夜十八禁免费视频| 91老司机精品| 国产片特级美女逼逼视频| 三上悠亚av全集在线观看| 黄片小视频在线播放| 久久人妻熟女aⅴ| 首页视频小说图片口味搜索 | 欧美老熟妇乱子伦牲交| 男女免费视频国产| 国产麻豆69| 亚洲欧美日韩高清在线视频 | 在线看a的网站| av福利片在线| av天堂久久9| 午夜激情av网站| 丁香六月天网| 九草在线视频观看| 1024视频免费在线观看| 亚洲成国产人片在线观看| 亚洲 欧美一区二区三区| 建设人人有责人人尽责人人享有的| 久久狼人影院| 最近中文字幕2019免费版| 久久精品久久久久久噜噜老黄| 一级毛片电影观看| 丝袜脚勾引网站| 国产淫语在线视频| 最近最新中文字幕大全免费视频 | 日韩中文字幕欧美一区二区 | 操美女的视频在线观看| 91精品国产国语对白视频| 日韩制服丝袜自拍偷拍| 国产精品九九99| 久久九九热精品免费| 国产精品 欧美亚洲| 久久久久网色| 一个人免费看片子| 国产亚洲精品久久久久5区| e午夜精品久久久久久久| 亚洲精品国产av成人精品| 午夜视频精品福利| 99re6热这里在线精品视频| 日本av免费视频播放| 黄片播放在线免费| 建设人人有责人人尽责人人享有的| 一区二区日韩欧美中文字幕| 丝袜美腿诱惑在线| 色婷婷av一区二区三区视频| 国产免费视频播放在线视频| 亚洲国产欧美日韩在线播放| 久久鲁丝午夜福利片| 黄色片一级片一级黄色片| 亚洲精品国产av成人精品| 亚洲视频免费观看视频| 国产熟女午夜一区二区三区| 青春草亚洲视频在线观看| 久久人人爽人人片av| 亚洲国产看品久久| 你懂的网址亚洲精品在线观看| 在线观看免费午夜福利视频| 一区二区三区四区激情视频| 免费看av在线观看网站| 国产免费又黄又爽又色| 中文字幕另类日韩欧美亚洲嫩草| 精品国产一区二区久久| 丝袜美足系列| 久久精品国产a三级三级三级| 久久久国产精品麻豆| 精品国产一区二区久久| 亚洲成人手机| 亚洲国产成人一精品久久久| www.av在线官网国产| 日本一区二区免费在线视频| 人人妻人人添人人爽欧美一区卜| 大话2 男鬼变身卡| 在线av久久热| 99九九在线精品视频| 999久久久国产精品视频| 看免费成人av毛片| 女警被强在线播放| 王馨瑶露胸无遮挡在线观看| 97在线人人人人妻| 国产熟女欧美一区二区| 首页视频小说图片口味搜索 | av在线老鸭窝| 亚洲欧美精品自产自拍| 美女扒开内裤让男人捅视频| 丝袜脚勾引网站| 国产av一区二区精品久久| 国产精品久久久久久人妻精品电影 | 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频| 老司机深夜福利视频在线观看 | 午夜影院在线不卡| 久久精品国产亚洲av高清一级| 亚洲精品乱久久久久久| av不卡在线播放| 欧美在线黄色| 母亲3免费完整高清在线观看| 激情五月婷婷亚洲| 又紧又爽又黄一区二区| 国产精品久久久人人做人人爽| 久久免费观看电影| 国产精品一区二区在线不卡| 亚洲熟女毛片儿| 欧美老熟妇乱子伦牲交| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 999久久久国产精品视频| 国产在线免费精品| 国产成人一区二区三区免费视频网站 | 午夜久久久在线观看| 国产精品99久久99久久久不卡| 国产又色又爽无遮挡免| 亚洲人成电影观看| 人人澡人人妻人| 晚上一个人看的免费电影| 夫妻性生交免费视频一级片| 18禁裸乳无遮挡动漫免费视频| 老司机影院成人| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 丁香六月天网| 永久免费av网站大全| 国产精品一区二区免费欧美 | 欧美亚洲日本最大视频资源| 黄色一级大片看看| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 久久久久久久精品精品| 亚洲 国产 在线| 天堂中文最新版在线下载| 国产视频首页在线观看| 999精品在线视频| 看十八女毛片水多多多| 日韩大片免费观看网站| 国产老妇伦熟女老妇高清| 18禁国产床啪视频网站| 99香蕉大伊视频| 99国产精品一区二区三区| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 两个人看的免费小视频| 婷婷色av中文字幕| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 侵犯人妻中文字幕一二三四区| 国产精品二区激情视频| 亚洲国产av新网站| 亚洲国产精品成人久久小说| 久久av网站| 精品一区二区三区四区五区乱码 | 亚洲av在线观看美女高潮| 免费观看av网站的网址| √禁漫天堂资源中文www| 婷婷成人精品国产| 亚洲人成77777在线视频| 大片电影免费在线观看免费| 侵犯人妻中文字幕一二三四区| 免费在线观看完整版高清| 中文字幕人妻熟女乱码| 精品少妇内射三级| 国产一区有黄有色的免费视频| 久久天躁狠狠躁夜夜2o2o | 亚洲第一青青草原| 日韩伦理黄色片| 国产精品熟女久久久久浪| kizo精华| 七月丁香在线播放| 丰满饥渴人妻一区二区三| 女人久久www免费人成看片| 色婷婷av一区二区三区视频| 男人爽女人下面视频在线观看| 熟女av电影| av片东京热男人的天堂| 国产精品99久久99久久久不卡| 女性生殖器流出的白浆| 久久久精品94久久精品| 国产精品久久久久久精品古装| 国产成人精品在线电影| 91麻豆av在线| 欧美成人精品欧美一级黄| 色网站视频免费| 亚洲天堂国产精品一区在线| 日本黄色视频三级网站网址| 亚洲av电影在线进入| 久久久久久亚洲精品国产蜜桃av| 在线观看www视频免费| 欧美性猛交黑人性爽| 婷婷丁香在线五月| 国产精品综合久久久久久久免费| 国产黄色小视频在线观看| 精品久久久久久久久久免费视频| 亚洲国产精品999在线| 一本久久中文字幕| 搡老熟女国产l中国老女人| 国产蜜桃级精品一区二区三区| 午夜老司机福利片| 国产视频一区二区在线看| 日韩三级视频一区二区三区| 亚洲成国产人片在线观看| 久热爱精品视频在线9| 亚洲中文av在线| 大香蕉久久成人网| 国产真实乱freesex| 国产免费男女视频| 亚洲精品美女久久久久99蜜臀| 97超级碰碰碰精品色视频在线观看| 变态另类成人亚洲欧美熟女| 精品国产乱码久久久久久男人| 九色国产91popny在线| 久久人人精品亚洲av| 午夜免费激情av| 一本综合久久免费| 88av欧美| www.精华液| 97碰自拍视频| 免费看十八禁软件| 黑人操中国人逼视频| 精品国产美女av久久久久小说| e午夜精品久久久久久久| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| 国产精品永久免费网站| 欧美+亚洲+日韩+国产| 69av精品久久久久久| 观看免费一级毛片| 午夜影院日韩av| 男人的好看免费观看在线视频 | 国产精品野战在线观看| 久热这里只有精品99| 一进一出抽搐动态| av免费在线观看网站| 久久久久久大精品| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 香蕉国产在线看| www日本在线高清视频| 免费高清视频大片| 国产亚洲欧美精品永久| 亚洲真实伦在线观看| 亚洲成av人片免费观看| 国产乱人伦免费视频| 女性生殖器流出的白浆| 久久伊人香网站| 99国产极品粉嫩在线观看| 黄片大片在线免费观看| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 男女那种视频在线观看| 国产又爽黄色视频| 久99久视频精品免费| 久热爱精品视频在线9| 免费看美女性在线毛片视频| 久久青草综合色| 久热这里只有精品99| 国产精品亚洲av一区麻豆| 99久久久亚洲精品蜜臀av| 亚洲精品久久国产高清桃花| 欧美绝顶高潮抽搐喷水| 亚洲第一青青草原| 久久草成人影院| 韩国精品一区二区三区| 禁无遮挡网站| 777久久人妻少妇嫩草av网站| 嫩草影院精品99| 可以在线观看毛片的网站| 老汉色av国产亚洲站长工具| 午夜久久久在线观看| 午夜免费成人在线视频| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 日韩视频一区二区在线观看| xxx96com| 两个人免费观看高清视频| 久久久国产成人精品二区| 在线观看www视频免费| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 两个人免费观看高清视频| 成人国语在线视频| 欧美av亚洲av综合av国产av| 国产真实乱freesex| 亚洲精品在线美女| 大型av网站在线播放| 女人爽到高潮嗷嗷叫在线视频| 哪里可以看免费的av片| 伦理电影免费视频| 亚洲国产精品sss在线观看| 97超级碰碰碰精品色视频在线观看| 12—13女人毛片做爰片一| 一级片免费观看大全| 日日夜夜操网爽| 国产私拍福利视频在线观看| 精品久久久久久成人av| 国产三级在线视频| 日本撒尿小便嘘嘘汇集6| 老熟妇仑乱视频hdxx| 18禁裸乳无遮挡免费网站照片 | 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 午夜日韩欧美国产| 久久久久久国产a免费观看| 日韩大尺度精品在线看网址| 亚洲男人天堂网一区| svipshipincom国产片| 在线视频色国产色| 成人国语在线视频| 国产野战对白在线观看| 97超级碰碰碰精品色视频在线观看| 999久久久国产精品视频| 亚洲成av人片免费观看| 中文亚洲av片在线观看爽| 久久九九热精品免费| 亚洲三区欧美一区| 亚洲五月婷婷丁香| 亚洲国产高清在线一区二区三 | 免费看日本二区| 久久人人精品亚洲av| 久久久国产成人精品二区| 嫩草影视91久久| 欧美日韩福利视频一区二区| 国产成人欧美| 操出白浆在线播放| 少妇粗大呻吟视频| 一本一本综合久久| 黄色 视频免费看| 午夜福利视频1000在线观看| 午夜两性在线视频| 给我免费播放毛片高清在线观看| 国产精品99久久99久久久不卡| 搡老妇女老女人老熟妇| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情高清一区二区三区| 亚洲一区二区三区不卡视频| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 91成年电影在线观看| 亚洲国产日韩欧美精品在线观看 | 狠狠狠狠99中文字幕| 不卡av一区二区三区| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 久久亚洲真实| 国产精品一区二区精品视频观看| 在线观看午夜福利视频| 午夜两性在线视频| 欧美日韩福利视频一区二区| 一区二区三区高清视频在线| 午夜激情福利司机影院| 久久欧美精品欧美久久欧美| 老司机午夜十八禁免费视频| 美女免费视频网站| 婷婷丁香在线五月| av在线播放免费不卡| 欧美中文综合在线视频| 日韩欧美一区视频在线观看| 欧美国产日韩亚洲一区| 久久天堂一区二区三区四区| 91老司机精品| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av电影在线播放| 90打野战视频偷拍视频| 一本综合久久免费| 国产高清有码在线观看视频 | 美女扒开内裤让男人捅视频| 久久精品国产亚洲av香蕉五月| 亚洲国产中文字幕在线视频| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 亚洲av电影在线进入| 搞女人的毛片| 色精品久久人妻99蜜桃| 亚洲精品国产区一区二|