• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    熱處理溫度對鋰氧氣電池用Co-N/C催化劑催化性能的影響

    2014-10-18 05:27:40陽炳檢黃博文廖小珍何雨石馬紫峰
    物理化學學報 2014年1期
    關鍵詞:化工學院物理化學學報

    陽炳檢 王 紅 李 磊 黃博文 廖小珍 何雨石 馬紫峰

    (上海交通大學化學化工學院化學工程系電化學與能源技術研究所,上海 200240)

    1 Introduction

    Metal-air battery has attracted much attention as a possible alternative energy conversion and storage devices because of its extremely high energy density compared to that of other re-chargeable batteries.1-5However,despite some progresses that have been reported on cathode materials and electrolytes,there are several key challenges that limit the practical use of this battery system.One of the most important issues is to develop inexpensive and effective oxygen reduction reaction/oxygen evolution reaction(ORR/OER)catalysts,which play key roles in Li/O2batteries.6-10Until now,noble metals such as Pt,Au and their alloys as ORR/OER catalysts in Li/O2battery have shown the best overall catalytic performance.11-13However,the high price and scarcity of precious metals severely limit their wide spread applications.Therefore,developing alternative,low cost catalysts to reduce or completely replace Pt,Au-based catalysts is necessary.

    It has been demonstrated that transition-metal macrocycles such as phthalocyanine,porphyrin,and their derivatives have high catalytic activity towards the oxygen reduction reaction after pyrolysis.Furthermore,cobalt phthalocyanine showed considerable catalytic activity toward electrochemical ORR/OER in Li/O2battery reported by Abraham and Jiang.14Despite insufficient activity and stability compared to Pt-based catalysts,non-noble metal-nitrogen catalysts can be applied as promising catalysts for Li/O2batteries.14-16,20-22Since it has been found that simple nitrogen ligands also have the same ORR catalyst performance as the organic macrocycles,we used a simple and cheap chemical called phenanthroline(phen)as N-containing ligand to prepare the cobalt-phen(Co-phen)complex.The asprepared Co-phen complexes were coated on BP2000 and then heat-treated at different temperatures(600-900°C)in an inert atmosphere to achieve ORR/OER electrocatalysts.The catalysts obtained at different calcination temperatures were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)analyses.The ORR/OER activities of the prepared catalysts were characterized in an alkaline medium and an organic electrolyte,respectively,using rotating disk electrode(RDE).The Li/O2cell performance of the prepared catalysts was investigated.

    2 Experimental

    The Co-N/C catalysts were prepared using BP2000(American Cabot Co.)as carbon support.The BP2000 carbon was activated by refluxing with 30%H2O2(AR)over night,washed with de-ionized water and then dried in a vacuum oven at 100°C for 4 h.The dried BP2000 powder was milled for 2 h in a planetary mill(Fritsch Pulversette-6)with an agate vessel.

    Following is the preparing procedure for the Co-N/C electrocatalysts.First,0.126 g cobalt acetate was dissolved in 25 mL ethanol(AR)and 0.202 g phenanthroline(99%)ligand was added to form Co(phen)2chelate.The obtained solution was mixed with 1.0 g activated BP2000 for 1 h under ultrasonic condition and then kept stirring for 2 h.After drying to remove ethanol,the resulting powder was calcinated at 600,700,800,and 900°C,respectively,for 90 min under an argon atmosphere to obtain final Co-N/C products.

    For comparison,the cobalt(II)tetramethoxyphenylporphyrin(CoTMPP/C)electrocatalyst was also prepared as following:0.405 g cobalt tetramethoxyphenylporphyrin(96%,Aldrich)was dispersed in ethanol.The obtained suspension was mixed with 1.0 g activated BP2000 for 1 h under ultrasonic condition and then kept stirring for 2 h.After drying to remove ethanol,the resulting powder was calcinated at 800°C for 90 min under an argon atmosphere to obtain final CoTMPP/C product with 2.61%(w,mass fraction)Co loading.

    The prepared Co-N/C catalysts and BP2000 were characterized using X-ray diffraction(D/max-2200/PC,Rigaku Co.Ltd.,Tokyo,Japan)with filtered Cu Kαradiation.The XRD patterns were collected at room temperature by step scanning at the range of 20°≤2θ≤80°.Cobalt content in the samples was determined by inductively coupled plasma mass spectrometer(Agilent 7500cx)and Nitrogen elemental analysis was conducted by Elementar Vario EL-III/Isoprime.XPS experiments were carried out on a KratosTMAxis Ultra DLD surface analysis instrument with Al Kαradiation(hv=1486.6 eV).The binding energy scale was calibrated with the C 1s peak(284.8 eV)of adventitious carbon on the sample surface.

    The catalytic activity toward ORR was evaluated by RDE measurements using a CHI RRDE-3A system.The catalyst ink was prepared by sonicating 5 mg of material in 30 μL of Nafion(5%(w))and 1 mL of Milli-Q H2O.8 μL of the suspension was deposited onto a polished tip of the RDE of 3 mm diameter(catalyst loading:40 μg)and dry at room temperature.All electrochemical measurements were performed at room temperature in the RDE electrochemical cell using an Ag/AgCl reference electrode,a Pt wire counter electrode and 0.1 mol·L-1aqueous KOH solution as electrolyte.For ORR and OER measurements in 1 mol·L-1lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)/propylene carbonate(PC):diethyl carbonate(DEC)solution,the catalyst ink was deposited onto a polished tip of the RDE and dry at 40°C.Pt wires were used as reference electrode and counter electrode,which was calibrated against the Li metal electrode in 1 mol·L-1LiTFSI/PC:DEC solution.

    The oxygen electrodes were prepared by casting a mixture of Co-N/C catalysts and polytetrafluoroethylene(PTFE)binder in a mass ratio of 85:15 onto carbon paper.The electrode disks with a diameter of 20 mm were punch and then dried at 120°C for 8 h.The mass load of catalyst layer was 2 mg·cm-2.The lithium-oxygen cells with Li metal as anode,oxygen electrode as cathode,and polymer electrolyte membrane(polyvinylidenefluoride-hexafluoro propylene(PVDF-HFP))as separator were assembled for electrochemical test.The polymer electrolyte membrane was soaked in the electrolyte(consisting of 1 mol·L-1LiTFSI(99%,Aladdin)dissolved in a mixture of PC and DEC(1:1 in volume)before assembly.All processes of assembling and dismantling the battery cells were carried out in an argon atmosphere in a glove box.

    The Li/O2batteries were tested in 105Pa oxygen atmosphere using a battery test system(LAND CT2001 A model,Wuhan Jinnuo Electronic Co.,Ltd.)at 25°C.Discharge/charge curves were recorded galvanostatically with various current densities at the voltage range of 4.5-2.0 V.The specific capacities are normalized with respect to the mass of catalyst in the cathode.All measurements were carried out under oxygen atmosphere.

    3 Results and discussion

    Powder XRD patterns of the prepared Co-N/C catalysts with different calcination temperatures,and also the carbon support BP2000 are displayed in Fig.1.It was observed that the samples calcinated at 900 and 800°C showed two small sharp peaks at around 44°and 52°,corresponding to the Co(111),and Co(200)planes of a face-centered cubic(fcc)crystalline α-Co phase(PDF No.89-4307),while no obvious peaks at the same place were detected for the other samples calcinated at lower temperature.These results indicate that cobalt crystallized when the heat-treating temperature was up to 800°C.Fig.2 displays the results of element analysis.It can be seen that the cobalt content of the prepared four Co-N/C samples(600,700,800,and 900°C)was in the range of 2.41%-2.64%.In the other hand,the total nitrogen content in the samples decreased obviously with the calcinating temperature due to the pyrolysis of the N containing component.This phenomenon was also reported by other researchers.23

    Fig.1 XRD patterns of the carbon supported BP2000 and Co-N/C catalysts with different calcination temperatures

    Fig.2 Total cobalt and nitrogen contents(w)of the Co-N/C catalysts prepared from different calcination temperatures

    To characterize the nitrogen species on the surface of the catalyst samples,XPS analyses of N 1s were recorded as shown in Fig.3.It can be seen that there were three types of nitrogen on the catalyst surface with binding energies of 398.5-398.6 eV,400.4-401.1 eV,and 402.2-403.7 eV,which may be assigned to pyridinic-type N,pyrrolic-type N,and highly coordinated N atoms(N atoms bound to three carbon atoms within a graphene layer),respectively.With the calcination temperature increased from 600 to 900°C,the proportion of pyrrolic-N decreased significantly.Part of pyrrolic-N was gradually converted to pyridinic-N and highly coordinated nitrogen with the increased temperature.The pyridinic-N and highly coordinated N as the active sites play an important role in oxygen reduce reaction.It is known that O2molecules prefer to adsorb at carbon sites on graphene-like zigzag edges where highly coordinated N is located nearby.24According to density functional theory(DFT)calculation,the presence of pyridine-type N species in graphene structure can activate oxygen reduction.24The experimental results in literature25,26showed that the catalysts with a higher content of highly coordinated N had higher ORR activity.

    The effect of calcination temperature on the ORR catalytic activity of Co-N/C catalysts was investigated in aqueous 0.1 mol·L-1KOH solution,as shown in Fig.4a.The ORR performance of the CoTMPP/C catalyst and bare BP2000 were also compared with the Co-N/C catalysts.It can be seen that the Co-N/C catalysts exhibited obviously superior electrochemical performance to the bare BP2000,and closed to the CoTMPP/C catalyst.Furthermore,the catalyst Co-N/C(800°C)showed slightly higher limiting current density and more positive ORR half-wave potential than the other Co-N/C samples.The catalytic performance of Co-N/C(800°C)is comparable to CoTMPP/C catalyst.It seems that 800°C is a proper calcination temperature for preparing high performance Co-N/C catalyst.It is known that nitrogen plays an importance role in the active site of carbon materials for ORR catalysts.24-26From Fig.3 it can be seen that the Co-N/C(800°C)sample showed higher proportion of the active pyridinic-type N and highly coordinated N.In the other hand,when calcination temperature increased to 900°C,the total N content decreased to a very low value,which was disadvantage to the catalytic activity of the catalyst.The number of cobalt active sites is another important factor that closely related to the behavior of the oxygen cathode.XRD patterns in Fig.1 show that Co-N/C(900°C)sample exhibited a sharp XRD peak at 44.2°of metallic Co(111),while only a very small peak at the same place was observed for Co-N/C(800°C).This result may indicate that cobalt nanoparticles agglomerated when the sample was calcinated at 900°C,which decreased the number of cobalt active sites.

    Fig.3 XPS spectra of N 1s in the Co-N/C catalysts at different calcination temperatures

    Fig.4 Comparison of the voltammetry curves for the Co-N/C,CoTMPP/C,and BP2000 at the rotation rate of 3600 r·min-1 in oxygen-saturated solution

    We further characterized the ORR catalytic activity of the Co-N/C catalysts in a non-aqueous electrolyte of O2-saturated 1 mol·L-1LiTFSI/PC:DEC as shown in Fig.4b.It is clear that the Co-N/C(700,800°C)samples showed similar electrochemical activity as CoTMPP/C electrode,and superior to the other samples.The half-wave potentials of CoTMPP/C,Co-N/C(700 °C),and Co-N/C(800 °C)electrodes were 2.53,2.54,and 2.52 V(vs Li/Li+),respectively.According to the results in Fig.4a and Fig.4b,the proper heat treating temperature for Co-N/C catalyst is 700-800°C.

    We further study the ORR and OER catalytic activity of Co-N/C(800°C)sample in non-aqueous electrolyte,the cyclic voltammograms were measured in O2.As shown in Fig.5,a pair of redox peaks was detected with anodic peak at 2.5 V and cathodic peak at 3.4 V at a scan rate of 10 mV·s-1under O2atmosphere,which indicates excellent ORR and OER activity of the Co-N/C(800°C)catalysts.Furthermore,it is interesting to find that the oxygen reduction overpotential of CoTMPP/C catalyst was larger than Co-N/C catalyst,and the oxidic peak(OER)of CoTMPP/C catalyst was obviously smaller than that of Co-N/C catalyst.These results suggested that the Co-N/C(800°C)catalyst could be an effective ORR and OER catalyst for Li/O2cells.

    The number of electrons involved in the ORR is an important parameter for evaluating the catalyst performance.Rotating disk electrode(RDE)voltammetry measurements for Co-N/C catalysts in both aqueous 0.1 mol·L-1KOH and non-aqueous 1 mol·L-1LiTFSI/PC:DEC electrolytes were conducted at various rotation rates(Fig.6A and Fig.7A,respectively).The Koutecky-Levich(K-L)equation is used to analyze the RDE data.27,28

    Fig.5 CVs of the Co-N/C,CoTMPP/C,and BP2000 catalysts in oxygen-saturated 1 mol·L-1 LiTFSI-PC:DEC solution

    In the above equations,i is the current at different potentials,ikand idare the kinetic and diffusion limited currents respectively,F is Faraday constant,A is the electrode area,ω is angular velocity,C0is bulk concentration of O2in the electrolyte solution,DOis the diffusion coefficient of O2,and v is the kinematic viscosity of the solution.27Fig.6b and Fig.7b show typical K-L plots for oxygen reduction in 0.1 mol·L-1NaOH and non-aqueous 1 mol·L-1LiTFSI/PC:DEC electrolytes,respectively.The numbers of electron transferred per O2molecule in ORR is calculated from the slopes of K-L plots,which were~3.7 in aqueous 0.1 mol·L-1KOH electrolyte and~1.7 in LiTFSI/PC:DEC electrolyte.It is clear that the catalytic activity of Co-N/C is similar to the typical transition-metal macrocycle electrocatalyst CoTMPP/C.17-19We speculate that the product of reduction should be Li2O2or Li2O in non-aqueous Li/O2cell.

    A rechargeable Li/O2cell using Co-N/C(800°C)as cathode catalyst was fabricated and characterized.The cell performance of the CoTMPP/C catalyst and bare BP2000 were also compared with the Co-N/C catalyst.Fig.8 shows the discharge and charge behavior of these Li/O2cells at 0.1 mA·cm-2.It can be seen that the Co-N/C cell exhibited very similar performance with Li/O2(CoTMPP/C)cell,which was obvious superior to BP2000 cell.The Co-N/C cathode showed a constant discharge potential plateau at about 2.9-2.7 V(vs Li/Li+).The first discharge capacities of the Li/O2(Co-N/C)cell was 3221 mAh·g-1,which is slightly higher than the Li/O2(CoTMPP/C)cell(3195 mAh·g-1,with potential plateau at around 2.9-2.7 V(vs Li/Li+)).The Li/O2cell performance of the catalysts was consistent with the results of RDE measurement.Fig.9 further compares the rate performance of Li/O2(Co-N/C)cell and Li/O2(CoTMPP/C)cell.It is clear that the Co-N/C catalyst show comparable performance to CoTMPP/C at all the three test current densities.The discharge capacities of the Li/O2(Co-N/C)cell were 2502 mAh·g-1(0.15 mA·cm-2)and 2101 mAh·g-1(0.2 mA·cm-2),respectively.The good performance of Co-N/C cathode was attributed to the cobalt-nitrogen catalyst which played a key role to promote the ORR and OER reversibility.

    Fig.7 (a)RDE voltammograms of the Co-N/C catalysts in oxygen-saturated 1 mol·L-1 LiTFSI/PC:DEC solution at a scan rate of 10 mV·s-1;(b)Koutecky-Levich plots at different potentials

    Fig.8 Discharge and charge curves corresponding to the first cycle for the Co-N/C,CoTMPP/C,and BP2000 cathodes at 0.1 mA·cm-2

    Fig.9 Discharge and charge curves at different current densities corresponding to the first cycle for the Co-N/C and CoTMPP/C cathodes

    Fig.10 Cycling performance of the Li/O2using Co-N/C(800 °C)as cathode at 0.1 mA·cm-2

    Fig.10 shows the cycling performance of the Li/O2using Co-N/C(800°C)as cathode catalyst.The discharge-charge current density was 0.1 mA·cm-2.The initial discharge capacity of the Co(phen)2/C cathode was 3221 mAh·g-1,which dropped to 2267 mAh·g-1at the second cycle and retained a value of 819 mAh·g-1after 8 cycles.Further work on optimizing air electrodes,developing good performance electrolytes is necessary to improve the Li/O2cell cycling performance.

    4 Conclusions

    The Co-N/C non-noble metal electrocatalysts were synthesized by calcinating cobalt phenanthroline(phen)chelate,which was coated on a carbon support BP2000.The influences of calcination temperature on the catalytic activities of the obtained catalysts have been investigated using cyclic voltammogram and rotating-disk electrode in oxygen saturated in aqueous KOH and non-aqueous PC/DEC electrolyte.The Co-N/C samples calcinated at 700 and 800°C showed higher activity than those calcinated at 600 and 900°C.The Li/O2cell using Co-N/C(800°C)catalyst shows comparable performance with the cell using typical CoTMPP/C catalyst.The cheap Co-N/C catalyst may be a promising candidate for practical application in rechargeable Li/O2cells.

    (2)Lee,J.S.;Kim,S.T.;Cao,R.;Choi,N.S.;Liu,M.;Lee,K.T.;Cho,J.Adv.Energy Mater.2011,1,34.doi:10.1002/aenm.201000010

    (3)Peng,Z.;Freunberger,S.A.;Chen,Y.;Bruce,P.G.Science 2012,337,563.doi:10.1126/science.1223985

    (4)Wang,H.;Liao,X.Z.;Li,L.;Chen,H.;Jiang,Q.Z.;He,Y.;Ma,Z.F.J.Electrochem.Soc.2012,159,A1874.

    (5)Lu,J.;Qin,Y.;Du,P.;Luo,X.;Wu,T.;Ren,Y.;Wen,J.;Miller,D.J.;Millera,J.T.;Amine,K.RSC Adv.2013,3,8276.doi:10.1039/c3ra40451j

    (6)Christensen,J.;Albertus,P.;Sanchez-Carrera,R.S.J.Electrochem.Soc.2012,159,R1.

    (7)Huang,B.W.;Liao,X.Z.;Wang,H.;Wang,C.N.;He,Y.S.;Ma,Z.F.Journal of Electrochemical Society 2013,160,A1112.

    (8)Kraytsberg,A.;Ein-Eli,Y.J.Power Sources 2011,196,886.doi:10.1016/j.jpowsour.2010.09.031

    (9)Wang,H.;Liao,X.Z.;Jiang,Q.Z.;Yang,X.W.;He,Y.S.;Ma,Z.F.Chin.Sci.Bull.2012,57,1959.doi:10.1007/s11434-011-4944-7

    (10)Débart,A.;Bao,J.;Armstrong,G.;Bruce,P.G.Angew.Chem.Int.Edit.2008,47,4521.

    (11)Lu,Y.C.;Xu,Z.;Gasteiger,H.A.;Chen,S.;Kimberly,H.;Yang,S.H.J.Am.Chem.Soc.2010,132,12170.doi:10.1021/ja1036572

    (12)Lu,Y.C.;Gasteiger,H.A.;Parent,M.C.;Vazrik,C.;Yang,S.H.Electrochem.Solid-State Lett.2010,13,A69.

    (13)Thapa,A.K.;Saimen,K.;Ishihara,T.Electrochem.Solid-State Lett.2010,13,A165.

    (14)Abraham,K.M.;Jiang,Z.J.Electrochem.Soc.1996,143,1.doi:10.1149/1.1836378

    (15)Wu,J.;Park,H.W.;Yu,A.;Higgins,D.;Chen,Z.J.Phys.Chem.C 2012,116,9427.doi:10.1021/jp301644e

    (16)He,P.;Wang,Y.G.;Zhou,H.S.Chem.Commun.2011,47,10701.doi:10.1039/c1cc14144a

    (17)Xu,L.;Qiao,J.L.;Ding,L.;Hu,L.Y.;Liu,L.L.;Wang,H.J.Acta Phys.-Chim.Sin.2011,27,2251.[徐 莉,喬錦麗,丁 蕾,胡隆宇,劉玲玲,王海江.物理化學學報,2011,27,2251.]doi:10.3866/PKU.WHXB20111015

    (18)Dai,X.F.;Zheng,M.F.;Xu,P.;Shi,J.J.;Ma,C.Y.;Qiao,J.L.Acta Phys.-Chim.Sin.2013,29,1753.[戴先逢,鄭明富,徐 攀,石晶晶,馬承禺,喬錦麗.物理化學學報,2013,29,1753.]doi:10.3866/PKU.WHXB201306141

    (19)Cao,C.H.;Lin,R.;Zhao,T.T.;Huang,Z.;Ma,J.X.Acta Phys.-Chim.Sin.2013,29,95.[曹春暉,林 瑞,趙天天,黃 真,馬建新.物理化學學報,2013,29,95.]doi:10.3866/PKU.WHXB201209272

    (20)Wang,H.;Liao,X.Z.;Jiang,Q.Z.;Yang,X.W.;He,Y.;Ma,Z.F.Chin.Sci.Bull.2012,57,1.doi:10.1007/s11434-011-9935-1

    (21)Yoo,E.;Nakamurab,J.J.;Zhou,H.S.Energy Environ.Sci.2012,5,6928.doi:10.1039/c2ee02830a

    (22)Li,Y.L.;Wang,J.J.;Li,X.F.;Geng,D.S.;Banis,M.N.;Li,R.Y.;Sun,X.L.Electrochem.Commun.2012,18,12.doi:10.1016/j.elecom.2012.01.023

    (23)Taigo,O.;Takaaki,M.;Shuichi,S.;Jun,K.;Kenji,Y.;Takao,Y.Catalysis Communications 2014,43,66.doi:10.1016/j.catcom.2013.09.011

    (24)Ikeda,T.;Boero,M.;Huang,S.F.;Terakura,K.;Oshima,M.;Ozaki,J.I.J.Phys.Chem.C 2008,112,14706.doi:10.1021/jp806084d

    (25)Niwa,H.;Horiba,K.;Harada,Y.;Oshima,M.;Ikeda,T.;Terakura,K.;Ozaki,J.;Miyata,S.J.Power Sources 2009,187,93.doi:10.1016/j.jpowsour.2008.10.064

    (26)Liu,G.;Li,X.;Lee,J.W.;Popov,B.N.Catal.Sci.Technol.2011,1,207.doi:10.1039/c0cy00053a

    (27)Bard,A.J.;Faulkner,L.R.Electrochemical Methods,2nd ed.;John Wiley&Sons:New York,2004.

    (28)Dilimon,V.S.;Venkata Narayanan,N.S.;Sampath,S.Electrochimica Acta 2010,55,5930 doi:10.1016/j.electacta.2010.05.047

    猜你喜歡
    化工學院物理化學學報
    使固態(tài)化學反應100%完成的方法
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    致敬學報40年
    Chemical Concepts from Density Functional Theory
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    學報簡介
    學報簡介
    我要搜黄色片| 亚洲性夜色夜夜综合| 九九久久精品国产亚洲av麻豆| 少妇的逼水好多| 国产精品女同一区二区软件| 亚洲一级一片aⅴ在线观看| 在线天堂最新版资源| 成人综合一区亚洲| 国产美女午夜福利| 床上黄色一级片| 日本精品一区二区三区蜜桃| 亚洲专区国产一区二区| 亚洲av中文字字幕乱码综合| 午夜福利成人在线免费观看| 女人十人毛片免费观看3o分钟| 欧美激情久久久久久爽电影| 欧美成人a在线观看| 黄片wwwwww| 亚洲精品亚洲一区二区| 国语自产精品视频在线第100页| 精品久久久久久久久久久久久| 久久久色成人| 日韩av在线大香蕉| 99久久久亚洲精品蜜臀av| 乱码一卡2卡4卡精品| 国产亚洲精品久久久com| 国产亚洲91精品色在线| 天天躁夜夜躁狠狠久久av| 尾随美女入室| 成熟少妇高潮喷水视频| 最后的刺客免费高清国语| 床上黄色一级片| 午夜影院日韩av| 免费无遮挡裸体视频| 国产久久久一区二区三区| 一个人观看的视频www高清免费观看| 久久精品久久久久久噜噜老黄 | 别揉我奶头~嗯~啊~动态视频| 欧美日韩综合久久久久久| 可以在线观看的亚洲视频| 国产精品久久久久久精品电影| av在线老鸭窝| 亚洲av免费在线观看| 久久久欧美国产精品| 一级毛片我不卡| 国产午夜精品久久久久久一区二区三区 | 一本精品99久久精品77| 亚洲国产精品成人综合色| 午夜福利在线在线| 国产精品人妻久久久久久| 老司机午夜福利在线观看视频| 嫩草影院入口| 精品久久久久久久久av| 美女大奶头视频| 全区人妻精品视频| 日韩欧美在线乱码| 亚洲美女搞黄在线观看 | 国产乱人偷精品视频| 国产精品美女特级片免费视频播放器| 亚洲欧美清纯卡通| 亚洲av免费高清在线观看| 性插视频无遮挡在线免费观看| 一夜夜www| 十八禁网站免费在线| 天天躁夜夜躁狠狠久久av| 精品福利观看| 99久久精品一区二区三区| 精品一区二区三区av网在线观看| 国产色婷婷99| 国产精品永久免费网站| 久久午夜福利片| 精品免费久久久久久久清纯| 国产高清有码在线观看视频| or卡值多少钱| 精品人妻视频免费看| 九九在线视频观看精品| 熟女电影av网| 日本-黄色视频高清免费观看| 久久精品国产亚洲av涩爱 | 久久久国产成人免费| 国模一区二区三区四区视频| 免费看美女性在线毛片视频| 国产男人的电影天堂91| 少妇丰满av| 国产午夜精品久久久久久一区二区三区 | 国产精品一区二区免费欧美| 麻豆乱淫一区二区| 一个人观看的视频www高清免费观看| 女生性感内裤真人,穿戴方法视频| 少妇被粗大猛烈的视频| ponron亚洲| 精品不卡国产一区二区三区| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 国产精品人妻久久久久久| 午夜日韩欧美国产| 日韩大尺度精品在线看网址| 美女 人体艺术 gogo| 成人av在线播放网站| 中国美女看黄片| 少妇猛男粗大的猛烈进出视频 | 国产在视频线在精品| 亚洲欧美精品综合久久99| 午夜精品国产一区二区电影 | 麻豆一二三区av精品| 久久精品国产鲁丝片午夜精品| 美女内射精品一级片tv| 日本与韩国留学比较| 一级黄色大片毛片| 日本成人三级电影网站| 精品一区二区三区人妻视频| 高清午夜精品一区二区三区 | 级片在线观看| 青春草视频在线免费观看| 成人一区二区视频在线观看| 欧美成人免费av一区二区三区| 亚洲欧美日韩高清专用| 六月丁香七月| av在线天堂中文字幕| 有码 亚洲区| 99久久精品热视频| 白带黄色成豆腐渣| 午夜视频国产福利| 久久精品夜色国产| 午夜免费激情av| 欧美日韩在线观看h| 国产三级在线视频| 美女免费视频网站| 嫩草影视91久久| 亚洲最大成人中文| 91狼人影院| 尤物成人国产欧美一区二区三区| 蜜桃久久精品国产亚洲av| 色尼玛亚洲综合影院| 亚洲不卡免费看| 99久久无色码亚洲精品果冻| а√天堂www在线а√下载| 狠狠狠狠99中文字幕| 最近视频中文字幕2019在线8| 久久精品影院6| 久久久精品欧美日韩精品| 免费大片18禁| 精品久久久久久久久av| 搡老岳熟女国产| 亚洲真实伦在线观看| 亚洲精品亚洲一区二区| 村上凉子中文字幕在线| 天堂av国产一区二区熟女人妻| 日本三级黄在线观看| 亚洲欧美精品综合久久99| 国产亚洲欧美98| 免费在线观看成人毛片| 熟女人妻精品中文字幕| 99在线视频只有这里精品首页| 亚洲成a人片在线一区二区| 亚洲va在线va天堂va国产| 国产精品一及| 看免费成人av毛片| 欧美人与善性xxx| 人妻丰满熟妇av一区二区三区| 99热这里只有是精品50| 乱码一卡2卡4卡精品| 欧美高清成人免费视频www| 婷婷精品国产亚洲av在线| 天天躁夜夜躁狠狠久久av| 亚洲真实伦在线观看| 天天躁夜夜躁狠狠久久av| 亚洲欧美精品自产自拍| ponron亚洲| 国产女主播在线喷水免费视频网站 | 校园春色视频在线观看| 三级毛片av免费| 亚洲av电影不卡..在线观看| 成人综合一区亚洲| 一个人看视频在线观看www免费| 白带黄色成豆腐渣| 91狼人影院| 天天一区二区日本电影三级| 婷婷精品国产亚洲av| 麻豆久久精品国产亚洲av| 欧美日韩综合久久久久久| 大型黄色视频在线免费观看| 一级a爱片免费观看的视频| 亚洲一级一片aⅴ在线观看| www日本黄色视频网| 午夜福利18| 亚洲国产精品sss在线观看| 亚洲成人精品中文字幕电影| 国产精品无大码| 亚洲成人中文字幕在线播放| 欧美bdsm另类| 亚洲欧美成人综合另类久久久 | aaaaa片日本免费| 中国美女看黄片| 搡老妇女老女人老熟妇| 成人无遮挡网站| 免费在线观看成人毛片| 亚洲美女搞黄在线观看 | 波多野结衣高清无吗| 精品人妻视频免费看| eeuss影院久久| 久久婷婷人人爽人人干人人爱| 床上黄色一级片| 一区二区三区四区激情视频 | 长腿黑丝高跟| 国产高清有码在线观看视频| 成人av在线播放网站| 校园春色视频在线观看| 久久精品国产亚洲av天美| 国产69精品久久久久777片| 国产91av在线免费观看| 久久久久精品国产欧美久久久| 天堂av国产一区二区熟女人妻| 国产老妇女一区| 亚洲av二区三区四区| 你懂的网址亚洲精品在线观看 | 午夜亚洲福利在线播放| 成人无遮挡网站| 国产精品美女特级片免费视频播放器| 桃色一区二区三区在线观看| 色视频www国产| 亚洲精品456在线播放app| 久久久精品大字幕| 国产色婷婷99| 尤物成人国产欧美一区二区三区| 乱码一卡2卡4卡精品| 亚洲在线自拍视频| 亚洲丝袜综合中文字幕| 亚洲国产日韩欧美精品在线观看| 欧美绝顶高潮抽搐喷水| 网址你懂的国产日韩在线| 国产黄片美女视频| 夜夜看夜夜爽夜夜摸| 国内少妇人妻偷人精品xxx网站| 欧美又色又爽又黄视频| 亚洲国产精品sss在线观看| 久久亚洲精品不卡| 我的女老师完整版在线观看| 免费在线观看影片大全网站| 成人av一区二区三区在线看| 99国产极品粉嫩在线观看| 亚洲av美国av| 三级经典国产精品| 国产精品综合久久久久久久免费| www.色视频.com| 综合色av麻豆| 午夜老司机福利剧场| 一本一本综合久久| 国产精品伦人一区二区| 国产精品不卡视频一区二区| 亚洲,欧美,日韩| 女同久久另类99精品国产91| 国产乱人视频| 日本免费一区二区三区高清不卡| avwww免费| 亚洲综合色惰| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一及| 综合色av麻豆| 午夜精品在线福利| 亚洲国产精品久久男人天堂| 搡老熟女国产l中国老女人| 免费在线观看影片大全网站| 日本色播在线视频| 国产av在哪里看| 国内揄拍国产精品人妻在线| 久久婷婷人人爽人人干人人爱| 国产亚洲91精品色在线| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 亚洲丝袜综合中文字幕| 国产精品一区二区免费欧美| 在线国产一区二区在线| 寂寞人妻少妇视频99o| www.色视频.com| 精品免费久久久久久久清纯| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 特级一级黄色大片| 国产一级毛片七仙女欲春2| 最好的美女福利视频网| 免费电影在线观看免费观看| 乱人视频在线观看| 亚洲婷婷狠狠爱综合网| 一进一出抽搐动态| 久久久久久久久久久丰满| 亚洲中文日韩欧美视频| 久久鲁丝午夜福利片| 99视频精品全部免费 在线| 亚洲av中文av极速乱| 国产精品久久久久久精品电影| 亚洲无线在线观看| videossex国产| 韩国av在线不卡| 国产又黄又爽又无遮挡在线| 伦精品一区二区三区| 成年女人看的毛片在线观看| 国产真实伦视频高清在线观看| 久久人人爽人人爽人人片va| 成年女人永久免费观看视频| 最后的刺客免费高清国语| 亚洲图色成人| h日本视频在线播放| 久久精品久久久久久噜噜老黄 | 超碰av人人做人人爽久久| 久久久久九九精品影院| 国产单亲对白刺激| 搞女人的毛片| 午夜福利18| av在线天堂中文字幕| 欧美色视频一区免费| 老司机影院成人| 亚洲第一电影网av| 久久久久国产精品人妻aⅴ院| 亚洲精品一区av在线观看| 91麻豆精品激情在线观看国产| 99久久无色码亚洲精品果冻| 欧美极品一区二区三区四区| 色5月婷婷丁香| 神马国产精品三级电影在线观看| 亚洲av美国av| 两个人视频免费观看高清| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 成人永久免费在线观看视频| 国内精品美女久久久久久| 色噜噜av男人的天堂激情| 激情 狠狠 欧美| 最近在线观看免费完整版| 午夜福利成人在线免费观看| 国产精品人妻久久久久久| 身体一侧抽搐| 久久精品国产清高在天天线| av在线播放精品| 97超级碰碰碰精品色视频在线观看| 国产高清三级在线| 国语自产精品视频在线第100页| av天堂在线播放| 有码 亚洲区| 久久国内精品自在自线图片| 成熟少妇高潮喷水视频| 日日摸夜夜添夜夜添av毛片| 午夜福利高清视频| 亚洲18禁久久av| 亚洲婷婷狠狠爱综合网| 精品午夜福利视频在线观看一区| 欧美高清成人免费视频www| 麻豆久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 日本精品一区二区三区蜜桃| 97热精品久久久久久| 乱码一卡2卡4卡精品| 国内精品美女久久久久久| 3wmmmm亚洲av在线观看| 亚洲熟妇中文字幕五十中出| 一级毛片我不卡| 99热这里只有精品一区| 日韩精品中文字幕看吧| 欧美+亚洲+日韩+国产| 亚洲内射少妇av| 国产精品嫩草影院av在线观看| 亚洲不卡免费看| 日本黄色视频三级网站网址| 男女下面进入的视频免费午夜| 中国国产av一级| 成人鲁丝片一二三区免费| 国产精品亚洲一级av第二区| 久久人人爽人人爽人人片va| 精品欧美国产一区二区三| av专区在线播放| 天天躁夜夜躁狠狠久久av| 成人特级av手机在线观看| 国产精品一区www在线观看| 欧美国产日韩亚洲一区| 少妇的逼水好多| 村上凉子中文字幕在线| 精品久久国产蜜桃| 成人av在线播放网站| 赤兔流量卡办理| 欧美+亚洲+日韩+国产| av免费在线看不卡| 亚洲国产精品成人综合色| 欧美高清性xxxxhd video| 少妇高潮的动态图| 久久国产乱子免费精品| 日日干狠狠操夜夜爽| 欧美极品一区二区三区四区| 老熟妇乱子伦视频在线观看| 亚洲乱码一区二区免费版| 91在线精品国自产拍蜜月| 一进一出抽搐动态| 日韩大尺度精品在线看网址| 日韩一本色道免费dvd| 亚洲精品色激情综合| 午夜亚洲福利在线播放| 美女高潮的动态| 国产亚洲精品av在线| 神马国产精品三级电影在线观看| 麻豆国产97在线/欧美| 人妻少妇偷人精品九色| 啦啦啦韩国在线观看视频| 1000部很黄的大片| АⅤ资源中文在线天堂| 麻豆国产av国片精品| 联通29元200g的流量卡| 悠悠久久av| 国产一区二区激情短视频| 在线免费十八禁| 高清午夜精品一区二区三区 | 内射极品少妇av片p| 国产真实伦视频高清在线观看| 日日干狠狠操夜夜爽| 中文字幕人妻熟人妻熟丝袜美| 中国美白少妇内射xxxbb| 午夜福利18| 亚洲av第一区精品v没综合| 99热全是精品| 欧美激情久久久久久爽电影| 草草在线视频免费看| 亚洲国产精品成人久久小说 | 久久精品国产鲁丝片午夜精品| 国产成人freesex在线 | 亚洲精品456在线播放app| 大香蕉久久网| 精品久久久久久久久av| 男人狂女人下面高潮的视频| 色综合色国产| АⅤ资源中文在线天堂| 国产69精品久久久久777片| 小说图片视频综合网站| 国产高清视频在线观看网站| 中文字幕精品亚洲无线码一区| 中文字幕av在线有码专区| 最好的美女福利视频网| а√天堂www在线а√下载| 成人鲁丝片一二三区免费| 欧美激情久久久久久爽电影| 97超视频在线观看视频| 在现免费观看毛片| 伊人久久精品亚洲午夜| 国产高清视频在线观看网站| 熟女人妻精品中文字幕| 亚洲欧美日韩东京热| 99热网站在线观看| 97超级碰碰碰精品色视频在线观看| 欧美最新免费一区二区三区| a级毛片免费高清观看在线播放| 亚洲精品乱码久久久v下载方式| 国产成人freesex在线 | 能在线免费观看的黄片| 日日摸夜夜添夜夜添av毛片| 欧美最黄视频在线播放免费| 啦啦啦啦在线视频资源| 成人特级黄色片久久久久久久| 久久久久久久午夜电影| 晚上一个人看的免费电影| 两个人的视频大全免费| 偷拍熟女少妇极品色| 在线播放国产精品三级| 国产男靠女视频免费网站| 99久久无色码亚洲精品果冻| 亚洲丝袜综合中文字幕| 国产不卡一卡二| 最近的中文字幕免费完整| 国语自产精品视频在线第100页| 精品久久久久久久久av| 免费看av在线观看网站| 黄色日韩在线| 精品午夜福利在线看| 九九爱精品视频在线观看| av在线观看视频网站免费| 别揉我奶头~嗯~啊~动态视频| 欧美区成人在线视频| 亚洲无线在线观看| 欧美高清性xxxxhd video| 两个人的视频大全免费| 在线观看美女被高潮喷水网站| 日韩欧美国产在线观看| 国产三级中文精品| 午夜福利视频1000在线观看| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 精品一区二区三区视频在线| 一个人看视频在线观看www免费| 亚洲18禁久久av| 国产精品久久电影中文字幕| 人人妻人人澡欧美一区二区| 亚洲精品久久国产高清桃花| 天堂av国产一区二区熟女人妻| 午夜a级毛片| 国产成人aa在线观看| 国产高清不卡午夜福利| 亚洲最大成人av| 久久久a久久爽久久v久久| 久久人人精品亚洲av| 一本一本综合久久| 欧美不卡视频在线免费观看| 国产精品日韩av在线免费观看| 亚洲不卡免费看| 久久人人精品亚洲av| 成人av在线播放网站| 在线观看免费视频日本深夜| 日韩欧美免费精品| 午夜视频国产福利| 国产精品国产三级国产av玫瑰| 色视频www国产| 99视频精品全部免费 在线| 综合色av麻豆| 亚洲在线观看片| 一区福利在线观看| 干丝袜人妻中文字幕| 悠悠久久av| 国产成人影院久久av| 黄色日韩在线| 乱人视频在线观看| 男女那种视频在线观看| 欧美bdsm另类| 99热这里只有是精品在线观看| 永久网站在线| 亚洲婷婷狠狠爱综合网| 欧美+日韩+精品| 99在线人妻在线中文字幕| 亚洲第一电影网av| 亚洲成人中文字幕在线播放| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国内少妇人妻偷人精品xxx网站| 国产精品女同一区二区软件| 日本欧美国产在线视频| 日韩国内少妇激情av| 久久久久久国产a免费观看| 免费黄网站久久成人精品| 亚洲精品亚洲一区二区| 午夜免费激情av| 国产成人freesex在线 | 老女人水多毛片| 日本色播在线视频| 麻豆精品久久久久久蜜桃| 色哟哟哟哟哟哟| 春色校园在线视频观看| 国内精品一区二区在线观看| 超碰av人人做人人爽久久| 久久久欧美国产精品| 99在线人妻在线中文字幕| 欧美成人精品欧美一级黄| 精品人妻偷拍中文字幕| 最近手机中文字幕大全| 色综合色国产| 欧美性感艳星| 亚洲av中文字字幕乱码综合| 91麻豆精品激情在线观看国产| 亚洲国产精品久久男人天堂| 久久精品国产自在天天线| 国产单亲对白刺激| 久久人人精品亚洲av| 久久99热6这里只有精品| 又粗又爽又猛毛片免费看| 最近在线观看免费完整版| 日本黄大片高清| videossex国产| 久久精品国产亚洲av涩爱 | 日韩欧美三级三区| 国产精品永久免费网站| 国产真实伦视频高清在线观看| 免费在线观看成人毛片| 日本免费一区二区三区高清不卡| 亚洲欧美日韩高清专用| 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 黄色日韩在线| 亚洲五月天丁香| 黄色一级大片看看| 一个人免费在线观看电影| 国产欧美日韩精品一区二区| 深夜a级毛片| 三级毛片av免费| 亚洲国产高清在线一区二区三| 久久天躁狠狠躁夜夜2o2o| 国产高清不卡午夜福利| 精品久久久久久久末码| 成人亚洲欧美一区二区av| 一边摸一边抽搐一进一小说| 小说图片视频综合网站| 在线观看午夜福利视频| 国产黄片美女视频| 六月丁香七月| 人妻制服诱惑在线中文字幕| 男女之事视频高清在线观看| 天天一区二区日本电影三级| 一区二区三区四区激情视频 | 亚洲中文日韩欧美视频| 国国产精品蜜臀av免费| 淫妇啪啪啪对白视频| 精品午夜福利在线看| 99久久成人亚洲精品观看| www.色视频.com| 尤物成人国产欧美一区二区三区| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 搡老岳熟女国产| 老司机午夜福利在线观看视频| 久久国产乱子免费精品| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 亚洲乱码一区二区免费版| 成年免费大片在线观看| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在 | .国产精品久久| 最近中文字幕高清免费大全6| 色5月婷婷丁香|