• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    多元醇法合成具有不同長徑比的棒狀LiFePO4/C材料

    2014-10-18 05:27:36胡有坤任建新魏巧玲郭孝東鐘本和
    物理化學(xué)學(xué)報 2014年1期
    關(guān)鍵詞:四川大學(xué)物理化學(xué)工程學(xué)院

    胡有坤 任建新 魏巧玲,3 郭孝東,* 唐 艷 鐘本和 劉 恒

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065;2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610064;3清華大學(xué)化工系,北京 100084)

    1 Introduction

    Olivine-type LiFePO4has recently attracted a great deal of attentions due to its relatively high theoretical capacity of 170 mAh·g-1,low cost,thermal stability.and environmental benign.However,olivine LiFePO4has a low electronic conductivity and a low lithium-ion diffusion coefficient(~1.8×10-14cm2·s-1),1-3which are the limitations of LiFePO4to be used in large scales.The previous progressive efforts have devoted to overcoming this obstacle by doping various metals,4,5minimizing the particle size,6,7coating carbon on particle surface,8,9and customizing particle morphologies.10-13

    Nano-sized materials have high discharge capacity probably due to the small particle size and large specific surface area,which offers short diffusion paths and effective area to the transmission of Li-ions.10Recently,customizing particle morphologies is also becoming more and more prevalent because these factors are well-known to significantly influence electrochemical performance.10,11In order to synthesize homogenous nano-sized LiFePO4and control its morphology at the same time,various synthesis technologies have been adopted such as the polyol process,10-12,14co-precipitation,13,15solid-state reactions,16,17hydrothermal synthesis,18-20solvothermal methods,10,21,22and the solgel process.23

    The polyol process is a new method to synthesize LiFePO4,in this process,the polyol medium acts not only as a solvent,but also as a stabilizer and a deoxidizer.Jinsub et al.10showed that multi-morphous LiFePO4synthesized by solvothermal process achieved high discharge capacity,which was determined to be 161 and 110 mAh·g-1at 0.25C and 8C,respectively.In ethylene glycol medium,Deng12and Sun24et al.reported their researches on three-dimensional(3D)LiFePO4architectures.Deng et al.12showed their nest-like LiFePO4/C architectures with prodigious surface area,which calculated to be 14.4 m2·g-1in the relative pressure(p/p0)range of 0.05-0.30.Sun et al.24discussed the effect of ethylenediamine on controlling the morphology of LiFePO4particles and found that ethylenediamine has a great effect on the release of isolated iron ions in their synthetic system.

    As mentioned in the above literature,LiFePO4nanoparticles with different morphologies were synthesized in different organic solvents.As we known,LiFePO4materials would show better electrochemical properties after calcination,but the special morphologies above mentioned would change their microstructures during the high temperature processing,then it seemed that the materials prepared with special morphologies did not affect electrochemical performance directly because these morphologies were unable to be maintained after heat treatment.

    Our previous work25showed that LiFePO4nanoparticles synthesized in polyol medium have good electrochemical performance.In this work,highly crystalline LiFePO4nanorods were synthesized with different lengths and widths in the medium of triethylene glycol due to its strong chelating ability for assembling the nano-sized building blocks into rod-like microstructures.The surface energies would be dropped to a very low level after long reflux reaction time and the organic compounds are transformed into a layer of carbon that in situ restricted the growth of LiFePO4crystallites,26so the morphologies of precursors would be maintained after heat treatment and its effect on electrochemical performance could be characterized directly.

    2 Experimental

    2.1 Preparation of the LiFePO4/C composites

    Stoichiometric FePO4·2H2O(29.12%content of Fe),LiOH·H2O(99%)were used as the starting materials and triethylene glycol(99%)was employed as solvent,deoxidizer,and chelating agent.

    Firstly,0.3 mol starting materials and 90 mL triethylene glycol were added into anagate jar and milled for 4 h at room temperature.Then the resulting mixture was transferred into three three-neck round flasks with volume of 500 mL equally,each flask was added simultaneously with 90 mL triethylene glycol.The flasks were heated at 280°C and a set of reflux device was superimposed on each flask,the reflux reaction time of the three flasks was controlled at 4,10,and 16 h,respectively.Special attention should be given to remove the water of the flask once an hour.Three precursors were obtained after removing the remaining triethylene glycol of the resulting mixture under reduced pressure atmosphere.The three precursors with the reflux reaction time of 4,10,and 16 h were named as precursors A,B,and C,respectively.

    In order to improve the material crystallinity and electrical conductivity of the LiFePO4,carbon-coating LiFePO4/C composites were obtained by calcining the mixture of the precursors and the remnant of organic compounds under nitrogen atmosphere at 700°C for 4 h,then three products were obtained.The three samples,whose reflux time controlled at 4,10,and 16 h,were denoted as samples A,B,and C,respectively.

    2.2 Material characterization

    The crystalline structures of products were analyzed by X-ray diffraction(XRD,D/max-rB,Rigaku,Cu Kαradiation)(λ=0.15418 nm,operated at 40 kV and 40 mA,scintillation counter,scanning range(2θ):10°-70°,step scanning:0.5(°)·min-1).The morphology and particle size of the prepared particles were observed by scanning electron microscopy(SEM,SPA400 Seiko Instruments,10 keV,vacuity>10-3Pa).The microscopic structure of the as-prepared sample was characterized by transmission electron microscope(TEM)and high resolution transmission electron microscope(HRTEM)(JEM-2100,JEOL,Japan).

    2.3 Battery preparation and electrochemical measurement

    The electrochemical performances of synthesized materials were tested by constant current charge-discharge method.The working cathode was composed of 80%(w)composite power,13%(w)acetylene black as conducting agent,and 7%(w)polyvinylidene fluoride(PVDF)as binder.After being blended in N-methyl-2-pyrrolidine(NMP),the mixtures were spread uniformly onto a thin aluminium foil,dried in vacuum at 120°C for 15 h and then cut into pieces.The electrolyte was 1 mol·L-1LiPF6solution in a mixed solvent of ethylene carbonate(EC)and dimethyl carbonate(DMC)(VEC:VDMC=1:1),Celgard 2400 as the separator.Metal lithium foils were used as the counter electrodes.The coin type cells were assembled in an argon filled glove box.The cells were galvano statically charged and discharged at room temperature between 2.5 and 4.3 V(versus Li/Li+)on the electrochemical test instrument.The cyclic voltammetry tests(CV)and electrochemical impedance spectroscopy(EIS)were performed on electrochemical workstation(CHI660B).The CV test was carried out at a scanning rate of 0.1 mV·s-1between 2.5 and 4.3 V.The amplitude of the AC signal was 5 mV over a frequency range from 100 kHz to 10 mHz.

    3 Results and discussion

    3.1 Material characterizations

    Fig.1 shows the XRD patterns of the samples and precursors.The diffraction peaks except peaks of precursor A are in full accord with the ordered LiFePO4olivine structure indexed with orthorhombic Pnma space group(JCPDS Card No.83-2092)without other peaks such as FePO4,Fe3(PO4)2,and Fe2O3,although FePO4source was used.The main sharp diffraction peaks of LiFePO4are evident for the precursor A in Fig.1a,indicating that the LiFePO4olivine phase is synthesized in the reflux process,however,it also has some other peaks such as Fe3(PO4)2,Li3PO4,which may because its reflux time was only 4 h.Increasing the reflux reaction time from 4 to 10 h or 16 h,the crystallinity of precursors,which is calculated by Jada 5.0,has been heightened from the original about 85%to more than 94%,and the impurity peaks disappear.As shown in Fig.1b,the diffraction peaks get sharper after the precursors are calcined at high temperature,which indicates that all the three samples are well-crystallized.Even though element analyses of the final products reveal that the carbon contents of samples A,B,and C are 2.34%,2.44%,and 2.58%,respectively,there is no evidence of carbon in XRD patterns because the residual carbon from the remnant of organic compounds is in amorphous state.In order to calculate the unit cell parameters of the three samples,Rietveld refinement method is adopted.As shown in Table 1,the lattice parameters and cell volumes show good agreement with that reported in the literature.10The average crystallite sizes(D)estimated from the half width of the most intense peaks taking the Scherrer formula(D=Kλ/B cosθ=0.89λ/B cosθ,where K is Scherrer′s constant,B is half width of diffraction peaks,θ is the diffraction angle,and λ is the X-ray wavelength)theoretical basis,for the samples A,B,and C are instructed to be 35.7,33.1,and 32.6 nm,respectively.

    Fig.1 XRD patterns of(a)precursors A,B,C and(b)samples A,B,C

    Table 1 Lattice parameters of the samples A,B,and C

    The field-emission SEM analysis was used to observe the morphologies and the particle sizes of the samples.The morphologies of precursors A,B,and C have a significant difference.The SEM image in Fig.2a shows microstructure for precursor A,it can be clearly observed that the particles of precursor A present irregular short rod-like shape with some subtle particles.The average size of the microstructures ranges from 100 to 200 nm in length,60 to 100 nm in diameter,and aspect ratio of the rod is small which ranges from 1:1 to 3:1 approximately.The SEM image in Fig.2b reveals that precursor B consists of long rod-like,irregular short rod-like,and other subtle particles.The particle size distribution is wide which ranges from 100 to 400 nm in length,40 to 100 nm in diameter.The microstructure of precursor C with the reflux time of 16 h is shown in Fig.2c,the particle size distribution is narrow,presenting rod-like shape and its aspect ratio is the biggest among the three precursors,which is estimated at 5:1 approximately.In order to study whether these morphologies of the as-prepared precursors can be maintained after heat treatment,the SEM measurements of the three samples are carried out,as shown in Fig.2d,Fig.2e,and Fig.2f,respectively,big change in the morphologies of the three samples does not appear.This result indicates clearly that it is possible to obtain final LiFePO4/C products with desired morphologies by synthesis of lithium iron phosphate precursor in polyol medium.

    Fig.2 SEM images of the obtained particles

    The TEM,high resolution TEM(HRTEM),and the selected area electron diffraction(SAED)images of the sample B are demonstrated in Fig.3.As shown in Fig.3a,it reveals clearly that the obtained LiFePO4/C consists of many irregular shaped particles such as long rod,short rod,and other subtle particles with the size less than 400 nm.A layer of amorphous phase carbon with the thickness over 1 nm covered on the surface of LiFePO4particles can be observed in Fig.3(b,d).This indicates that the remnant of organic compounds after vacuum distillation could be carbonized to provide a layer of homogeneousdispersed residual carbon on the surface of primary particles.The HRTEM image recorded from a part of an individual LiFePO4/C nanorod marked by a white circle(Fig.3c)shows the crystal lattices clearly,demonstrating that the sample is well-crystallized.The demonstrated crystal lattices evidence the d-spacing estimates of the adjacent lattice with 0.392 and 0.202 nm,corresponding to the(210)and(212)planes of orthorhombic LiFePO4crystals,respectively,which agree well with the results observed from the SAED pattern in Fig.3c.These results clearly revealed the growth of the nanocrystals along the[212]direction.

    From the results of XRD analysis,TEM and SEM images,we can make a bold speculation that triethylene glycol acts as deoxidizer and chelating agent,which plays an important role in reducing Fe3+ions into Fe2+ions and changing morphology of the LiFePO4precursor.When FePO4·2H2O and LiOH·H2O were mixed together in polyol medium at its boiling point,due to the stronger reduction and complexing ability of triethylene glycol(TEG),the LiFePO4precursor with short rod-like morphology was synthesized,and with increasing refluxing time,the aspect ratios become bigger as a whole.After reduced pressure distillation,the remnant of organic compounds is well scattered on the surface of LiFePO4particles.Finally,the LiFePO4/C sample was obtained by high-temperature calcination.The above-mentioned product formation mechanism is presented in the schematic drawing,as shown in Fig.4.

    Fig.3 TEM and HRTEM images and SAED pattern of sample B

    Fig.4 Product formation mechanism of the obtained particles

    3.2 Electrochemical measurements

    In order to investigate the electrochemical performances of the three LiFePO4/C samples,they are manufactured into cathode material for lithium-ion batteries.Fig.5a shows the chargedischarge curves of LiFePO4/C at current densities of 0.1C and 5C in the voltage window of 2.5-4.3 V.At 0.1C,it shows that sample B has an apparent charge and discharge plateau at 3.45 and 3.40 V,respectively,corresponding to the Fe2+/Fe3+redox reaction,the charge plateaus of other samples are a little higher than sample B but the discharge plateaus are the opposite.At 5C,the sample C demonstrates a slower enlargement in electrochemical polarization,compared with other samples.The plateau images imply that the electrode reactions27,28of samples B and C are better than others at 0.1C and 5C,respectively.

    From Fig.5(a,b),it can be seen clearly that at low discharge rates sample B exhibits high discharge capacity and little capacity fading,reaching to 163 mAh·g-1at 0.1C in the voltage range of 2.5-4.3 V,samples A and C are registered to be 150 and 153 mAh·g-1,respectively,also with little capacity fading at low discharge rates.As shown in Fig.5c,with the discharge rate increasing,unpredictable but reasonable phenomena appear.The discharge capacities at 1C,3C,5C,and 10C are determined to be 135,122,113,and 101 mAh·g-1for the sample B and 120,100,93,and 78 mAh·g-1for the sample A,respectively,however,higher discharge capacities are registered to be 135,125,118,110 mAh·g-1for the sample C at the corresponding rates.What′s more,when the discharge rate is increased to 20C,the sample C maintains a discharge capacity of about 98 mAh·g-1after 20 cycles,which presents 57.6%of the theoretical capacity.Compared with the sample C,the samples A and B deliver discharge capacities of 86 and 59 mAh·g-1,respectively.As shown in Fig.5c,when the current rate is returned back to 1C again,the discharge capacities of the samples A,B,and C can be resumed to be 134,133,and 119 mAh·g-1,respectively,which means that the crystal structures of the obtained three samples are steady enough to endure electrical discharge at high discharge rates.From the results above,we can see obviously that the sample B at low discharge rates and the sample C at high discharge rates have more consummate electrochemical performances than others at the corresponding rates.As we known,the capacities of the three samples are controlled by some factors,which are variable and have not accurate value,such as the sizes and shapes,surface characteristics,arrangement types,crystallographic directions,and linking characteristics of the particles.As shown in the SEM images of Fig.2,in the sample B,the connections between particles are efficient,which may reduce charge transfer resistance during electrochemical reaction,10and in the sample C,its good performance may be due to the crystal growth with desirable crystallographic direction and smaller particle sizes.Put simply,above reasons situate the sample B at better electronic conductivity and sample C at higher diffusion of lithium ions across the two-phase boundary,what′s more,the electrode reactions are mainly controlled by electronic conductivity and diffusion of lithium ions at low and high discharge rates,respectively,so above phenomena appear.

    The CV curves of the three LiFePO4/C samples in the voltage range of 2.5-4.3 V at the scan rate of 0.1 mV·s-1are shown in Fig.6.Each of the CV curves consists of an anodic peak and a cathodic peak,corresponding to the charge and discharge reactions of the Fe2+/Fe3+redox couple,or the lithium ion intercalation/deintercalation.28In the CV curves of LiFePO4/C cathode material,the smaller distance between charge and discharge voltage plateaus,the higher and sharper current peaks imply more excellent electrode reaction kinetics and more perfect electrochemical performance.The CV curves of samples B and C show more symmetrical,higher and sharper shape of the anodic/cathodic peaks,which indicates an improvement in the kinetics of the lithium insertion/extraction at the electrode/electrolyte interface.Compared with the samples B and C,the sample A has the weaker peaks in CV curves,and the distance between charge and discharge voltage plateaus peaks is bigger,indicating the electrochemical kinetics could be inhibited and the electrode polarization phenomenon is more serious,which are in accord with the electrochemical performances shown in Fig.5.

    Fig.6 CV curves of samples A,B,and C under the potential window of 2.5-4.3 V

    To evaluate the diffusion coefficient of lithium ions,electrochemical impedance spectroscopy(EIS)measurements are carried out under discharge condition with the voltage of 3.4 V.Fig.7a shows the Nyquist curves of the three samples and the equivalent circuit fitted by Zview2.0 program used for imitating the experimental impedance data is shown inset.All of the three Nyquist curves include a semicircle in high frequency region and approximate straight line in low frequency region.An intercept at the Z?axis in high frequency corresponds to the Ohmic resistance(Rs),representing the resistance of electrons and lithium ions getting through the electrolyte.The semicircle represents electric charge transfer process,and the numerical value of the diameter of the semicircle on the Z?axis is approximately equal to the charge transfer resistance(Rct).The slope line in the lower frequency region represents the Warburg impedance,which is associated with lithium-ion diffusion in material particles.29As shown in Fig.7a,the Ohmic resistances of the three samples are small and almost the same,which indicates the resistances of electrons and lithium ions getting through electrolyte in the three samples are similar and can be ignored for the survey of cathode materials.Rctof the sample B is the smallest one among the three electrodes,which indicates that its contact resistance is the smallest.The fitting impedance parameters according to the equivalent circuit and the diffusion coefficient of lithium ions calculated from EIS are shown in Table 2.

    Fig.7 (a)Electrochemical impedance spectra of samples A,B,and C(inset:the equivalent circuit used for imitating the experimental impedance data);(b)relationship plot between impedance and angle frequency at low frequency region

    Table 2 Fitting impedance parameters according to the equivalent circuit form Nyquist curves for the three samples and the diffusion coefficients of lithium ions(D Li+)

    The lithium-ion diffusion coefficient could be calculated using the formula as follows:

    In above formula,R is the gas constant,T is the absolute temperature,n is the number of charge transfer,A is the surface area of cathode,F is the Faraday constant,c is the concentration of lithium ions.The Warburg coefficient(σ)is calculated by the linear fit result of Z?and ω-1/2from the EIS data,obeying the following formula:

    In the second formula,ω is the angle frequency.According to this formula,the slope σ can be calculated,as shown in Fig7b.Utilizing this σ in the first formula,the lithium-ion diffusion coefficients of the samples A,B,and C can be calculated to be 0.49×10-13,1.96×10-13,and 1.58×10-13cm2·s-1,respectively,it can be seen clearly that the electrochemical kinetics with Li+extraction for the sample B is the easiest compared with other samples.

    4 Conclusions

    In summary,we proposed an economical and simple polyol synthesis route to control the morphology of LiFePO4/C only by different reflux reaction time and the characteristics of TEG itself.The TEG medium can act not only as a deoxidizer in the process,but also as a chelating agent.In the synthesis process,TEG reduces Fe3+ions to Fe2+ions and controls the moving direction of Fe2+and Fe3+ions,leading to modulating the growth direction of LiFePO4crystallite,therefore,at different reflux reaction time,the material is assembled into different morphologies.What?s more,the remnant of organic compounds deriving from TEG can be served as carbon source for coating a layer of carbon on LiFePO4/C particles during thermal treatment.Electrochemical tests show that the specific discharge capacities can be improved at low discharge rate or high discharge rate by choosing appropriate time.The sample with reflux reaction time of 10 h exhibits the highest discharge capacity at low discharge rate.The sample with reflux reaction time of 16 h shows par excellence reversible capacities at high discharge rate,which is determined to be 110,98 mAh·g-1at 10C,20C,respectively.Under the current levels,we can not know the exact diffusing direction of Li+ions in the materials and just deduce it from the results of electrochemical performance,more in depth studies should be carried out.

    (1)Andersson,A.S.;Thomas,J.O.J.Power Sources 2001,97,498.

    (2)Whittingham,M.S.;Savinell,R.F.;Zawodzinski,T.Chem.Rev.2004,104,4243.doi:10.1021/cr020705e

    (3)Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough,J.B.J.Electrochem.Soc.1997,144,1188.doi:10.1149/1.1837571

    (4)Yang,M.R.;Ke,W.H.;Wu,S.H.J.Power Sources 2007,165,646.doi:10.1016/j.jpowsour.2006.10.054

    (5)Cheng,Y.;Wang,G.;Yan,M.M.;Jiang,Z.Y.J.Solid State Electrochem.2007,11,310.

    (6)Ferrari,S.;Lavall,R.L.;Capsoni,D.;Quartarone,E.;Magistris,A.;Mustarelli,P.;Canton,P.J.Phys.Chem.C 2010,114,12598.doi:10.1021/jp1025834

    (7)Delacourt,C.;Poizot,P.;Levasseur,S.;Masquelier,C.Electrochem.Solid-State Lett.2006,9,A352.

    (8)Konarova,M.;Taniguchi,L.J.Power Sources 2010,195,3661.doi:10.1016/j.jpowsour.2009.11.147

    (9)Yang,S.T.;Zhao,N.H.;Dong,H.Y.;Yang,J.X.;Hue,H.Y.Electrochim.Acta 2005,51,166.doi:10.1016/j.electacta.2005.04.013

    (10)Jinsub,L.;Mathew,V.;Kangkun,K.;Jieh,M.;Jaekook,K.J.Electrochem.Soc.2011,158,A736.

    (11)Kim,D.;Lim,J.;Choi,E.;Gim,J.;Mathew,V.;Paik,Y.;Jung,H.;Lee,W.;Ahn,D.;Paek,S.;Kim,J.Surf.Rev.Lett.2010,17,111.doi:10.1142/S0218625X10014053

    (12)Deng,H.G.;Jin,S.L.;Zhan,L.;Qiao,W.M.;Ling,L.C.Electrochim.Acta 2012,78,633.doi:10.1016/j.electacta.2012.06.059

    (13)Zheng,J.C.;Li,X.H.;Wang,Z.X.;Guo,H.J.;Zhou,S.Y.J.Power Sources 2008,184,574.doi:10.1016/j.jpowsour.2008.01.016

    (14)Cao,Y.B.;Duan,J.G.;Jiang,F.;Hu,G.R.;Peng,Z.D.;Du,K.Acta Phys.-Chim.Sin.2012,28(5),1183.[曹雁冰,段建國,姜 峰,胡國榮,彭忠東,杜 柯.物理化學(xué)學(xué)報,2012,28(5),1183.]doi:10.3866/PKU.WHXB201202221

    (15)Franger,S.;Le,C.F.;Bourbon,C.;Rouault,H.J.Power Sources 2003,119,252.

    (16)Arnold,G.;Garche,J.;Hemmer,R.;Strobele,S.;Vogler,C.;Wohlfahrt-Mehrens,A.J.Power Sources 2003,119,247.

    (17)Yamada,A.;Chung,S.C.;Hinokuma,K.J.Electrochem.Soc.2001,148,A224.

    (18)Yang,S.F.;Zavalij,P.Y.;Whittingham,M.S.Electrochem.Commun.2001,3,505.doi:10.1016/S1388-2481(01)00200-4

    (19)Dokko,K.;Koizumi,S.;Nakano,H.;Kanamura,K.J.Chem.Mater.2007,17,45.doi:10.1039/b613457m

    (20)Zhao,H.C.;Song,Y.;Guo,X.D.;Zhong,B.H.;Dong,J.;Liu,H.Acta Phys.-Chim.Sin.2011,27(10),2347.[趙浩川,宋 楊,郭孝東,鐘本和,董 靜,劉 恒.物理化學(xué)學(xué)報,2011,27(10),2347.]doi:10.3866/PKU.WHXB20110905

    (21)Murugan,A.V.;Muraliganth,T.;Manthiram,A.Electrochem.Commun.2008,10,903.doi:10.1016/j.elecom.2008.04.004

    (22)Gong,H.X.;Yu,Y.;Li,T.;Mei,T.;Xing,Z.;Zhu,Y.C.;Qian,Y.T.;Shen,X.Y.Mater.Lett.2012,66,374.doi:10.1016/j.matlet.2011.08.093

    (23)Kim,J.K.;Choi,J.W.;Chauhan,G.S.;Ahn,J.H.;Hwang,G.C.;Choi,J.B.;Ahn,H.J.Electrochim.Acta 2008,53,28.

    (24)Sun,C.W.;Rajasekhara,S.;Goodenough,J.B.;Zhou,F.J.Am.Chem.Soc.2011,133,2132.doi:10.1021/ja1110464

    (25)Wen,J.J.Study on the Lquid Phase Synthesis of Lithium Iron Phosphate for Cathode Materials.MS Dissertation,Sichuan University,Chengdu,2012.[文嘉杰.液相法合成磷酸鐵鋰正極材料的研究[D].成都:四川大學(xué),2012.]

    (26)Wang,Y.G.;Wang,Y.R.;Hosono,E.J.;Wang,K.X.;Zhou,H.S.Angew.Chem.Int.Edit.2008,47,7461.doi:10.1002/anie.v47:39

    (27)Lin,Y.B.;Lin,Y.;Zhou,T.;Zhou,T.;Zhao,G.Y.;Huang,Y.D.;Huang,Z.G.J.Power Sources 2013,226,20.doi:10.1016/j.jpowsour.2012.10.074

    (28)Dimesso,L.;Spanheimer,C.;Jacke,S.;Jaegermann,W.J.Power Sources 2011,196,6729.doi:10.1016/j.jpowsour.2010.11.015

    (29)Barsoukov,E.;Kim,J.H.;Yoon,C.O.;Lee,H.J.Electrochem.Soc.1998,145,2711.doi:10.1149/1.1838703

    猜你喜歡
    四川大學(xué)物理化學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    四川大學(xué)西航港實驗小學(xué)
    福建工程學(xué)院
    Chemical Concepts from Density Functional Theory
    福建工程學(xué)院
    百年精誠 譽從信來——走進四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    bbb黄色大片| 黄色a级毛片大全视频| 男女边摸边吃奶| 各种免费的搞黄视频| 美女扒开内裤让男人捅视频| 国产高清videossex| 色婷婷久久久亚洲欧美| 性色av一级| 男人舔女人的私密视频| 五月开心婷婷网| 欧美成狂野欧美在线观看| 精品一区二区三区四区五区乱码 | 在线观看免费视频网站a站| 欧美日韩亚洲综合一区二区三区_| 99热国产这里只有精品6| 精品一区二区三区av网在线观看 | √禁漫天堂资源中文www| 热99国产精品久久久久久7| www.自偷自拍.com| 精品国产一区二区三区久久久樱花| 久久精品久久久久久噜噜老黄| 欧美日韩视频高清一区二区三区二| 亚洲欧美精品综合一区二区三区| 两个人免费观看高清视频| 欧美人与善性xxx| 这个男人来自地球电影免费观看| 操美女的视频在线观看| 欧美性长视频在线观看| 巨乳人妻的诱惑在线观看| 香蕉丝袜av| 菩萨蛮人人尽说江南好唐韦庄| 久久 成人 亚洲| 美女国产高潮福利片在线看| 赤兔流量卡办理| 日韩一本色道免费dvd| 国产男女内射视频| 日韩一区二区三区影片| 亚洲成人国产一区在线观看 | 中文字幕制服av| 日本黄色日本黄色录像| 国产一区二区在线观看av| 真人做人爱边吃奶动态| 久久精品国产a三级三级三级| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 婷婷色综合大香蕉| 国产成人免费无遮挡视频| 飞空精品影院首页| 亚洲成色77777| 日本一区二区免费在线视频| 99九九在线精品视频| 亚洲图色成人| 男女之事视频高清在线观看 | 欧美+亚洲+日韩+国产| 看免费成人av毛片| 欧美日韩一级在线毛片| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 欧美人与性动交α欧美软件| 国产主播在线观看一区二区 | 午夜视频精品福利| 女性生殖器流出的白浆| 一本—道久久a久久精品蜜桃钙片| 国产人伦9x9x在线观看| 黄色 视频免费看| 国产在线视频一区二区| 欧美日韩一级在线毛片| 婷婷色综合www| 午夜影院在线不卡| 又大又爽又粗| 日日摸夜夜添夜夜爱| 国产欧美日韩一区二区三区在线| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 日韩大码丰满熟妇| 国精品久久久久久国模美| 悠悠久久av| 黄色视频不卡| 一本—道久久a久久精品蜜桃钙片| 老司机深夜福利视频在线观看 | 高清欧美精品videossex| 国产野战对白在线观看| av网站免费在线观看视频| 黑人猛操日本美女一级片| 又紧又爽又黄一区二区| 久久精品国产亚洲av涩爱| 日本午夜av视频| 日日爽夜夜爽网站| 国产一区有黄有色的免费视频| 日本a在线网址| 国产精品免费大片| 亚洲精品中文字幕在线视频| 亚洲精品美女久久久久99蜜臀 | av在线老鸭窝| 日韩人妻精品一区2区三区| 在线观看国产h片| 精品国产超薄肉色丝袜足j| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 丝袜美足系列| h视频一区二区三区| 久久99一区二区三区| 精品久久久久久电影网| 青青草视频在线视频观看| 免费在线观看视频国产中文字幕亚洲 | 国产极品粉嫩免费观看在线| 成人三级做爰电影| 一级毛片女人18水好多 | 欧美xxⅹ黑人| 后天国语完整版免费观看| 精品久久蜜臀av无| 青青草视频在线视频观看| 91精品国产国语对白视频| 久久久久网色| 久久久久久久国产电影| 免费少妇av软件| 女人久久www免费人成看片| 亚洲欧美成人综合另类久久久| av国产久精品久网站免费入址| 少妇精品久久久久久久| 国产黄频视频在线观看| 99久久99久久久精品蜜桃| av在线老鸭窝| 欧美成狂野欧美在线观看| 国产成人a∨麻豆精品| 亚洲成人免费av在线播放| 亚洲黑人精品在线| 国产成人免费无遮挡视频| 无遮挡黄片免费观看| 国产精品久久久久久人妻精品电影 | 纵有疾风起免费观看全集完整版| 国产高清国产精品国产三级| 亚洲av在线观看美女高潮| 欧美xxⅹ黑人| 中国国产av一级| 晚上一个人看的免费电影| 午夜福利在线免费观看网站| 免费av中文字幕在线| 妹子高潮喷水视频| 亚洲国产精品一区二区三区在线| 国产成人av激情在线播放| 91字幕亚洲| 肉色欧美久久久久久久蜜桃| 日本av手机在线免费观看| 午夜免费成人在线视频| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 国产欧美日韩一区二区三 | 婷婷丁香在线五月| 美女视频免费永久观看网站| 久久精品国产亚洲av高清一级| av一本久久久久| 欧美成人精品欧美一级黄| 中文字幕另类日韩欧美亚洲嫩草| 色视频在线一区二区三区| 人人妻,人人澡人人爽秒播 | 五月天丁香电影| 黄片小视频在线播放| 日本wwww免费看| 欧美精品啪啪一区二区三区 | 波野结衣二区三区在线| 男女国产视频网站| 丁香六月天网| 欧美亚洲 丝袜 人妻 在线| 国产成人免费无遮挡视频| 国产又爽黄色视频| 国产成人av教育| 老司机亚洲免费影院| 亚洲成人国产一区在线观看 | 成人午夜精彩视频在线观看| 99热网站在线观看| 国产精品久久久久久精品古装| 精品久久久久久久毛片微露脸 | 波多野结衣一区麻豆| 看免费av毛片| 自线自在国产av| 国产成人精品无人区| 黄色怎么调成土黄色| 极品少妇高潮喷水抽搐| 久久九九热精品免费| 99九九在线精品视频| 国产精品久久久人人做人人爽| 国产精品一国产av| 不卡av一区二区三区| 亚洲,欧美精品.| 国产成人91sexporn| 少妇 在线观看| 大香蕉久久网| 免费久久久久久久精品成人欧美视频| 乱人伦中国视频| 中国美女看黄片| 大片免费播放器 马上看| 午夜福利乱码中文字幕| 精品一区二区三区四区五区乱码 | 日本a在线网址| 人人妻人人添人人爽欧美一区卜| 精品视频人人做人人爽| 日韩一卡2卡3卡4卡2021年| a 毛片基地| 性高湖久久久久久久久免费观看| 久久久精品94久久精品| 丝袜喷水一区| 国产成人av教育| 97精品久久久久久久久久精品| 精品久久久久久久毛片微露脸 | 91精品伊人久久大香线蕉| 一区二区日韩欧美中文字幕| 操美女的视频在线观看| 久久久久久人人人人人| 欧美亚洲 丝袜 人妻 在线| 女人爽到高潮嗷嗷叫在线视频| 国产又色又爽无遮挡免| 中文精品一卡2卡3卡4更新| 超碰97精品在线观看| 少妇裸体淫交视频免费看高清 | 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 久久精品久久精品一区二区三区| 蜜桃在线观看..| 国产成人91sexporn| 国产亚洲av高清不卡| 99精国产麻豆久久婷婷| 啦啦啦在线免费观看视频4| 国产主播在线观看一区二区 | 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 久久精品成人免费网站| 欧美人与性动交α欧美软件| 亚洲成色77777| 欧美大码av| 国产精品麻豆人妻色哟哟久久| 男人操女人黄网站| 一边摸一边做爽爽视频免费| 亚洲国产精品一区二区三区在线| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| 又粗又硬又长又爽又黄的视频| 亚洲专区中文字幕在线| 成年人黄色毛片网站| 女性被躁到高潮视频| 国产三级黄色录像| 91老司机精品| 宅男免费午夜| 国产精品 欧美亚洲| 人人妻,人人澡人人爽秒播 | 天堂俺去俺来也www色官网| 久久中文字幕一级| 大片免费播放器 马上看| 尾随美女入室| 久久ye,这里只有精品| 亚洲成人免费av在线播放| 欧美人与性动交α欧美精品济南到| 亚洲精品日本国产第一区| 国产亚洲欧美在线一区二区| 国产99久久九九免费精品| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 五月开心婷婷网| av一本久久久久| 少妇精品久久久久久久| 两人在一起打扑克的视频| 国产亚洲一区二区精品| 久久99一区二区三区| 国产免费一区二区三区四区乱码| 看免费成人av毛片| 午夜免费鲁丝| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 999久久久国产精品视频| 欧美在线一区亚洲| 五月天丁香电影| 夫妻性生交免费视频一级片| 美女福利国产在线| 大香蕉久久网| 中文字幕av电影在线播放| 热99久久久久精品小说推荐| 夫妻午夜视频| 精品一品国产午夜福利视频| 成年女人毛片免费观看观看9 | 男人操女人黄网站| 久久人人爽人人片av| 亚洲一码二码三码区别大吗| 欧美国产精品va在线观看不卡| 国产亚洲欧美在线一区二区| 日日夜夜操网爽| 免费看不卡的av| av网站在线播放免费| 男女午夜视频在线观看| 亚洲国产av影院在线观看| 欧美亚洲日本最大视频资源| 在线观看免费日韩欧美大片| 亚洲欧美日韩另类电影网站| 视频在线观看一区二区三区| 亚洲专区国产一区二区| 亚洲精品自拍成人| 无限看片的www在线观看| 国产不卡av网站在线观看| 国产黄频视频在线观看| 精品少妇内射三级| 91成人精品电影| 天天躁夜夜躁狠狠久久av| 亚洲,一卡二卡三卡| 搡老岳熟女国产| 久久99精品国语久久久| 丝袜美足系列| 国产av一区二区精品久久| 欧美人与性动交α欧美精品济南到| 欧美精品啪啪一区二区三区 | 亚洲伊人色综图| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 无遮挡黄片免费观看| 日韩av在线免费看完整版不卡| 黑人欧美特级aaaaaa片| 老司机靠b影院| 成在线人永久免费视频| 国产男人的电影天堂91| 国产视频一区二区在线看| 啦啦啦 在线观看视频| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久久精品电影小说| 18禁国产床啪视频网站| 国产成人91sexporn| 亚洲五月色婷婷综合| 亚洲国产精品999| 国产成人一区二区三区免费视频网站 | 2021少妇久久久久久久久久久| 欧美老熟妇乱子伦牲交| 极品人妻少妇av视频| 亚洲三区欧美一区| 日韩熟女老妇一区二区性免费视频| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区 | 少妇的丰满在线观看| 乱人伦中国视频| 亚洲欧洲国产日韩| 十八禁高潮呻吟视频| 国产麻豆69| 韩国精品一区二区三区| 免费不卡黄色视频| 一个人免费看片子| 国产精品人妻久久久影院| 精品亚洲成国产av| 91麻豆av在线| 久久亚洲精品不卡| 国产精品一区二区在线不卡| 宅男免费午夜| 午夜免费鲁丝| 在线精品无人区一区二区三| 亚洲,一卡二卡三卡| 看免费成人av毛片| 国产成人精品久久二区二区免费| 精品国产一区二区三区久久久樱花| 王馨瑶露胸无遮挡在线观看| 天天添夜夜摸| 国产在视频线精品| 天堂中文最新版在线下载| 亚洲精品国产av成人精品| 叶爱在线成人免费视频播放| 夜夜骑夜夜射夜夜干| 美女脱内裤让男人舔精品视频| 亚洲国产最新在线播放| 国产伦人伦偷精品视频| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 下体分泌物呈黄色| 免费看十八禁软件| 激情视频va一区二区三区| 成人手机av| 蜜桃国产av成人99| 国产成人av教育| 久久精品国产a三级三级三级| 亚洲国产av影院在线观看| 亚洲伊人色综图| 两人在一起打扑克的视频| videos熟女内射| 两人在一起打扑克的视频| 丁香六月天网| 一边亲一边摸免费视频| 久久久精品免费免费高清| 男女国产视频网站| 中文字幕人妻丝袜一区二区| 久久国产亚洲av麻豆专区| av有码第一页| av电影中文网址| 成在线人永久免费视频| www日本在线高清视频| 大型av网站在线播放| 成年人午夜在线观看视频| 国产成人精品无人区| 国产精品一区二区精品视频观看| 18在线观看网站| 日韩中文字幕欧美一区二区 | 嫩草影视91久久| 精品国产一区二区久久| 国产在线观看jvid| 黑人猛操日本美女一级片| 蜜桃在线观看..| 人人澡人人妻人| 欧美激情 高清一区二区三区| 天堂8中文在线网| 日本黄色日本黄色录像| av国产久精品久网站免费入址| 欧美激情高清一区二区三区| 亚洲欧美中文字幕日韩二区| 免费人妻精品一区二区三区视频| 国产欧美日韩一区二区三区在线| av片东京热男人的天堂| 日韩精品免费视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 精品少妇黑人巨大在线播放| 精品高清国产在线一区| 精品免费久久久久久久清纯 | 99精品久久久久人妻精品| 男人舔女人的私密视频| 国产成人欧美在线观看 | 免费在线观看日本一区| 国产成人精品在线电影| 五月天丁香电影| 国产精品av久久久久免费| 咕卡用的链子| 美女大奶头黄色视频| 亚洲熟女毛片儿| 日本色播在线视频| 精品亚洲乱码少妇综合久久| 午夜激情久久久久久久| 尾随美女入室| 丝袜美足系列| 99国产精品一区二区蜜桃av | 亚洲国产av影院在线观看| 免费黄频网站在线观看国产| 男女高潮啪啪啪动态图| 十八禁网站网址无遮挡| av电影中文网址| 男的添女的下面高潮视频| 国产精品国产三级国产专区5o| 成人黄色视频免费在线看| www.自偷自拍.com| 午夜激情久久久久久久| 深夜精品福利| 99久久综合免费| 久久人妻熟女aⅴ| 一级a爱视频在线免费观看| 香蕉国产在线看| av线在线观看网站| 日韩中文字幕视频在线看片| 五月开心婷婷网| 久久久久久久精品精品| 人体艺术视频欧美日本| 水蜜桃什么品种好| 后天国语完整版免费观看| 老熟女久久久| 熟女少妇亚洲综合色aaa.| 黄片小视频在线播放| 久久国产亚洲av麻豆专区| 免费观看人在逋| 一二三四在线观看免费中文在| 国产色视频综合| 99久久人妻综合| av网站在线播放免费| 久久av网站| 色播在线永久视频| 亚洲国产欧美一区二区综合| 欧美日韩亚洲高清精品| 久久久久国产一级毛片高清牌| 国产不卡av网站在线观看| 亚洲,一卡二卡三卡| 中文字幕人妻丝袜制服| 99热全是精品| 久久这里只有精品19| avwww免费| 欧美久久黑人一区二区| 亚洲人成77777在线视频| 国产精品久久久久久精品电影小说| 91国产中文字幕| 亚洲伊人色综图| 男女边吃奶边做爰视频| 国产精品九九99| 免费日韩欧美在线观看| 国产黄频视频在线观看| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 成年人免费黄色播放视频| 人妻人人澡人人爽人人| 最新的欧美精品一区二区| 伊人久久大香线蕉亚洲五| 成人三级做爰电影| 国产一区二区三区综合在线观看| 欧美人与性动交α欧美软件| 在线观看免费日韩欧美大片| 精品亚洲成a人片在线观看| 国产精品三级大全| 女性生殖器流出的白浆| 老司机在亚洲福利影院| 精品熟女少妇八av免费久了| 美女中出高潮动态图| 精品一区二区三区av网在线观看 | 久久久国产欧美日韩av| 国产日韩一区二区三区精品不卡| 免费高清在线观看日韩| 亚洲精品成人av观看孕妇| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 亚洲国产av新网站| 欧美av亚洲av综合av国产av| 亚洲综合色网址| 91精品三级在线观看| 我要看黄色一级片免费的| 18在线观看网站| 亚洲精品一区蜜桃| 国产视频首页在线观看| 久久久国产精品麻豆| 亚洲欧美中文字幕日韩二区| 日韩伦理黄色片| 日韩视频在线欧美| 日日夜夜操网爽| 国产成人精品久久二区二区91| 999精品在线视频| 国产一区亚洲一区在线观看| 人妻一区二区av| 最近手机中文字幕大全| 超色免费av| 亚洲国产精品国产精品| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 国产精品一二三区在线看| 久久久久久亚洲精品国产蜜桃av| 亚洲av美国av| 99国产精品一区二区三区| 成人手机av| 搡老岳熟女国产| 免费在线观看日本一区| 亚洲黑人精品在线| 成人国产一区最新在线观看 | 女人久久www免费人成看片| 老司机在亚洲福利影院| 一区二区av电影网| 蜜桃在线观看..| 人妻人人澡人人爽人人| 久久九九热精品免费| 搡老岳熟女国产| 啦啦啦中文免费视频观看日本| 大型av网站在线播放| 久久久久久久国产电影| 欧美另类一区| 国产av精品麻豆| 在线观看www视频免费| 日韩中文字幕视频在线看片| 久久鲁丝午夜福利片| 欧美日韩精品网址| 精品国产一区二区久久| 宅男免费午夜| av不卡在线播放| 99精品久久久久人妻精品| 午夜免费观看性视频| 午夜福利视频精品| 视频在线观看一区二区三区| 精品亚洲成国产av| 精品少妇久久久久久888优播| 国产福利在线免费观看视频| 91字幕亚洲| 国产高清国产精品国产三级| 免费观看人在逋| 欧美 日韩 精品 国产| √禁漫天堂资源中文www| 国产男女超爽视频在线观看| 性色av一级| 欧美日韩亚洲国产一区二区在线观看 | 波多野结衣一区麻豆| avwww免费| 王馨瑶露胸无遮挡在线观看| 青草久久国产| 精品视频人人做人人爽| 王馨瑶露胸无遮挡在线观看| 国产精品成人在线| 久久狼人影院| 亚洲国产欧美网| 亚洲人成电影观看| 国产免费又黄又爽又色| 国产成人a∨麻豆精品| 只有这里有精品99| 精品一区二区三卡| 亚洲国产欧美网| 香蕉国产在线看| 久久亚洲精品不卡| 一级毛片我不卡| 成人黄色视频免费在线看| 精品人妻在线不人妻| 9191精品国产免费久久| 欧美日韩成人在线一区二区| 国产一区有黄有色的免费视频| 啦啦啦视频在线资源免费观看| 久久免费观看电影| 波多野结衣av一区二区av| 亚洲 欧美一区二区三区| 1024视频免费在线观看| 丝袜喷水一区| 久久国产亚洲av麻豆专区| 亚洲五月婷婷丁香| 国产淫语在线视频| 欧美乱码精品一区二区三区| 69精品国产乱码久久久| 免费看不卡的av| 在线 av 中文字幕| 极品人妻少妇av视频| 捣出白浆h1v1|