• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C-LiFePO4/聚三苯胺復(fù)合鋰離子電池正極材料的制備與性能

    2014-10-18 05:27:38黃啟飛徐立環(huán)
    物理化學(xué)學(xué)報(bào) 2014年1期
    關(guān)鍵詞:浙江工業(yè)大學(xué)光耀苯胺

    蘇 暢 黃啟飛 徐立環(huán) 張 誠,*

    (1浙江工業(yè)大學(xué)綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地,杭州 310014;2沈陽化工大學(xué)化學(xué)工程學(xué)院,沈陽 110142)

    1 Introduction

    Olivine-structured lithium iron phosphate(LiFePO4)is becoming a focus of research in developing the low cost and high performance cathode materials for lithium-ion batteries.However,the low lithium-ion diffusivity(~10-18cm2·s-1)1and the electronic conductivity(~10-9S·cm-1)2of bare LiFePO4cause low rate capacity and low utilization of lithium in the host structure,which become the obstacles for its large-scale application in high power fields.Over the past few years,tremendous attempts have been devoted to overcome those limitations by improvement of purity,control of morphology and size,optimization of particles,adding conductive agent(typically carbon,metals,or polymers,etc.),3-9and doping the foreign atoms/ions(Cr3+,V5+,MO2+,Zn2+).10-13Among various endeavors,nanoarchitecture provided one of the desirable approaches to develop high-performance electrode materials for lithium store due to the high active surface area and shortened pathway for lithium insertion/deinsertion.14-16The solvothermal synthetic approach,17-20which is based on the use of high organic boiling point solvent instead of water as solvent,appears quite attractive for constructing the nanoarchitecture LiFePO4.Like water,organic high boiling point solvent has excellent solvent properties,as well as high thermal stability and negligible volatility,so that the use of autoclave is not mandatory.When alcohol analogues(ethylene glycol,glycerin,and tetraethylene glycol,etc.)are used as solvents to synthesize LiFePO4,the oxidation of the Fe2+ions to Fe3+ions,which often occurs during the hydrothermal synthesis process,21-23can be much avoided due to reduction nature of alcohol analogues,resulting in the improved electrochemical performances of LiFePO4.

    Meanwhile,conductive carbon coating was a conventional way to conquer the limited rate capacity because the dispersed carbon conductive agent provides pathway of electron transfer,which results in improvement of the conductivity and electrochemical properties.Recently,application of electrically conductive polymers,such as polythiophene(PTh),polyaniline(PAn),polypyrrole(PPy),and their derivatives,as conductive agents to modify inorganic electrode materials has attracted much attention.Those conducting polymer layers on the surface of inorganic electrode materials should play a role of plastic protecting shell and the collapse of inorganic electrode materials because volume expansion during the charge-discharge process can be prevented effectively.And the investigations on LiFePO4/poly(3,4-ethylenedioxythiophene)(PEDOT),24LiFe-PO4/PAn,25LiFePO4/PPy,26V2O5/PPy,27and LiV3O8/PPy28have also been reported,which exhibited the improved electrochemical properties as the cathode for lithium-ion battery.

    Compared with other conducting polymers,polytriphenylamine(PTPAn)and its derivatives,which contain triphenylamine radical units and a highly conductive polyparaphenylene(PPP)back-bone combined with high energy density of electroactive polyaniline unit,belong to family of radical polymer.It exhibited a reversible,rapid,and stable radical redox reaction during charge-discharge processes,29which makes the triphenylamine-based polymer materials be explored recently as the electrode active material applied in the energy storage field,such as super capacitors and lithium-ion battery.Moreover,PTPAn as a cathode material for lithium-ion batteries has relatively smooth charging and discharging voltage platform in 3.5 V place,which is similar to that of LiFePO4.Therefore,we expected to construct a new composite cathode material,which consists of LiFePO4and PTPAn conducting coatings,to improve the electrochemical properties of the LiFePO4-based cathode materials.

    In this investigation,we firstly synthesized nano-size carboncoated LiFePO4(C-LiFePO4)by solvothermal method to improve Li+diffusivity in LiFePO4bulk and then C-LiFePO4/PTPAn composites were prepared by coating the PTPAn on the surface of C-LiFePO4particles by solution mixing method.The electrochemical properties of the series of C-LiFePO4/PTPAn as cathode materials were investigated systematically.

    2 Experimental

    2.1 Material preparation

    C-LiFePO4powder was prepared by a low-temperature solvothermal method,and the detail procedure was described as following:LiOH·H2O(95.0%,Aladdin)was firstly dissolved in ethylene glycol,FeSO4·7H2O(99.0%,Aladdin)and H3PO4(85.0%,Aladdin)were dissolved in a small amount of distilled water,and then the above solutions were mixed at ambient temperature in a three-necked round-bottomed flask to realize a Li:Fe:P molar ratio of 3:1:1.The homogeneous and green mixed solution was kept reacting at 220°C for 20 h under magnetic stirring,and the whole course was protected by N2atmosphere with a tube blowing.After the reaction solution being cooled naturally to room temperature,the resultant solution was separated by centrifugation with distilled water several times,and the finally obtained light green-grayish product was dried in vacuum drying oven(DZF-6053,Yiheng Technology Co.)at 80°C for 12 h,then the C-LiFePO4was prepared by using LiFePO4powders as precursor to mix with a certain amount of sucrose(AR,Guangdong Guanghua Chemical Co.)as carbon source,where the sucrose was weighed in stoichiometric amount according to the LiFePO4to carbon mass ratio of 100 to 8,and the as-obtained mixture was dried,followed calcination at 650 °C with pure N2at a flow rate of 60 mL·min-1for 5 h.

    The polymer of PTPAn was prepared by chemical oxidative method.The polymerization reaction was carried out in 20 mL chloroform(AR,Tianjin Yongda Chemical Co.)using ferric chloride(96%,Junze Chemical Co.)as oxidant.The solution was stirred over night at room temperature under N2.After completion of the solution polymerization reaction,the reaction mixture was poured into methanol to deposit the polymer product,which was then filtered and washed with methanol several times.Finally,the polymer product was filtered and dried in vacuum at 60°C for 12 h.

    In order to prepare the C-LiFePO4/PTPAn composites,the PTPAn was dispersed in chloroform to form a colloidal solution.Then the C-LiFePO4nanocrystals were mixed with the above colloidal solution by ultrasonic dispersion for 20-30 min at ambient temperature to get the organic-inorganic nano hybrid,which was then dried in a vacuum oven at 60°C.The samples with 3%,10%,and 20%(w)PTPAn were prepared,respectively.

    2.2 Structural characterization and electrochemical measurement

    The crystalline phase of the resulting materials was analyzed by powder X-ray diffraction(XRD)(X1PertPRO,PNAlytical,Holand),which was carried out using a X1PertMPD diffractometer equipped with a X1Celerator detector and Cu Kαradiation(λ=0.1542 nm)operated at 40 kV and 40 mA.The sample morphology was characterized by a field emission scanning electron microscopy(FE-SEM)(S-4700,Hitachi,Japan)and a transmission electron microscopy(TEM)(Tecnai G2 F30 STwin,Philips-FEI,Holand).

    The electrochemical performance of the C-LiFePO4/PTPAn composite as cathode was evaluated using a CR2032 coin-type cell.The C-LiFePO4/PTPAn composite electrode and PTPAn electrode were produced by dispersing active materials(70%(w)),carbon black(20%(w)),and poly(tetrafluoroethylene)binder(10%(w))in N-methylpyrrolidone(NMP)solvent to form a homogeneous slurry,respectively.The slurry was then deposited on a current collector consisting of Al foil by blade and then dried at 60°C for 10 h in an oven.The coin-type cell was assembled in a glove box filled with pure Ar.The electuolyte used was 1 mol·L-1LiPF6dissolved in a mixture of ethylene carbonate(EC)and dimethyl carbonate(DMC)(VEC/VDMC=1:1).A Li-foil and a polypropylene micro-porous film(Celgard 2300)were used as the counter electrode and separator,respectively.

    The cells were charged and discharged in the range of 2.5-4.2 V at different rates.Electrochemical impedance spectroscopy(EIS)was measured over a frequency range of 100 kHz to 10 mHz at a discharged stage with an applied amplitude of 5 mV on an electrochemical workstation(CHI 660C,Shanghai Chenhua Co.).

    3 Results and discussion

    3.1 Material characterizations

    XRD patterns of the C-LiFePO4and C-LiFePO4/PTPAn are shown in Fig.1(a,b).As can been seen in Fig.1a,the diffraction peaks of C-LiFePO4can be well indexed to pure LiFePO4with an orthorhombic olivine structure(JCPDS card No.83-2092).No impurities such as Li3PO4and others,which often appear in the LiFePO4product synthesized by traditional solid reaction route,are observed.All diffraction peaks are the same as the following standard peaks and all peaks are strong and narrow,indicating that the high crystallinity of the LiFePO4samples can be synthesized by low-temperature solvothermal method and then heat-treatment process.In addition,the diffraction peaks on carbon were not detected because the residual carbon on the surface of LiFePO4is amorphous.With increasing the PTPAn coatings on the C-LiFePO4,we found that the similar characteristic diffraction peaks for LiFePO4are presented(as shown in Fig.1(b-d)),indicating that PTPAn does not affect the crystal structure of the C-LiFePO4.

    Fig.1 XRD patterns of(a)C-LiFePO4,(b)C-LiFePO4/3%PTPAn,(c)C-LiFePO4/10%PTPAn,and(d)C-LiFePO4/20%PTPAn

    Fig.2 SEM images of(a)C-LiFePO4,(b)C-LiFePO4/3%PTPAn,(c)C-LiFePO4/10%PTPAn,and(d)C-LiFePO4/20%PTPAn;(e)TEM images of C-LiFePO4/10%PTPAn;(f)HRTEM images of C-LiFePO4/10%PTPAn

    Fig.2 shows the typical SEM and/or TEM images of pure CLiFePO4and the series of C-LiFePO4/PTPAn samples obtained by blending of C-LiFePO4in chloroform solution with the PTPAn contents of 3%,10%,and 20%(w),respectively.From Fig.2a,we can see that the pure C-LiFePO4particles prepared by low-temperature solvothermal method display a spindleshape with a uniform size of about 100 nm in width diameter.The uniform and moderate particle size about C-LiFePO4is expected to benefit to lithium-ion migration in LiFePO4bulk and to enhancement of the electrochemical performance.For the CLiFePO4/PTPAn composites,we can see that the PTPAn polymer is well coated on the surface of the C-LiFePO4particles,which makes the surface of C-LiFePO4particles coarse.With increasing the amount of the PTPAn in the C-LiFePO4/PTPAn composites,most of the particles still keep their good dispersity,and a few of sticky PTPAn polymers among the CLiFePO4particles can benefit to decrease of the particle-to-particle contact resistance and thus to enhancement of the electrical conductivity of the composites.When the PTPAn content is 20%(w),the particles become seriously agglomerated and form larger aggregation(Fig.2d).TEM image(as shown in Fig.2e)further reveals that C-LiFePO4particles are spindleshape with well defined diffraction pattern of olivine phase(as shown in Fig.2e and the SAED pattern of top inset).HRTEM image(Fig.2f)shows that the carbon and both PTPAn coatings have been successfully coated onto the surface of the LiFePO4particles by our solution blending tactics and the thickness of carbon layer and PTPAn coating are about 1-5 nm and 1-3 nm,respectively.Because the LiFePO4particles are firstly coated with carbon and then are covered with the polymer,it is obvious that PTPAn coating is tightly covered on the surface of carbon.

    3.2 Charge-discharge performance

    The electrochemical properties of pure LiFePO4,C-LiFePO4,and the C-LiFePO4/PTPAn composites with different PTPAn contents are compared.Fig.3 shows cell voltage versus specific capacity for pure LiFePO4,C-LiFePO4,and various C-LiFePO4/PTPAn samples.Therein,the specific capacity is defined as the capacity per gram of the total active cathode material in the electrodes.And the theory discharge specific capacity of CLiFePO4/PTPAn(C0)can be calculated by following relation(Eq.(1)):

    where,C1is the theory discharge specific capacity of LiFePO4(170.0 mAh·g-1),C2is the theory discharge specific capacity of PTPAn(109.0 mAh·g-1),w is the mass fraction of PTPAn in the C-LiFePO4/PTPAn composite.Compared to the pure LiFePO4,C-LiFePO4exhibits an increasing initial discharge specific capacity of 146.4 mAh·g-1,indicating that the carbon conductive coating on the surface of LiFePO4can effectively improve the utilization rate of LiFePO4.For the C-LiFePO4/PTPAn composites,according to the theoretical calculation,the theory discharge specific capacities of the C-LiFePO4/PTPAn composites are 168.2,163.9,and 157.8 mAh·g-1when the PTPAn contents are 3%,10%,and 20%(w),respectively.Usually,PTPAn has much lower theoretically specific capacity than that of the CLiFePO4,so an increase of PTPAn content in the C-LiFePO4/PTPAn composite is generally considered to reduce the specific capacity of the composite electrode,as compared with the parent C-LiFePO4cathode.However,as for the PTPAn in which modified C-LiFePO4is applied as the composite,we can clearly see the positively electrochemical contribution from PTPAn,and the measured discharge capacities of the C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn at 0.1C are about 146.4,149.6,154.5,and 142.1 mAh·g-1,respectively.And specially,the C-LiFePO4/10%PTPAn composite cathode delivered the highest specific chargedischarge capacity of 154.5 mAh·g-1.In those four electrodes,the utilization rates of LiFePO4are 86.12%,88.96%,94.26%,and 90.05%,respectively,based on Eq.(1),where supporting that the theory discharge specific capacity of PTPAn is 109.0 mAh·g-1.The enhanced capacity of C-LiFePO4by PTPAn coatings can be explained as follows:the imperfect carbon layer coating30on the surface of LiFePO4can result in the fact that the surface of the LiFePO4is partly exposed and naked,which induces the ineffectively electron/ion transformation on the naked surface part and the poor utilization of LiFePO4during the charge-discharge process.As compared with the conductive PTPAn in solution,a tightly electroactive PTPAn film can form a supplementary conductive coating on the surface of C-LiFe-PO4particles or among the particles,resulting in an improved electrical/ionic conductivity and full utilization of the active materials of C-LiFePO4.Therefore,both the redox behavior of PTPAn and the synergistic effect provided by PTPAn and carbon layer attribute to the improvement of the specific capacity of the cathode.Specially,the degradation specific capacity for C-LiFePO4/20%PTPAn can be attributed to an excess of PTPAn and the serious agglomerated morphology.

    Fig.3 Initial charge and discharge curves of PTPAn,LFP,C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn at 0.1C rate

    The cycling performances at 0.1C for C-LiFePO4and various C-LiFePO4/PTPAn composites with different PTPAn contents are examined by cycling testing and the results are shown in Fig.4.It is found that C-LiFePO4,C-LiFePO4/3%PTPAn,and C-LiFePO4/10%PTPAn composite cathodes display the higher specific discharge capacities than C-LiFePO4/20%PTPAn,as well as the improved cycling stability during 50 cycles.This result demonstrates that the structure of the composite is relatively stable and the electrochemical lithium-ion insertion/extraction process is quite reversible at the lower PTPAn content of the composites.However,at high PTPAn content(CLiFePO4/20%PTPAn composite cathode),since the much more PTPAn exists among the C-LiFePO4/PTPAn composites,which connect C-LiFePO4particles,resulting in the serious agglomeration of the C-LiFePO4(as shown in Fig.2d),which tends to cause the seriously re-aggregation of C-LiFePO4particles during the initial charge-discharge process,as well the unstable cycling performance of the composite electrode.

    Fig.4 Cycling performances(herein refers to discharge capacities)of C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn at 0.1C rate

    Fig.5 Reversible capacities of C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn during continuous cycling at various discharge rates from 0.1C to 10C

    We further investigate the discharge properties for the CLiFePO4and C-LiFePO4/PTPAn composites at various rates and the results are illustrated in Fig.5 and Fig.6.Compared with parent C-LiFePO4,the C-LiFePO4/PTPAn composites with different PTPAn contents generally display an improved rate capability and the flat plateaus curve of charge-discharge.As shown in Fig.5,C-LiFePO4/3%PTPAn composite shows slightly improvement of rate capability compared to the parent C-LiFe-PO4,indicating that incorporation of 3%(w)PTPAn is not enough to improve the performance.Further increasing the content of PTPAn to 10%(w),the specific rate capacity of the obtained C-LiFePO4/10%PTPAn composite exhibits the best rate capability,and the discharged capacity can even reach up to 114.2 mAh·g-1at 10C,compared to the 85.5 mAh·g-1of the C-LiFePO4at the same high rate.As the content of PTPAn increases to 20%(w),the discharged rate capacity decreases slightly,but still higher than that of the parent C-LiFePO4at high rate(10C).The improved rate capability can be ascribed to the addition of PTPAn coating on the surface of C-LiFePO4,which possesses the advanced charge migration nature during the charge-discharge process to make it be able to serve as a host for lithium-ion intercalation/extraction.31In addition,the PTPAn coating can form a perfect conducting carbon layer coating on the surface of C-LiFePO4and provides good electronic contact between the particles and the current collector which decreases the internal resistance of the electrode.The electrodes with better lithium-ion charge migration and lower electric resistance should display better capacity retention at the higher discharge rate.

    3.3 Electrochemical impedance analysis

    Fig.7 further shows electrochemical impedance spectra of cycled cells with C-LiFePO4and C-LiFePO4/PTPAn composites with different PTPAn contents.The impedance spectra can be explained on the basis of an equivalent circuit with the electrolyte resistance(Re),charge transfer resistance(Rct),double layer capacitance(Cd),and Warburg impedance(Zw).31,32In these impedance plots,the initial intercept of the spectrum at the Z?axis in high frequency corresponds to the resistance of the electrolyte(Re).The semicircle at medium frequencies represents the charge-transfer reaction resistance,while the straight lines at low frequencies indicate the Warburg impedance,which displays the diffusion-controlled process.As can be seen in Fig.7,the resistance of the electrolyte is similar for the parent C-LiFePO4and C-LiFePO4/PTPAn electrodes.However,Rctvaries with different cathodes:348.9 Ω for C-LiFePO4electrode,160.9 Ω for C-LiFePO4/3%PTPAn electrode,and 191.1 Ω for C-LiFePO4/20%PTPAn electrode.Specially,the Rctof C-LiFePO4/10%PTPAn is only 140.7 Ω,which is the lowest among the four electrodes.Those results further indicate that the PTPAn coating significantly increases the electrical conductivity between C-LiFePO4particles,resulting in the improved rate performance.

    Fig.6 Discharge curves of(a)C-LiFePO4,(b)C-LiFePO4/3%PTPAn,(c)C-LiFePO4/10%PTPAn,and(d)C-LiFePO4/20%PTPAn at various rates from 0.1C to 10C

    Fig.7 Electrochemical impedance spectra of C-LiFePO4,C-LiFePO4/3%PTPAn,C-LiFePO4/10%PTPAn,and C-LiFePO4/20%PTPAn

    4 Conclusions

    The olivine C-LiFePO4was prepared by a low-temperature solvothermal method and a subsequent high temperature postannealing processes.Then,the C-LiFePO4/PTPAn composites with PTPAn as electroactive coatings were prepared by the method of solution blending.The enhancement of the capacity and rate capability of the composite electrode materials can be attributed to both the nano-size effect of LiFePO4particles and the superior electric/ionic and electrochemical characteristics of PTPAn coatings.Specially,the C-LiFePO4/10%PTPAn composite electrode demonstrated the improved initial discharge capacity and the best high-rate capability,which displayed the discharge specific capacity from 0.1C to 10C were 154.5,148.6,143.1,139,136.7,125.4,114.8 mAh·g-1,respectively.The measurements on the electrochemical impedance spectra also demonstrated that PTPAn coating significantly decreased the charge-transfer resistance of C-LiFePO4electrodes.The perfect performances of the C-LiFePO4/PTPAn composites made it a good candidate for the potential applications in lithium-ion batteries.

    (1)Srinivasan,V.;Newman,J.J.Electrochem.Soc.2004,151,1517.doi:10.1149/1.1785012

    (2)Chung,S.Y.;Chiang,Y.M.Electrochem.Solid State Lett.2003,6,278.doi:10.1149/1.1621289

    (3)Xie,H.M.;Wang,R.S.;Ying,J.R.;Zhang,L.Y.;Jalbout,A.F.;Yu,H.Y.;Yang,G.L.;Pan,X.M.;Su,Z.M.Adv.Mater.2006,18,2609.

    (4)Kim,D.K.;Park,H.M.;Jung,S.J.;Jeong,Y.U.;Lee,J.H.;Kim,J.J.J.Power Sources 2006,159,237.doi:10.1016/j.jpowsour.2006.04.086

    (5)Bewlay,S.L.;Konstantinov,K.;Wang,G.X.;Dou,S.X.;Liu,H.K.Mater.Lett.2004,58,1788.doi:10.1016/j.matlet.2003.11.008

    (6)Wu,S.H.;Hsiao,K.M.;Liu,W.R.J.Power Sources 2005,146,550.doi:10.1016/j.jpowsour.2005.03.128

    (7)Alvaro,C.;Manuel,C.Y.;Julian,M.;Jesus,S.P.;Enrique,R.C.Eur.J.Inorg.Chem.2006,2006,1758.

    (8)Wang,G.X.;Bewlay,S.L.;Konstantinov,K.;Liu,H.K.;Dou,S.X.;Ahn,J.H.Electrochem.Acta 2004,50,443.doi:10.1016/j.electacta.2004.04.047

    (9)Barker,J.;Saidi,M.Y.;Swoyer,J.L.Electrochem.Solid State Lett.2003,6,252.doi:10.1149/1.1621288

    (10)Ni,J.F.;Zhou,H.H.;Chen,J.T.;Su,G.Y.Acta Phys.-Chim.Sin.2004,20,582.[倪江鋒,周恒輝,陳繼濤,蘇光耀.物理化學(xué)學(xué)報(bào),2004,20,582.]doi:10.3866/PKU.WHXB20040606

    (11)Sun,C.S.;Zhou,Z.;Xu,Z.G.;Wei,J.P.;Bian,X.K.;Yan,J.J.Power Sources 2009,193,841.doi:10.1016/j.jpowsour.2009.03.061

    (12)Yu,C.Y.;Wang,Z.L.;Chen,Y.;Xia,D.G.;Chu,W.S.;Wu,Z.Y.Rare Metals 2009,28,317.doi:10.1007/s12598-009-0062-y

    (13)Liu,H.;Cao,Q.;Fu,L.J.;Wu,Y.P.;Wu,Q.H.Electrochem.Commun.2006,8,1553.doi:10.1016/j.elecom.2006.07.014

    (14)Sun,G.;Jin,B.;Sun,G.P.;Jin,E.;Gu,H.B.;Jiang,Q.J.Appl.Electrochem.2011,41,99.doi:10.1007/s10800-010-0213-8

    (15)Saravanan,K.;Balaya,P.;Reddy,M.V.;Chowdari,B.V.R.;Vittal,J.J.Energy Environ.Sci.2010,3,457.doi:10.1039/b923576k

    (16)Malik,R.;Burch,D.;Bazant,M.;Ceder,G.Nano Lett.2010,10,4123.doi:10.1021/nl1023595

    (17)Recham,N.;Dupont,L.;Courty,M.;Djellab,K.;Larcher,D.;Armand,M.;Tarascon,J.M.Chem.Mater.2009,21,1096.doi:10.1021/cm803259x

    (18)Yang,H.;Wu,X.L.;Cao,M.H.;Guo,Y.G.J.Phys.Chem.C 2009,113,3345.doi:10.1021/jp808080t

    (19)Tarascon,J.M.;Recham,N.;Armand,M.;Chotard,J.N.;Barpanda,P.;Walker,W.;Dupont,L.Chem.Mater.2010,22,724.doi:10.1021/cm9030478

    (20)Murugan,A.V.;Muraliganth,T.;Manthiram,A.J.Phys.Chem.C 2008,112,14665.doi:10.1021/jp8053058

    (21)Ellis,B.;Kan,W.H.;Makahnouk,W.R.M.;Nazar,L.F.J.Mater.Chem.2007,17,3248.doi:10.1039/b705443m

    (22)Dokko,K.;Koizumi,S.;Kanamura,K.Chem.Lett.2006,35,338.doi:10.1246/cl.2006.338

    (23)Dokko,K.;Koizumi,S.;Nakano,H.;Kanamura,K.J.Mater.Chem.2007,17,4803.doi:10.1039/b711521k

    (24)Murugan,A.V.;Muraliganth,T.;Manthiram,A.Electrochem.Commun.2008,10,903.doi:10.1016/j.elecom.2008.04.004

    (25)Lei,G.T.;Yi,X.H.;Wang,L.;Li,Z.H.;Zhou,J.Polym.Adv.Technol.2009,20,576.doi:10.1002/pat.v20:6

    (26)Huang,Y.H.;Goodenough,J.B.Chem.Mater.2008,20,7237.doi:10.1021/cm8012304

    (27)Zhao,H.B.;Yuan,A.B.;Liu,B.D.;Xing,S.Y.;Wu,X.Y.;Xu,J.Q.J.Appl.Electrochem.2012,42,139.doi:10.1007/s10800-012-0380-x

    (28)Liu,L.L.;Wang,X.J.;Zhu,Y.S.;Hu,C.L.;Wu,Y.P.;Holze,R.J.Power Sources 2013,224,290.doi:10.1016/j.jpowsour.2012.09.100

    (29)Feng,J.K.;Cao,Y.L.;Ai,X.P.;Yang,H.X.J.Power Sources 2008,177,199.doi:10.1016/j.jpowsour.2007.10.086

    (30)Wang,Y.;Wang,Y.;Hosono,E.;Wang,K.;Zhou,H.Angew.Chem.Int.Edit.2008,47,7461.doi:10.1002/anie.v47:39

    (31)Nobili,F.;Croce,F.;Scrosat,I.B.;Marassi,R.Chem.Mater.2001,13,1642.doi:10.1021/cm000600x

    (32)Rodrigues,S.;Munichandraiah,N.;Shukla,A.K.J.Solid State Electrochem.1999,3,397.doi:10.1007/s100080050173

    猜你喜歡
    浙江工業(yè)大學(xué)光耀苯胺
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    一種有效回收苯胺廢水中苯胺的裝置
    能源化工(2021年6期)2021-12-30 15:41:26
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    光耀千年的藝術(shù)國寶
    幼兒100(2018年34期)2018-12-29 12:31:42
    歡樂春節(jié)讓陜西文化光耀海外
    光為光耀中國為夢啟航 中國夢系列產(chǎn)品全新推廣
    中國照明(2016年5期)2016-06-15 20:30:11
    抗氧劑壬基二苯胺的合成及其熱穩(wěn)定性
    光耀扶輪
    社會與公益(2015年8期)2015-05-30 08:11:19
    国产亚洲精品综合一区在线观看| 搡老妇女老女人老熟妇| 97超级碰碰碰精品色视频在线观看| 99热这里只有是精品50| 亚洲成人免费电影在线观看| 97超视频在线观看视频| 国产精品久久视频播放| 九色国产91popny在线| 成人国产综合亚洲| 巨乳人妻的诱惑在线观看| 久久久国产精品麻豆| 好男人在线观看高清免费视频| 午夜成年电影在线免费观看| 变态另类成人亚洲欧美熟女| 婷婷六月久久综合丁香| 日本 欧美在线| 两人在一起打扑克的视频| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕一区二区三区有码在线看 | 欧美黑人巨大hd| 色视频www国产| 国产1区2区3区精品| 午夜两性在线视频| 天堂动漫精品| 久久久国产成人免费| 淫妇啪啪啪对白视频| 国产精品亚洲一级av第二区| 久久久久久久久久黄片| 一本久久中文字幕| 亚洲在线观看片| 淫妇啪啪啪对白视频| 不卡av一区二区三区| 欧美日韩精品网址| 久久人人精品亚洲av| 琪琪午夜伦伦电影理论片6080| 久久午夜亚洲精品久久| 看免费av毛片| 97碰自拍视频| 香蕉丝袜av| 国产成人一区二区三区免费视频网站| 国产探花在线观看一区二区| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 99riav亚洲国产免费| www.精华液| 白带黄色成豆腐渣| 亚洲av美国av| 欧美日韩福利视频一区二区| 中文字幕av在线有码专区| 日韩免费av在线播放| 亚洲熟妇熟女久久| 亚洲欧美激情综合另类| 久久精品国产综合久久久| av天堂在线播放| 嫩草影院精品99| 老司机午夜十八禁免费视频| 91九色精品人成在线观看| 午夜免费成人在线视频| 亚洲av熟女| 99久国产av精品| 日本熟妇午夜| 他把我摸到了高潮在线观看| 日本一二三区视频观看| 精品国内亚洲2022精品成人| 日韩欧美国产一区二区入口| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久这里只有精品中国| 欧美乱妇无乱码| 国产成人av激情在线播放| 国产99白浆流出| www.999成人在线观看| 欧美色视频一区免费| 看免费av毛片| 亚洲欧美日韩无卡精品| 一夜夜www| 婷婷丁香在线五月| 久久精品91蜜桃| 国产精品一区二区三区四区久久| 久久这里只有精品19| 欧美高清成人免费视频www| 伊人久久大香线蕉亚洲五| a级毛片a级免费在线| 久久这里只有精品19| 欧美日韩国产亚洲二区| 在线视频色国产色| 成人无遮挡网站| 观看免费一级毛片| 91字幕亚洲| 国产精品九九99| 久久这里只有精品19| 国产亚洲精品一区二区www| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆av在线久日| 久久热在线av| 三级国产精品欧美在线观看 | 国产淫片久久久久久久久 | 国产成人av教育| 91在线观看av| 欧美在线黄色| 丝袜人妻中文字幕| 天堂网av新在线| 国产爱豆传媒在线观看| 亚洲欧美一区二区三区黑人| 美女扒开内裤让男人捅视频| 国产一区二区三区视频了| 亚洲精品国产精品久久久不卡| 非洲黑人性xxxx精品又粗又长| 久久精品国产综合久久久| 美女大奶头视频| 一个人观看的视频www高清免费观看 | 免费无遮挡裸体视频| 婷婷六月久久综合丁香| 一本一本综合久久| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 日韩有码中文字幕| 岛国在线观看网站| 哪里可以看免费的av片| 99久久综合精品五月天人人| 全区人妻精品视频| 亚洲精品粉嫩美女一区| 精品日产1卡2卡| 亚洲专区国产一区二区| 国产精品日韩av在线免费观看| 99久久精品国产亚洲精品| 欧美绝顶高潮抽搐喷水| 国产蜜桃级精品一区二区三区| 欧美成狂野欧美在线观看| 99国产精品99久久久久| 在线观看一区二区三区| 后天国语完整版免费观看| 亚洲av中文字字幕乱码综合| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| 又黄又粗又硬又大视频| 深夜精品福利| 色视频www国产| 欧美日韩精品网址| 久久久久久久午夜电影| 免费看日本二区| 欧美日韩综合久久久久久 | 制服人妻中文乱码| 伊人久久大香线蕉亚洲五| 国产黄色小视频在线观看| 高清在线国产一区| 亚洲av成人不卡在线观看播放网| 久久天躁狠狠躁夜夜2o2o| 夜夜躁狠狠躁天天躁| 神马国产精品三级电影在线观看| 日本免费a在线| 国产高清videossex| 久久久久久人人人人人| 午夜亚洲福利在线播放| 看免费av毛片| 日韩成人在线观看一区二区三区| 欧美乱妇无乱码| 91在线观看av| 美女高潮喷水抽搐中文字幕| 久久久久性生活片| 亚洲人成网站在线播放欧美日韩| 久久久久久久午夜电影| www.精华液| 两个人的视频大全免费| 99久久无色码亚洲精品果冻| 亚洲中文日韩欧美视频| 色吧在线观看| 亚洲第一欧美日韩一区二区三区| 国产一区二区三区视频了| 俄罗斯特黄特色一大片| 黄色丝袜av网址大全| 亚洲专区中文字幕在线| 免费搜索国产男女视频| 亚洲成av人片在线播放无| 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 搞女人的毛片| 99在线人妻在线中文字幕| 成年免费大片在线观看| 精品国产超薄肉色丝袜足j| 听说在线观看完整版免费高清| 国产精品 欧美亚洲| ponron亚洲| 亚洲欧美日韩卡通动漫| 天堂av国产一区二区熟女人妻| 亚洲国产看品久久| 很黄的视频免费| 欧美不卡视频在线免费观看| 亚洲精品粉嫩美女一区| 欧美另类亚洲清纯唯美| 亚洲精品一区av在线观看| 亚洲国产欧美一区二区综合| 黑人操中国人逼视频| 黄色女人牲交| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 国产爱豆传媒在线观看| 嫁个100分男人电影在线观看| 久久久久久久久中文| 一区福利在线观看| 久久久久性生活片| 人妻夜夜爽99麻豆av| 亚洲精品中文字幕一二三四区| 亚洲在线观看片| 欧美av亚洲av综合av国产av| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 成人午夜高清在线视频| 中文字幕av在线有码专区| 黄色女人牲交| 国产69精品久久久久777片 | 亚洲av电影不卡..在线观看| 免费看a级黄色片| 久久精品91无色码中文字幕| 国产精品亚洲美女久久久| 亚洲av免费在线观看| 99热6这里只有精品| 欧美日韩综合久久久久久 | 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 1024手机看黄色片| 一级黄色大片毛片| 欧美激情在线99| 99久久精品一区二区三区| 国内揄拍国产精品人妻在线| 国产亚洲欧美98| 亚洲电影在线观看av| 日本a在线网址| 日日夜夜操网爽| 国产不卡一卡二| 在线观看免费午夜福利视频| 亚洲熟女毛片儿| 91av网站免费观看| 午夜精品一区二区三区免费看| 亚洲成人中文字幕在线播放| 国产视频内射| 精品电影一区二区在线| 亚洲色图 男人天堂 中文字幕| 日韩国内少妇激情av| 亚洲av成人av| 黑人欧美特级aaaaaa片| 草草在线视频免费看| 精品无人区乱码1区二区| 亚洲精品在线观看二区| 精品一区二区三区视频在线 | 久久99热这里只有精品18| xxxwww97欧美| 久久精品人妻少妇| 99在线视频只有这里精品首页| 老熟妇乱子伦视频在线观看| 亚洲av第一区精品v没综合| 99热精品在线国产| 久久中文看片网| 亚洲第一欧美日韩一区二区三区| 好男人电影高清在线观看| 丝袜人妻中文字幕| 国产精品1区2区在线观看.| 综合色av麻豆| 99久久精品一区二区三区| 国产精品一及| 精品日产1卡2卡| 神马国产精品三级电影在线观看| 可以在线观看的亚洲视频| 国产亚洲av高清不卡| 18禁美女被吸乳视频| 看片在线看免费视频| 1024香蕉在线观看| 91麻豆av在线| 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| 999精品在线视频| 母亲3免费完整高清在线观看| 国产亚洲精品av在线| 久久精品影院6| 久久久久精品国产欧美久久久| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮的动态| 18禁观看日本| 精品一区二区三区视频在线 | 欧美黄色片欧美黄色片| 色av中文字幕| 香蕉丝袜av| 黄色片一级片一级黄色片| 日韩高清综合在线| 啦啦啦韩国在线观看视频| 亚洲电影在线观看av| 亚洲九九香蕉| 法律面前人人平等表现在哪些方面| 国产亚洲av高清不卡| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 日本成人三级电影网站| 久久久久久久午夜电影| 久久国产精品人妻蜜桃| 欧美不卡视频在线免费观看| 老汉色av国产亚洲站长工具| 日本黄色片子视频| 在线观看66精品国产| 亚洲av成人av| 欧美日韩福利视频一区二区| 搞女人的毛片| 久久精品aⅴ一区二区三区四区| 精品免费久久久久久久清纯| 级片在线观看| 在线国产一区二区在线| 久久香蕉精品热| 99精品欧美一区二区三区四区| 嫁个100分男人电影在线观看| 搞女人的毛片| 国产高清视频在线观看网站| 国产日本99.免费观看| 黑人操中国人逼视频| 精品久久久久久,| 免费搜索国产男女视频| 怎么达到女性高潮| 波多野结衣高清无吗| 一个人免费在线观看电影 | 国产黄片美女视频| 婷婷六月久久综合丁香| 国产成人精品久久二区二区91| 97超级碰碰碰精品色视频在线观看| 窝窝影院91人妻| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 国产精华一区二区三区| 精品一区二区三区av网在线观看| 欧美不卡视频在线免费观看| 国产野战对白在线观看| 色综合站精品国产| xxxwww97欧美| 亚洲自偷自拍图片 自拍| 18禁黄网站禁片免费观看直播| 俄罗斯特黄特色一大片| 精品无人区乱码1区二区| 在线观看舔阴道视频| 婷婷精品国产亚洲av在线| 国产一区二区激情短视频| 中文字幕精品亚洲无线码一区| 99热精品在线国产| 欧美日本亚洲视频在线播放| 国产伦人伦偷精品视频| 午夜福利成人在线免费观看| 一本综合久久免费| 国产主播在线观看一区二区| 亚洲人成电影免费在线| 亚洲一区二区三区不卡视频| 久久这里只有精品中国| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 国产av不卡久久| 国产单亲对白刺激| www日本黄色视频网| 女人被狂操c到高潮| 久久人人精品亚洲av| 成年免费大片在线观看| 97人妻精品一区二区三区麻豆| 美女高潮的动态| 午夜影院日韩av| e午夜精品久久久久久久| 婷婷精品国产亚洲av在线| 亚洲人成伊人成综合网2020| 亚洲自拍偷在线| 桃色一区二区三区在线观看| 日本与韩国留学比较| 成年免费大片在线观看| 啦啦啦免费观看视频1| 中出人妻视频一区二区| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 久久天堂一区二区三区四区| 精品久久久久久久久久免费视频| 十八禁网站免费在线| 免费观看精品视频网站| 久久香蕉国产精品| 韩国av一区二区三区四区| 最近视频中文字幕2019在线8| 国产成人精品久久二区二区免费| 免费看美女性在线毛片视频| 不卡av一区二区三区| 成人午夜高清在线视频| 日本成人三级电影网站| 好男人在线观看高清免费视频| av在线蜜桃| 99在线视频只有这里精品首页| 久久久久久九九精品二区国产| 麻豆成人午夜福利视频| 婷婷精品国产亚洲av在线| 成年免费大片在线观看| 亚洲国产看品久久| 亚洲天堂国产精品一区在线| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 90打野战视频偷拍视频| 超碰成人久久| 男女视频在线观看网站免费| 女同久久另类99精品国产91| 最近在线观看免费完整版| 一进一出抽搐gif免费好疼| 黄色片一级片一级黄色片| 人人妻,人人澡人人爽秒播| 亚洲欧美激情综合另类| 美女午夜性视频免费| 亚洲avbb在线观看| 香蕉av资源在线| 99热这里只有是精品50| 亚洲无线在线观看| 日韩国内少妇激情av| 啪啪无遮挡十八禁网站| 叶爱在线成人免费视频播放| 亚洲国产精品合色在线| 日韩高清综合在线| 一进一出抽搐gif免费好疼| 久久这里只有精品19| 午夜福利18| 精品久久蜜臀av无| 午夜福利欧美成人| 观看免费一级毛片| 久久久久久久午夜电影| 一个人看视频在线观看www免费 | 99久国产av精品| 一区福利在线观看| 精品一区二区三区av网在线观看| 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点| 久久久久国内视频| 国产高清视频在线播放一区| 日本撒尿小便嘘嘘汇集6| av国产免费在线观看| 色尼玛亚洲综合影院| 亚洲精品色激情综合| 日日夜夜操网爽| 国产精品精品国产色婷婷| www日本在线高清视频| 男女视频在线观看网站免费| 色哟哟哟哟哟哟| 国产麻豆成人av免费视频| 久久人人精品亚洲av| 99热这里只有精品一区 | av片东京热男人的天堂| 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 久久久久久国产a免费观看| 国产亚洲精品一区二区www| 欧美在线一区亚洲| 亚洲中文字幕一区二区三区有码在线看 | 亚洲最大成人中文| 国产成人影院久久av| ponron亚洲| 久久久国产成人精品二区| 国产不卡一卡二| 级片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日本熟妇午夜| 国产亚洲av嫩草精品影院| 伊人久久大香线蕉亚洲五| 少妇的丰满在线观看| 久久精品国产亚洲av香蕉五月| 美女 人体艺术 gogo| 午夜福利18| 午夜成年电影在线免费观看| 哪里可以看免费的av片| 亚洲自偷自拍图片 自拍| 午夜福利在线观看吧| 身体一侧抽搐| 欧美丝袜亚洲另类 | 看免费av毛片| 制服丝袜大香蕉在线| 一级黄色大片毛片| 一进一出抽搐动态| 国产不卡一卡二| 亚洲av成人精品一区久久| 国产精品日韩av在线免费观看| 老司机深夜福利视频在线观看| 亚洲精华国产精华精| 国产一级毛片七仙女欲春2| 免费在线观看成人毛片| 精品国产三级普通话版| 人妻丰满熟妇av一区二区三区| 天天添夜夜摸| 麻豆成人av在线观看| 男插女下体视频免费在线播放| 日本免费一区二区三区高清不卡| 成年女人毛片免费观看观看9| 国产91精品成人一区二区三区| 一级毛片高清免费大全| 免费搜索国产男女视频| 国产精品综合久久久久久久免费| 老司机福利观看| 中文字幕人妻丝袜一区二区| 久久精品亚洲精品国产色婷小说| 国产成人影院久久av| 国产三级中文精品| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| 久久精品亚洲精品国产色婷小说| 嫁个100分男人电影在线观看| 波多野结衣高清无吗| 国产激情久久老熟女| 亚洲熟妇熟女久久| 亚洲国产精品合色在线| 亚洲国产色片| 一a级毛片在线观看| 中文字幕久久专区| 欧美成人性av电影在线观看| 成人特级黄色片久久久久久久| 免费在线观看成人毛片| 精品国产美女av久久久久小说| 日日摸夜夜添夜夜添小说| а√天堂www在线а√下载| 亚洲中文字幕日韩| 亚洲欧美激情综合另类| 亚洲激情在线av| 色综合婷婷激情| 亚洲精华国产精华精| 好男人电影高清在线观看| 精品久久久久久成人av| 久久久水蜜桃国产精品网| 一个人看视频在线观看www免费 | 国产欧美日韩精品一区二区| 欧美激情在线99| 一区二区三区高清视频在线| 亚洲avbb在线观看| 成年女人永久免费观看视频| 成年版毛片免费区| 国产麻豆成人av免费视频| 热99在线观看视频| 小蜜桃在线观看免费完整版高清| 亚洲五月天丁香| 日韩欧美国产一区二区入口| 精品久久久久久久久久久久久| 90打野战视频偷拍视频| 小说图片视频综合网站| 夜夜夜夜夜久久久久| 在线免费观看的www视频| 亚洲专区字幕在线| 后天国语完整版免费观看| 18禁黄网站禁片免费观看直播| 中文字幕久久专区| 欧美在线一区亚洲| 又粗又爽又猛毛片免费看| 国内久久婷婷六月综合欲色啪| 国产精品日韩av在线免费观看| 国产精品98久久久久久宅男小说| 亚洲人成伊人成综合网2020| 宅男免费午夜| 免费在线观看视频国产中文字幕亚洲| 欧美在线一区亚洲| 又紧又爽又黄一区二区| 桃红色精品国产亚洲av| 麻豆久久精品国产亚洲av| www.www免费av| 亚洲人成网站在线播放欧美日韩| 青草久久国产| 日本黄大片高清| 俺也久久电影网| 麻豆久久精品国产亚洲av| 日韩有码中文字幕| 此物有八面人人有两片| 色视频www国产| 男女下面进入的视频免费午夜| 亚洲第一电影网av| 欧美黑人欧美精品刺激| 日日摸夜夜添夜夜添小说| 精品国产乱码久久久久久男人| 成人国产综合亚洲| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 亚洲欧美激情综合另类| 99re在线观看精品视频| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 99国产精品99久久久久| 性色av乱码一区二区三区2| 婷婷精品国产亚洲av| 毛片女人毛片| 亚洲av成人不卡在线观看播放网| 中出人妻视频一区二区| 欧美午夜高清在线| 久久久精品大字幕| 久久久精品欧美日韩精品| 又黄又爽又免费观看的视频| 桃红色精品国产亚洲av| 又粗又爽又猛毛片免费看| 亚洲精品456在线播放app | 99热这里只有是精品50| cao死你这个sao货| 久久欧美精品欧美久久欧美| 国产在线精品亚洲第一网站| 亚洲国产精品成人综合色| 99国产极品粉嫩在线观看| 九色国产91popny在线| 国产成人精品久久二区二区91| 波多野结衣高清无吗| 亚洲av成人精品一区久久| 亚洲国产精品成人综合色| 国产av在哪里看| 一级毛片女人18水好多| 精品久久久久久久末码| 天天躁狠狠躁夜夜躁狠狠躁| 国产av麻豆久久久久久久| 国产成人影院久久av| 国产一区二区在线观看日韩 | 一二三四在线观看免费中文在| av片东京热男人的天堂| 哪里可以看免费的av片| 小说图片视频综合网站| 99久国产av精品| 亚洲狠狠婷婷综合久久图片| 国产99白浆流出| 国产精品永久免费网站|