• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    2014-10-14 03:44:12SUNHaoJIANGYongJunYUQingSenGAOHui
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:林業(yè)大學(xué)構(gòu)象糖原

    SUN Hao JIANG Yong-Jun YU Qing-Sen GAO Hui

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    SUN Hao1JIANG Yong-Jun2,*YU Qing-Sen3GAO Hui3

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Abstract:Glycogen synthase kinase-3β (GSK-3β)is a kind of serine/threonine protein kinase.It regulates the synthesis of glycogen and plays an important part in several signal pathways.It is believed to be an important target for a number of diseases such as diabetes,cancers,chronic inflammation,and Alzheimer′s disease.Mg2+ions are conserved structural metal ions in GSK-3β and they interact with adenosine-triphosphate(ATP).They are very important in phosphoryl transfer in the kinase.In this paper,the effect of two Mg2+ions(Mg,Mg)on GSK-3β is illustrated.Mg2+can stabilize the conformation of GSK-3β and ATP.Without Mg2+,the stabilization of GSK-3β reduces explicitly and the conformation of ATP changes.Mgis important in the phosphorylation reaction while Mgis essential and Lys183 alone cannot maintain the conformation of ATP without the assistance of Mg.ATP forms intramolecular hydrogen bonds and adopts a folded conformation when both Mgand Mgare absent.

    Key Words: GSK-3β kinase;Phosphoryl transfer;Mg2+;Structural metal ion;Molecular dynamics simulation

    There are more than 500 protein kinase genes identified,representing about 1.7%of all human genes[1].In the large and very diverse family of protein kinases,glycogen synthase kinase-3(GSK-3)is of particular interest.It was originally identified in 1980 and was initially believed to phosphorylate and inactivate glycogen synthase(GS)which was the rate-limiting enzyme of glycogen biosynthesis[2].It is ubiquitously expressed in eukaryote[3-4].There are two major isoforms of GSK-3 in mammals:GSK-3β and GSK-3α,which are encoded by different genes.The kinase domain sequences of the two isoforms are almost the same and the main differences occur at the N and C termini[5-7].

    Many different pathways have been described in which GSK-3β plays an important role.Historically GSK-3β fulfilled a significant role in the insulin/IGF1(insulin-like growth factor 1)and Wnt/Shaggy signaling pathways.However,recently it has become clear that GSK-3β is present in many other pathways such as those involving NGF(nerve growth factor)signaling,estradiol signaling,or reelin pathways[8].

    GSK-3β phosphorylates many of its substrates via a primedphosphorylation mechanism,recognizing the canonical phosphorylation motif SXXXpS.This motif contains the phosphoaccepting Ser or Thr that is separated by three residues from a phospho-serine or phospho-threonine.The phosphorylation mechanism is called primed-phosphorylation because a different kinase must first phosphorylate the substrate at the P+4 position before GSK-3β can phosphorylate the P0 residue[9].

    Since GSK-3β has more than 40 substrates and the list is still growing[10],it has being considered as one of the most promising drug targets for adult onset type 2 diabetes[11-13],stroke[14-15],neurodegenerative disorders(Alzheimer′s disease)[16-17],bipolar disorder[18],and schizophrenia[19-20],acute inflammatory processes[21],cancer[2223],and so forth.

    Structural metal ions are important.They can influence the structure of kinases,and the binding of structural metal ions is energetically favored[24].Mg2+is conserved structural metal ion in GSK-3β.Experimental studies[8]on GSK-3β revealed that in GSK-3β,two Mg2+binding sites mainly involve the conserved residues Asn186 and Asp200,like PKA(protein kinase A),CDK(cyclin-dependent kinases)and other protein kinases.

    Many studies showed that Mg2+could increase the activity of GSK-3β,but the details of Mg2+function in GSK-3β still were indistinct.However,some useful information can be learned by referring the other kinase:PKA,because of the structural similarity[8].In PKA,Mg(Mg2+binding with β-and γ-phosphates of ATP)is generally identified as a catalytic activator,while Mg(Mg2+binding with α-and γ-phosphates of ATP)as an inhibitor[25-26].Ab initio studies[1]on PKA revealed that the phosphorylation reaction probably proceeded through a mainly dissociative transition state,and the conserved Asp166(corresponding to Asp181 in GSK-3β)served as the catalytic base to accept the late proton transfer,shown in Fig.1.That study also reported that both metal ions contributed greatly to lower the energy barrier through electrostatic interactions,and the catalytic role of Lys168(corresponding to Lys183 in GSK-3β)was demonstrated to keep ATP and substrate peptide in the near-attack reactive conformation[1,27-28].Because of the conservation of kinase domain structures,we can presume the functions of Mg2+in GSK-3β on the foundation of PKAstudies.In order to reveal the functions of Mg2+in GSK-3β,we performed computational studies on GSK-3β using molecular mechanical methods.In this paper,four enzyme complexes were investigated,which respectively contained two Mg2+,Mgonly,Mgonly,and no Mg2+.

    1 Computational methods

    1.1 Preparation of the systems

    The structure of GSK-3β in a complex with ATP mimic AMP-PNP(PDB code:1PYX)was chosen as the initial structure.Absent residues on disordered loop of the crystal structure were added and the conformations of the residues were modeled using Loop Search module of Sybyl 6.8(Tripos Inc.).The structure of AMP-PNP was changed to that of ATP by replacing the nitrogen atom N3B in 1PYX with an oxygen atom.Four systems were prepared.System 1,complex-2Mg featured GSK-3β with ATP and two Mg2+ions.System 2,complex-MgI,featured GSK-3β with ATP and Mg,whileMgwas removed.System 3,complex-MgII featured GSK-3β with ATP and Mgwhile Mgwas removed.System 4,complex-noMg,featured GSK-3β withATP,while both Mgand Mgwere removed.

    1.2 Molecular dynamics simulations

    Molecular dynamics simulations were carried out on the four systems respectively,using the SANDER module of AMBER 9.0 with the Amber FF03[29-30]and GAFF force field[31].The parameters of ATP were provided by Amber web site[32].All simulations were carried out at neutral pH.Lys and Arg residues were positively charged,and Asp and Glu residues were negatively charged.Default His protonation state in AMBER9 was adopted.To maintain the electroneutrality of the systems,seven counterions(Cl-)were added into complex-2Mg;fivecounterions(Cl-)were added into complex-MgI and complex-MgII;and three counterions(Cl-)were added into complex-noMg.Every system was immersed in a 1 nm truncated octahedron periodic water box,and the structure water molecules were maintained.The box of water molecules in all systems contained around 13635 TIP3P[33]water molecules.A 2 fs time step was used in all simulations,and long-range electrostatic interactions were treated with the particle mesh Ewald(PME)procedure[34]with a 1 nm non-bonded cutoff.Bond lengths involving hydrogen atoms were constrained using the SHAKE algorithm[35].All systems were minimized prior to the production run.The minimization employed SANDER module under constant volume condition.The solvent molecules were firstly relaxed,while all heavy atoms in both protein and ATP were restrained with forces of 2.0×105kJ·mol-1·nm-2.Then,the systems were continually relaxed.All heavy atoms of the system were restrained with forces of 2.0×105kJ·mol-1·nm-2,except the atoms of the residues modeled by Loop Search module of Sybyl 6.8.Finally,all restraints were lifted and whole system was relaxed.The 3 steps above all featured 1000 cycles of steepest descent followed by 1000 cycles of conjugate gradient minimization.After the relaxation,300 ps of MD simulations were carried out at constant volume,with 4.0×103kJ·mol-1·nm-2restraint on solute.Then 2 ns of equilibration MD followed by 3 ns of production MD were respectively carried out on all systems at constant pressure(101325 Pa).All simulations were performed at 300 K.

    2 Results and discussion

    The root-mean-squared deviations(RMSD)value curves of backbone atoms during the MD simulation have been obtained.The curves in Fig.2 show that corresponding to the relaxation of the systems,the RMSD values of backbone atoms of the complex increase slowly before 1000 ps.And after 1000 ps,the RMSD values are fairly stable around 0.20 nm.The total potential energy fluctuates around a constant mean value after 2 ns.This indicates that the systems attain equilibrium.

    Mg2+can stabilize the structure of GSK-3β.RMS fluctuation(RMSF)values from structure provide an approach to evaluate the convergence of the dynamical properties of the system.As shown in Fig.3,the fluctuation values of complex-2Mg(black curve)are the lowest,while the values of complex-noMg(blue curve)are the highest.The fluctuation values of systems containing only one Mg2+are moderate,and the values of complex-MgI(green curve)are lower than that of complex-MgII(red curve).These indicate that Mg2+can stabilize GSK-3β,just like Mg2+in other kinases[26,36].Furthermore,we can conclude that Mgis more powerful than Mgin stabilizing GSK-3β,because of the lower fluctuation values of complex-MgI.

    Mg2+can influence the conformation of ATP.The stability of conformation of ATP is essential to catalytic reaction[37-38].RMSD values of ATP in different systems during simulations confirm the importance of Mg2+and the necessity of Mg.As shown in Fig.4,the RMSD values of ATP of complex-2Mg(black curve)and complex-MgI(green curve)are stable around 0.025 nm,while the values of complex-MgII are stable around 0.050 nm(red curve).The RMSD values of ATP of complex-noMg(blue curve)increase continuously,corresponding to remarkable conformation change of ATP,which is adverse to phosphoryl transfer.

    To facilitate phosphoryl transfer,ATP and substrates must keep the near-attack reactive conformations(in-line phosphoryl transfer mechanism)[38].The right conformation of ATP is guaranteed by the H-bond between γ-phosphate of ATP and conserved Lys183[1,39-40].As shown in Fig.5(a),in complex-2Mg,the oxygen atom on γ-phosphate of ATP can form H-bond with Lys183,and ATP can adopt right conformation.As shown in Fig.5(d),in complex-noMg,ATP moves away from phosphate transfer region and forms H-bond with Asn64 and Ser66,but without Lys183.As shown in Fig.5(b),in complex-MgII,ATP can form H-bond with Lys183,while as shown in Fig.5(c),in complex-MgI,ATP does not form H-bond with Lys183,but forms H-bond with Ser66.These indicate that Mgplays an important role in keeping the right position of γ-phosphate ofATP.

    Mg2+can influence the interactions between ATP and Lys85.Lys85 is a conserved catalytic residue which anchors α-and βphosphate of ATP by H-bond.Experimental studies illustrated that if Lys85 was mutated to Arg,GSK-3β would lose its activity[37,41].Calculation studies showed that in kinase,PKA for example,this conserved Lys could strongly stabilize the transition state through electrostatic interactions during phosphoryl transfer[1].To investigate the effect of Mg2+on the interactions between ATP and Lys85,the distances between atoms were monitored:the distances between the oxygen atom of ATP,O1α,and the nitrogen atom of Lys85,NZ,are shown in Fig.6;the distances between the oxygen atom of ATP,O2β,and the nitrogen atom of Lys85,NZ,are shown in Fig.7.As shown in Fig.6 and Fig.7,in complex-2Mg(black curve)and complex-MgI(green curve),the distances between O1αand NZ,and between O2βand NZ are around 0.30 nm,which indicates that stable H-bond between ATP and Lys85 can form,referring to Fig.5(a)and Fig.5(c).In complex-MgII(red curve),the distances are more than 0.35 nm,which indicates that stable H-bonds between ATP and Lys85 can not form,referring to Fig.5(b).In complex-noMg(blue curve),the distances increase continuously,which indicates that ATP is moving away from Lys85,referring to Fig.5(d).The interactions between ATP and Lys85 are important to phosphoryl transfer.The important roles of Mgare evident,because the interactions are demolished when Mgions are absent.

    Mg2+can influence the formation of the conserved H-bonds between adenine moiety of ATP and GSK-3β.The H-bonds between adenine moiety of ATP and Asp133,Val135 are conserved in kinase ATP binding sites[6].These H-bonds can strengthen the binding of ATP to kinases.As shown in Figs.5(a),5(b),and 5(c),in complex-2Mg,complex-MgII,and complex-MgI,the conserved H-bonds can form.As shown in Fig.5(d),in complex-noMg,the conserved H-bonds can not form,suggesting the drifting of ATP in binding site and the weakening ofATP binding.

    We found interesting phenomena during the simulations.Without Mg2+,ATP can form an intramolecular H-bond intermittently,like ATP in CheA histidine kinase[42].The distances between O3′and O1αwere monitored.As shown in Fig.8,in complex-2Mg(black curve),complex-MgII(red curve),and complex-MgI(green curve),the distances between O3′and O1αareabout 0.60 nm.H-bond can not form obviously.In complexnoMg(blue curve),the distances swing between 0.25 and 0.40 nm,indicating the intermittent forming of H-bond between O3′and O1α,Fig.9 shows the process of the H-bond formation.When this H-bond forms,ATP will adopt folded conformation,which is adverse to phosphoryl transfer.

    3 Conclusions

    Mg2+ions stabilize the structure of GSK-3β.Complex containing two Mg2+ions has the lowest RMSF values,while complex containing no Mg2+ion has the highest RMSF values.Mg2+Iis more powerful than Mgin stabilizing GSK-3β,because the RMSF values of complex-MgI are lower than those of complex-MgII.Mg2+can also stabilize the conformation of ATP.Without Mg2+,conformation of ATP will change remarkably and the in-line phosphoryl transfer mechanism will be demolished.Mgguarantees the interactions between ATP and Lys85,while Mgguarantees the right position of γ-phosphate of ATP.Without Mg2+,the conserved H-bonds between adenine moiety ofATP and GSK-3β can not form,and the binding of ATP will weaken.Without Mg2+,an intramolecular H-bond of ATP will form intermittently,which disturbs the catalytic reaction.Mg2+ions take an important role in GSK-3β.Mgseems more important than Mg,while Mgis not dispensable.

    1 Cheng,Y.H.;Zhang,Y.K.;McCammon,J.A.J.Am.Chem.Soc.,2005,127:1553

    2 Embi,N.;Rylatt,D.B.;Cohen,P.Eur.J.Biochem.,1980,107:519

    3 Cross,D.A.;Alessi,D.R.;Cohen,P.;Andelkovich,M.;Hemmings,B.A.Nature,1995,378:785

    4 Hoeflich,K.P.;Luo,J.;Rubie,E.A.;Tsao,M.S.;Jin,O.;Woodgett,J.R.Nature,2000,406:86

    5 Sun,H.;Jiang,Y.J.;Yu,Q.S.;Zou,J.W.Acta Phys.-Chim.Sin.,2009,25:635 [孫 浩,蔣勇軍,俞慶森,鄒建衛(wèi).物理化學(xué)學(xué)報(bào),2009,25:635]

    6 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhuang,S.L.;Jin,H.X.;Yu,Q.S.Proteins,2007,67:941

    7 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhang,B.;Wang,Y.H.;Yu,Q.S.Eur.J.Med.Chem.,2006,41:373

    8 Martinez,A.;Castro,A.;Medina,M.Glycogen synthase kinase 3(gsk-3)and its inhibitors.New Jersey:Wiley,2006:51-54

    9 Fiol,C.J.;Wang,A.;Roeske,R.W.;Roach,P.J.J.Biol.Chem.,1990,265:6061

    10 Jope,R.S.;Johnson,G.V.Trends Biochem.Sci.,2004,29:95

    11 Summers,S.A.;Kao,A.W.;Kohn,A.D.;Backus,G.S.;Roth,R.A.;Pessin,J.E.;Birnbaum,M.J.J.Biol.Chem.,1999,274:17934

    12 Ross,S.E.;Erickson,R.L.;Hemati,N.;MacDougald,O.A.Mol.Cell.Biol.,1999,19:8433

    13 Wagman,A.S.;Johnson,K.W.;Bussiere,D.E.;Curr.Pharm.Des.,2004,10:1105

    14 Martinez,A.;Castro,A.;Dorronsoro,I.;Alonso,M.Med.Res.Rev.,2002,22:373

    15 Schafer,M.;Goodenough,S.;Moosmann,B.;Behl,C.Brain Res.,2004,1005:84

    16 Phiel,C.J.;Wilson,C.A.;Lee,V.M.;Klein,P.S.Nature,2003,423:435

    17 Hernandez,F.;Perez,M.;Lucas,J.J.;Mata,A.M.;Bhat,R.;Avila,J.J.Biol.Chem.,2004,279:3801

    18 Gould,T.D.;Zarate,C.A.;Manji,H.K.J.Clin.Psych.,2004,65:10

    19 Emamian,E.S.;Hall,D.;Birnbaum,M.J.;Karayiorgou,M.;Gogos,J.A.Nat.Genet.,2004,36:131

    20 Bhat,R.V.;Budd,H.S.L.;Avila,J.J.Neurochem.,2004,89:1313

    21 Ghosh,S.;Karin,M.Cell,2002,109:81

    22 Peifer,M.;Polakis,P.Science,2000,287:1606

    23 Pap,M.;Cooper,G.M.J.Biol.Chem.,1998,273:19929

    24 Diaz,N.;Suarez,D.Biochemistry,2007,46:8943

    25 Ryves,W.J.;Dajani,R.;Pearl,L.;Harwood,A.J.Biochem.Biophys.Res.Commun.,2002,290:967

    26 Herberg,F.W.;Doyle,M.L.;Cox,S.;Taylor,S.S.Biochemistry,1999,38:6352

    27 Valiev,M.;Kawai,R.;Adams,J.A.;Weare,J.H.J.Am.Chem.Soc.,2003,125:9926

    28 Diaz,N.;Field,M.J.J.Am.Chem.Soc.,2004,126:529

    29 Duan,Y.;Wu,C.;Chowdhury,S.;Lee,M.C.;Xiong,G.;Zhang,W.;Yang,R.;Cieplak,P.;Luo,R.;Lee,T.J.Comput.Chem.,2003,24:1999

    30 Lee,M.C.;Duan,Y.Proteins,2004,55:620

    31 Wang,J.;Wolf,R.M.;Caldwell,J.W.;Kollamn,P.A.;Case,D.A.J.Comput.Chem.,2004,25:1157

    32 Meagher,K.L.;Redman,L.T.;Carlson,H.A.J.Comput.Chem.,2003,24:1016

    33 Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.;Klein,M.L.J.Chem.Phys.,1983,79:926

    34 Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.,1993,98:10089

    35 Ryckaert,J.P.;Ciccotti,G.;Berendsen,H.J.C.J.Comput.Phys.,1977,23:327

    36 Adams,J.A.;Taylor,S.S.Biochemistry,1992,31:8516

    37 Hao,S.;Jiang,Y.J.;Yu,Q.S.;Luo,C.C.;Zou,J.W.Biochem.Biophys.Res.Commun.,2008,377:962

    38 http://dx.doi.org/10.1007/s00894-010-0738-0

    39 Hanks,S.K.;Quinn,A.M.Methods Enzymol.,1991,200:38

    40 Knighton,D.R.;Cadena,D.L.;Zheng,J.H.;Teneyck,L.F.;Taylor,S.S.;Sowadski,J.M.;Gill,G.N.Proc.Natl.Acad.Sci.U.S.A.,1993,90:5001

    41 Gómez-Sintes,R.;Hernandez,F.;Avila,J.;Gotteland,J.P.;Zaratin,P.;Lucas,J.J.SENC.Rev.Neurol.,2005,41:71

    42 Zhang,J.;Xu,Y.H.;Shen,J.H.;Luo,X.M.;Chen,J.G.;Chen,K.X.;Zhu,W.L.;Jiang,H.L.J.Am.Chem.Soc.,2005,127:11709

    分子動(dòng)力學(xué)模擬研究結(jié)構(gòu)金屬鎂離子在GSK-3β激酶磷酸化中的作用

    孫 浩1蔣勇軍2,*俞慶森3高 慧3

    (1西南林業(yè)大學(xué),昆明650224;2浙江大學(xué)寧波理工學(xué)院分子設(shè)計(jì)與營養(yǎng)工程市重點(diǎn)實(shí)驗(yàn)室,浙江寧波315100;3浙江大學(xué)化學(xué)系,杭州310027)

    糖原合成酶激酶-3β(GSK-3β)是一種絲氨酸/蘇氨酸蛋白激酶,調(diào)節(jié)糖原合成酶的活性,并在生物體內(nèi)的多條信號通路中發(fā)揮作用.GSK-3β是糖尿病,腫瘤,急性炎癥,早老性癡呆等多種復(fù)雜疾病的藥物作用靶標(biāo).Mg2+是GSK-3β激酶的保守結(jié)構(gòu)金屬離子,與三磷酸腺苷(ATP)分子作用,在激酶的磷酸化中扮演重要的角色,本文闡明了兩個(gè)Mg2+離子(Mg,Mg)在激酶磷酸化中的作用:Mg2+穩(wěn)定GSK-3β與ATP的構(gòu)象.缺乏Mg2+離子,GSK-3β結(jié)構(gòu)的柔性增強(qiáng),同時(shí)ATP的構(gòu)象發(fā)生改變,相對Mg離子而言,Mg離子在磷酸化反應(yīng)中的作用更突出,但Mg離子也是必不可少的,如果沒有Mg離子,Lys183無法獨(dú)立穩(wěn)定ATP的合適構(gòu)象.當(dāng)兩個(gè)Mg2+離子都不存在時(shí),ATP形成分子內(nèi)的氫鍵,成為一種折疊的構(gòu)象.

    GSK-3β激酶; 磷酸化;Mg2+; 結(jié)構(gòu)金屬離子; 分子動(dòng)力學(xué)模擬

    O641

    Received:September 1,2010;Revised:October 15,2010;Published on Web:November 30,2010.

    ?Corresponding author.Email:yjjiang@nit.zju.edu.cn;Tel:+86-574-88229517.

    The project was supported by the National High Technology Research and Development Program of China(863)(2007AA02Z301),National Natural Science Foundation of China(20803063),Natural Science Foundation of Ningbo,China(2010A610024),and Key Scientific Research Foundation of Southwest Forestry University,China(110932).

    國家高技術(shù)研究發(fā)展計(jì)劃(863)(2007AA02Z301),國家自然科學(xué)基金(20803063),寧波市自然科學(xué)基金(2010A610024)及西南林業(yè)大學(xué)重點(diǎn)科研基金(110932)資助項(xiàng)目

    猜你喜歡
    林業(yè)大學(xué)構(gòu)象糖原
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    糖原在雙殼貝類中的儲(chǔ)存、轉(zhuǎn)運(yùn)和利用研究進(jìn)展
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    體育運(yùn)動(dòng)后快速補(bǔ)糖對肌糖原合成及運(yùn)動(dòng)能力的影響
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    王建設(shè):糖原累積癥
    肝博士(2021年1期)2021-03-29 02:32:08
    一種一枝黃花內(nèi)酯分子結(jié)構(gòu)與構(gòu)象的計(jì)算研究
    玉米麩質(zhì)阿拉伯木聚糖在水溶液中的聚集和構(gòu)象
    Cu2+/Mn2+存在下白花丹素對人血清白蛋白構(gòu)象的影響
    久久久久国产网址| 十分钟在线观看高清视频www| 一级毛片 在线播放| 黄色怎么调成土黄色| a 毛片基地| 国产深夜福利视频在线观看| 大香蕉久久网| 久久99精品国语久久久| 激情五月婷婷亚洲| 一区二区三区乱码不卡18| 99久久精品国产国产毛片| 好男人视频免费观看在线| 国产在视频线精品| 青青草视频在线视频观看| 久久人人爽人人爽人人片va| 国产国语露脸激情在线看| 草草在线视频免费看| 男女边摸边吃奶| 这个男人来自地球电影免费观看 | 全区人妻精品视频| 国产熟女午夜一区二区三区 | 亚洲精品美女久久av网站| 久久人妻熟女aⅴ| 亚洲怡红院男人天堂| 色视频在线一区二区三区| 国产黄色视频一区二区在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲国产日韩一区二区| 日本午夜av视频| 在线观看国产h片| 午夜福利影视在线免费观看| av黄色大香蕉| 国产有黄有色有爽视频| 97超视频在线观看视频| 在线观看免费高清a一片| 丰满饥渴人妻一区二区三| 成人午夜精彩视频在线观看| 蜜臀久久99精品久久宅男| 国产精品三级大全| 免费日韩欧美在线观看| 国产淫语在线视频| 人成视频在线观看免费观看| 精品久久国产蜜桃| 成年人午夜在线观看视频| 免费黄频网站在线观看国产| 永久网站在线| 欧美另类一区| 最近的中文字幕免费完整| 午夜影院在线不卡| 满18在线观看网站| 男女国产视频网站| 久久99热6这里只有精品| 人妻 亚洲 视频| 亚洲激情五月婷婷啪啪| 丰满迷人的少妇在线观看| 最近的中文字幕免费完整| av专区在线播放| 我的老师免费观看完整版| 免费不卡的大黄色大毛片视频在线观看| 男男h啪啪无遮挡| 久热久热在线精品观看| 亚洲经典国产精华液单| 成人国产麻豆网| 国产av国产精品国产| 国产精品久久久久久久久免| 成人亚洲精品一区在线观看| 成人国语在线视频| 亚洲高清免费不卡视频| 免费黄网站久久成人精品| 九草在线视频观看| 99热国产这里只有精品6| 啦啦啦视频在线资源免费观看| 久热久热在线精品观看| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| 黄色毛片三级朝国网站| 国产精品蜜桃在线观看| 夫妻性生交免费视频一级片| 亚洲国产欧美在线一区| 午夜激情福利司机影院| 99国产精品免费福利视频| 亚洲美女黄色视频免费看| 亚洲av电影在线观看一区二区三区| 狂野欧美白嫩少妇大欣赏| 两个人免费观看高清视频| 伊人亚洲综合成人网| 少妇的逼好多水| 色婷婷久久久亚洲欧美| 国产成人午夜福利电影在线观看| 日韩一本色道免费dvd| 精品久久久久久久久av| av女优亚洲男人天堂| 天天影视国产精品| 天天操日日干夜夜撸| 亚洲欧洲日产国产| 热re99久久精品国产66热6| 国产伦理片在线播放av一区| 看非洲黑人一级黄片| 国产黄片视频在线免费观看| 高清欧美精品videossex| 免费黄色在线免费观看| 香蕉精品网在线| 精品亚洲成a人片在线观看| 亚洲丝袜综合中文字幕| 久久久久久久久久人人人人人人| 只有这里有精品99| 久久人人爽人人爽人人片va| 精品国产国语对白av| 五月天丁香电影| 国产精品一二三区在线看| av线在线观看网站| 国产探花极品一区二区| 久久免费观看电影| 亚洲av成人精品一二三区| 有码 亚洲区| av国产久精品久网站免费入址| videos熟女内射| 三级国产精品欧美在线观看| 欧美日韩视频高清一区二区三区二| 国产69精品久久久久777片| 亚洲国产日韩一区二区| 啦啦啦在线观看免费高清www| 国产片特级美女逼逼视频| 久久久欧美国产精品| 亚洲精品,欧美精品| 久久青草综合色| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 亚洲av成人精品一二三区| 国产成人av激情在线播放 | 99热6这里只有精品| 国产片特级美女逼逼视频| 国产精品国产三级国产专区5o| 中文字幕亚洲精品专区| 久久这里有精品视频免费| 欧美日本中文国产一区发布| 波野结衣二区三区在线| 久久毛片免费看一区二区三区| 亚洲经典国产精华液单| 国产极品天堂在线| 日本vs欧美在线观看视频| 久久综合国产亚洲精品| 中文字幕亚洲精品专区| 免费观看av网站的网址| 99热国产这里只有精品6| 国产亚洲欧美精品永久| 国产精品免费大片| 日韩av免费高清视频| 久久久国产一区二区| 国产视频首页在线观看| av国产久精品久网站免费入址| 亚洲五月色婷婷综合| 新久久久久国产一级毛片| 久久精品人人爽人人爽视色| 久久久亚洲精品成人影院| 搡女人真爽免费视频火全软件| 中文字幕最新亚洲高清| 人妻人人澡人人爽人人| 麻豆精品久久久久久蜜桃| 九九爱精品视频在线观看| 秋霞伦理黄片| 久热这里只有精品99| 热99久久久久精品小说推荐| 91精品一卡2卡3卡4卡| 久久毛片免费看一区二区三区| 亚洲性久久影院| 国产午夜精品一二区理论片| 麻豆成人av视频| 日本黄色日本黄色录像| 色网站视频免费| 永久免费av网站大全| 一区二区三区精品91| 少妇人妻 视频| 久久久久精品久久久久真实原创| 国产免费现黄频在线看| 亚洲av二区三区四区| 免费av不卡在线播放| 亚洲av日韩在线播放| 午夜福利在线观看免费完整高清在| 老司机影院毛片| 国产精品国产av在线观看| 久久av网站| 国产成人freesex在线| 99国产精品免费福利视频| 欧美亚洲 丝袜 人妻 在线| 成人影院久久| 国产日韩欧美视频二区| 80岁老熟妇乱子伦牲交| 久久99一区二区三区| 亚洲内射少妇av| 成人无遮挡网站| 妹子高潮喷水视频| 一区二区日韩欧美中文字幕 | 国产精品久久久久久精品古装| 日韩在线高清观看一区二区三区| 免费观看在线日韩| 18禁裸乳无遮挡动漫免费视频| 视频中文字幕在线观看| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| av播播在线观看一区| 久久综合国产亚洲精品| 香蕉精品网在线| 久久久久国产网址| 亚洲一区二区三区欧美精品| 亚州av有码| 啦啦啦中文免费视频观看日本| 国产精品一区www在线观看| 又黄又爽又刺激的免费视频.| 99国产综合亚洲精品| 国产成人免费观看mmmm| 亚洲精品av麻豆狂野| 超碰97精品在线观看| 亚洲无线观看免费| 婷婷色麻豆天堂久久| 大码成人一级视频| 欧美日韩国产mv在线观看视频| 欧美日韩亚洲高清精品| 女性生殖器流出的白浆| 日韩大片免费观看网站| 精品一区二区三区视频在线| 91成人精品电影| 久久久久久久久久人人人人人人| 搡女人真爽免费视频火全软件| 国产精品免费大片| 免费观看的影片在线观看| 亚洲欧美色中文字幕在线| 精品国产一区二区三区久久久樱花| 哪个播放器可以免费观看大片| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲乱码少妇综合久久| 精品人妻熟女毛片av久久网站| 久久久久久久久久久久大奶| 色哟哟·www| 亚洲精品日本国产第一区| 极品少妇高潮喷水抽搐| 精品国产一区二区三区久久久樱花| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 丝袜在线中文字幕| 国产精品不卡视频一区二区| 天天操日日干夜夜撸| 99久久中文字幕三级久久日本| 高清不卡的av网站| 黑人巨大精品欧美一区二区蜜桃 | 国产探花极品一区二区| 国产精品偷伦视频观看了| 亚洲内射少妇av| 美女国产高潮福利片在线看| 亚洲av在线观看美女高潮| 亚洲av二区三区四区| 美女主播在线视频| 亚洲精品久久午夜乱码| 国产视频内射| 一级毛片aaaaaa免费看小| av.在线天堂| 国产男人的电影天堂91| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 国国产精品蜜臀av免费| 黑人巨大精品欧美一区二区蜜桃 | 日本猛色少妇xxxxx猛交久久| 久久久久久久大尺度免费视频| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 考比视频在线观看| av又黄又爽大尺度在线免费看| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 99国产综合亚洲精品| 亚洲av成人精品一二三区| 国产精品久久久久久av不卡| av黄色大香蕉| 国产高清不卡午夜福利| 美女国产视频在线观看| videossex国产| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 国产综合精华液| 九九爱精品视频在线观看| 一级,二级,三级黄色视频| 丰满少妇做爰视频| 亚洲经典国产精华液单| 亚洲精品av麻豆狂野| 国产又色又爽无遮挡免| 午夜久久久在线观看| 日日啪夜夜爽| 亚洲美女视频黄频| 在线亚洲精品国产二区图片欧美 | 狂野欧美白嫩少妇大欣赏| 久久女婷五月综合色啪小说| 午夜激情久久久久久久| 性色av一级| 天堂中文最新版在线下载| 亚洲av.av天堂| 久久久久久久精品精品| 女的被弄到高潮叫床怎么办| 欧美激情 高清一区二区三区| 伊人亚洲综合成人网| 国产高清国产精品国产三级| 久久精品久久久久久久性| 国产成人精品福利久久| 少妇人妻久久综合中文| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 精品少妇内射三级| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 欧美老熟妇乱子伦牲交| 国产视频首页在线观看| 国产淫语在线视频| 久久久国产一区二区| 91成人精品电影| 久久精品久久久久久噜噜老黄| 国产成人aa在线观看| av.在线天堂| 美女内射精品一级片tv| 亚洲中文av在线| 日韩成人av中文字幕在线观看| 热99久久久久精品小说推荐| 国产片内射在线| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 中文字幕久久专区| 中文精品一卡2卡3卡4更新| 久久精品国产a三级三级三级| 日本午夜av视频| 青春草国产在线视频| 91久久精品电影网| 精品人妻熟女av久视频| 国产精品 国内视频| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 亚洲成人手机| 国产男女超爽视频在线观看| 久久午夜福利片| 伦精品一区二区三区| 97超视频在线观看视频| 一边摸一边做爽爽视频免费| 成年人免费黄色播放视频| 日韩伦理黄色片| 一区二区三区乱码不卡18| 久久这里有精品视频免费| 国产午夜精品久久久久久一区二区三区| 国产精品免费大片| 国模一区二区三区四区视频| 91精品国产九色| 午夜视频国产福利| 你懂的网址亚洲精品在线观看| 一本—道久久a久久精品蜜桃钙片| 简卡轻食公司| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 亚洲人成网站在线播| 欧美xxⅹ黑人| 免费观看无遮挡的男女| 亚洲精品久久成人aⅴ小说 | 免费观看无遮挡的男女| 欧美变态另类bdsm刘玥| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线不卡| 亚洲少妇的诱惑av| 如日韩欧美国产精品一区二区三区 | 日韩欧美精品免费久久| 午夜福利,免费看| 国产精品国产三级国产av玫瑰| 久久人人爽人人片av| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 伊人久久精品亚洲午夜| 国产成人a∨麻豆精品| 国产在线免费精品| 成人无遮挡网站| 最近中文字幕2019免费版| 一区二区三区免费毛片| 少妇高潮的动态图| 成人漫画全彩无遮挡| 国产亚洲精品第一综合不卡 | 亚洲av中文av极速乱| 午夜91福利影院| 久久久欧美国产精品| 日本wwww免费看| 人妻少妇偷人精品九色| 亚洲国产日韩一区二区| 欧美精品国产亚洲| 午夜精品国产一区二区电影| 边亲边吃奶的免费视频| 久久97久久精品| 赤兔流量卡办理| 极品人妻少妇av视频| 日韩 亚洲 欧美在线| videosex国产| 久久人人爽人人爽人人片va| 国产一级毛片在线| 午夜福利网站1000一区二区三区| av在线播放精品| 99久久精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲五月色婷婷综合| 汤姆久久久久久久影院中文字幕| 免费看av在线观看网站| 亚洲av成人精品一二三区| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 国产不卡av网站在线观看| av天堂久久9| 国产精品99久久久久久久久| 久久韩国三级中文字幕| 夜夜看夜夜爽夜夜摸| 久久久久网色| freevideosex欧美| 91精品国产九色| 国产国语露脸激情在线看| 久久久久久久久久久丰满| 亚洲av男天堂| 亚洲丝袜综合中文字幕| 一级二级三级毛片免费看| 亚洲国产精品999| 综合色丁香网| 老司机影院毛片| 欧美 亚洲 国产 日韩一| 永久网站在线| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 插阴视频在线观看视频| kizo精华| 伦精品一区二区三区| 永久网站在线| 亚洲精品日本国产第一区| 夜夜看夜夜爽夜夜摸| 99久久综合免费| 久久精品国产亚洲av涩爱| 有码 亚洲区| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到 | 国产男女超爽视频在线观看| 日本色播在线视频| 亚洲精品av麻豆狂野| 国产无遮挡羞羞视频在线观看| 在线观看一区二区三区激情| 成人毛片a级毛片在线播放| 久久97久久精品| 久久精品国产鲁丝片午夜精品| 成人18禁高潮啪啪吃奶动态图 | 免费人成在线观看视频色| 全区人妻精品视频| 日日撸夜夜添| 久久99精品国语久久久| 午夜老司机福利剧场| 另类亚洲欧美激情| 国产精品无大码| 少妇人妻精品综合一区二区| 久久热精品热| 国产成人aa在线观看| 国产精品久久久久久久电影| 国产精品久久久久久av不卡| 精品酒店卫生间| 人人妻人人添人人爽欧美一区卜| 久久这里有精品视频免费| 国产又色又爽无遮挡免| xxx大片免费视频| 午夜影院在线不卡| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕| 久久午夜福利片| 日日摸夜夜添夜夜添av毛片| 一边亲一边摸免费视频| 在线观看一区二区三区激情| 五月伊人婷婷丁香| 久久久精品区二区三区| 精品国产露脸久久av麻豆| 国产av国产精品国产| 十八禁网站网址无遮挡| 18禁裸乳无遮挡动漫免费视频| 飞空精品影院首页| 久久99蜜桃精品久久| 999精品在线视频| 五月伊人婷婷丁香| 久久人人爽人人片av| 天堂中文最新版在线下载| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 欧美bdsm另类| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 国产片特级美女逼逼视频| 插逼视频在线观看| 九九久久精品国产亚洲av麻豆| 一级毛片电影观看| 亚洲图色成人| 最黄视频免费看| 妹子高潮喷水视频| 大香蕉久久成人网| 国产黄色视频一区二区在线观看| 免费高清在线观看日韩| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线| 亚洲欧洲精品一区二区精品久久久 | 国产深夜福利视频在线观看| 在线天堂最新版资源| 亚洲色图综合在线观看| 丝袜在线中文字幕| 一个人免费看片子| 欧美人与性动交α欧美精品济南到 | 日韩亚洲欧美综合| 国产有黄有色有爽视频| 91精品国产国语对白视频| 亚洲精品久久成人aⅴ小说 | 丰满少妇做爰视频| 国产精品一区二区在线观看99| 久久韩国三级中文字幕| 欧美激情极品国产一区二区三区 | 青春草亚洲视频在线观看| 国产免费又黄又爽又色| 国产一区亚洲一区在线观看| 国产av一区二区精品久久| 精品久久国产蜜桃| 亚洲人成网站在线观看播放| 97在线视频观看| 美女中出高潮动态图| 26uuu在线亚洲综合色| 午夜激情福利司机影院| 美女大奶头黄色视频| 纵有疾风起免费观看全集完整版| 狂野欧美激情性xxxx在线观看| tube8黄色片| 美女国产视频在线观看| 涩涩av久久男人的天堂| 亚洲国产精品专区欧美| 高清在线视频一区二区三区| 精品久久久久久电影网| 老熟女久久久| 桃花免费在线播放| 亚洲美女搞黄在线观看| 伊人亚洲综合成人网| 天美传媒精品一区二区| 日本91视频免费播放| 久久99蜜桃精品久久| 精品国产国语对白av| 熟女av电影| 五月玫瑰六月丁香| 精品99又大又爽又粗少妇毛片| 亚洲av国产av综合av卡| 婷婷色综合www| 熟女av电影| 久久久久久久久大av| 亚洲精品第二区| 国产高清不卡午夜福利| 久久久久人妻精品一区果冻| tube8黄色片| 69精品国产乱码久久久| 春色校园在线视频观看| 日本黄色日本黄色录像| 免费av中文字幕在线| 九九爱精品视频在线观看| 99riav亚洲国产免费| 国产精品熟女久久久久浪| 久久久久精品人妻al黑| 午夜激情久久久久久久| 美女视频免费永久观看网站| 亚洲av日韩在线播放| 免费一级毛片在线播放高清视频 | 精品一品国产午夜福利视频| 欧美国产精品一级二级三级| 欧美变态另类bdsm刘玥| 制服人妻中文乱码| 中文字幕人妻丝袜一区二区| 成人精品一区二区免费| 狠狠婷婷综合久久久久久88av| 99国产精品一区二区三区| 男女免费视频国产| 黄色视频在线播放观看不卡| 久久久久国内视频| 精品少妇一区二区三区视频日本电影| 国产精品偷伦视频观看了| 亚洲 国产 在线| 一本—道久久a久久精品蜜桃钙片| 久久精品aⅴ一区二区三区四区| 高潮久久久久久久久久久不卡| 精品人妻熟女毛片av久久网站| 午夜91福利影院| 18禁美女被吸乳视频| 色婷婷久久久亚洲欧美| 99国产精品一区二区蜜桃av | 桃红色精品国产亚洲av| 亚洲国产av新网站| 天天躁夜夜躁狠狠躁躁| 免费不卡黄色视频| 一进一出好大好爽视频| 男男h啪啪无遮挡| 纵有疾风起免费观看全集完整版| 另类精品久久| 久久久久久亚洲精品国产蜜桃av| 国产主播在线观看一区二区| 人人妻人人添人人爽欧美一区卜| 99精国产麻豆久久婷婷| 欧美国产精品va在线观看不卡| 亚洲精品自拍成人| 免费在线观看影片大全网站| 精品久久蜜臀av无| 深夜精品福利| 无限看片的www在线观看| 亚洲av国产av综合av卡| 日韩制服丝袜自拍偷拍| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 黄色怎么调成土黄色| 日本a在线网址| 久久婷婷成人综合色麻豆| 亚洲精品乱久久久久久| 亚洲第一青青草原| 亚洲成人手机|