• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    2014-10-14 03:44:12SUNHaoJIANGYongJunYUQingSenGAOHui
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:林業(yè)大學(xué)構(gòu)象糖原

    SUN Hao JIANG Yong-Jun YU Qing-Sen GAO Hui

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Molecular Dynamics Simulations on the Role of Structural Mg2+Ions in Phosphoryl Transfer Catalyzed by GSK-3β

    SUN Hao1JIANG Yong-Jun2,*YU Qing-Sen3GAO Hui3

    (1Southwest Forestry University,Kunming 650224,P.R.China;2Key Laboratory for Molecular Design and Nutrition Engineering of Ningbo City,Ningbo Institute of Technology,Zhejiang University,Ningbo 315100,Zhejiang Province,P.R.China;3Department of Chemistry,Zhejiang University,Hangzhou 310027,P.R.China)

    Abstract:Glycogen synthase kinase-3β (GSK-3β)is a kind of serine/threonine protein kinase.It regulates the synthesis of glycogen and plays an important part in several signal pathways.It is believed to be an important target for a number of diseases such as diabetes,cancers,chronic inflammation,and Alzheimer′s disease.Mg2+ions are conserved structural metal ions in GSK-3β and they interact with adenosine-triphosphate(ATP).They are very important in phosphoryl transfer in the kinase.In this paper,the effect of two Mg2+ions(Mg,Mg)on GSK-3β is illustrated.Mg2+can stabilize the conformation of GSK-3β and ATP.Without Mg2+,the stabilization of GSK-3β reduces explicitly and the conformation of ATP changes.Mgis important in the phosphorylation reaction while Mgis essential and Lys183 alone cannot maintain the conformation of ATP without the assistance of Mg.ATP forms intramolecular hydrogen bonds and adopts a folded conformation when both Mgand Mgare absent.

    Key Words: GSK-3β kinase;Phosphoryl transfer;Mg2+;Structural metal ion;Molecular dynamics simulation

    There are more than 500 protein kinase genes identified,representing about 1.7%of all human genes[1].In the large and very diverse family of protein kinases,glycogen synthase kinase-3(GSK-3)is of particular interest.It was originally identified in 1980 and was initially believed to phosphorylate and inactivate glycogen synthase(GS)which was the rate-limiting enzyme of glycogen biosynthesis[2].It is ubiquitously expressed in eukaryote[3-4].There are two major isoforms of GSK-3 in mammals:GSK-3β and GSK-3α,which are encoded by different genes.The kinase domain sequences of the two isoforms are almost the same and the main differences occur at the N and C termini[5-7].

    Many different pathways have been described in which GSK-3β plays an important role.Historically GSK-3β fulfilled a significant role in the insulin/IGF1(insulin-like growth factor 1)and Wnt/Shaggy signaling pathways.However,recently it has become clear that GSK-3β is present in many other pathways such as those involving NGF(nerve growth factor)signaling,estradiol signaling,or reelin pathways[8].

    GSK-3β phosphorylates many of its substrates via a primedphosphorylation mechanism,recognizing the canonical phosphorylation motif SXXXpS.This motif contains the phosphoaccepting Ser or Thr that is separated by three residues from a phospho-serine or phospho-threonine.The phosphorylation mechanism is called primed-phosphorylation because a different kinase must first phosphorylate the substrate at the P+4 position before GSK-3β can phosphorylate the P0 residue[9].

    Since GSK-3β has more than 40 substrates and the list is still growing[10],it has being considered as one of the most promising drug targets for adult onset type 2 diabetes[11-13],stroke[14-15],neurodegenerative disorders(Alzheimer′s disease)[16-17],bipolar disorder[18],and schizophrenia[19-20],acute inflammatory processes[21],cancer[2223],and so forth.

    Structural metal ions are important.They can influence the structure of kinases,and the binding of structural metal ions is energetically favored[24].Mg2+is conserved structural metal ion in GSK-3β.Experimental studies[8]on GSK-3β revealed that in GSK-3β,two Mg2+binding sites mainly involve the conserved residues Asn186 and Asp200,like PKA(protein kinase A),CDK(cyclin-dependent kinases)and other protein kinases.

    Many studies showed that Mg2+could increase the activity of GSK-3β,but the details of Mg2+function in GSK-3β still were indistinct.However,some useful information can be learned by referring the other kinase:PKA,because of the structural similarity[8].In PKA,Mg(Mg2+binding with β-and γ-phosphates of ATP)is generally identified as a catalytic activator,while Mg(Mg2+binding with α-and γ-phosphates of ATP)as an inhibitor[25-26].Ab initio studies[1]on PKA revealed that the phosphorylation reaction probably proceeded through a mainly dissociative transition state,and the conserved Asp166(corresponding to Asp181 in GSK-3β)served as the catalytic base to accept the late proton transfer,shown in Fig.1.That study also reported that both metal ions contributed greatly to lower the energy barrier through electrostatic interactions,and the catalytic role of Lys168(corresponding to Lys183 in GSK-3β)was demonstrated to keep ATP and substrate peptide in the near-attack reactive conformation[1,27-28].Because of the conservation of kinase domain structures,we can presume the functions of Mg2+in GSK-3β on the foundation of PKAstudies.In order to reveal the functions of Mg2+in GSK-3β,we performed computational studies on GSK-3β using molecular mechanical methods.In this paper,four enzyme complexes were investigated,which respectively contained two Mg2+,Mgonly,Mgonly,and no Mg2+.

    1 Computational methods

    1.1 Preparation of the systems

    The structure of GSK-3β in a complex with ATP mimic AMP-PNP(PDB code:1PYX)was chosen as the initial structure.Absent residues on disordered loop of the crystal structure were added and the conformations of the residues were modeled using Loop Search module of Sybyl 6.8(Tripos Inc.).The structure of AMP-PNP was changed to that of ATP by replacing the nitrogen atom N3B in 1PYX with an oxygen atom.Four systems were prepared.System 1,complex-2Mg featured GSK-3β with ATP and two Mg2+ions.System 2,complex-MgI,featured GSK-3β with ATP and Mg,whileMgwas removed.System 3,complex-MgII featured GSK-3β with ATP and Mgwhile Mgwas removed.System 4,complex-noMg,featured GSK-3β withATP,while both Mgand Mgwere removed.

    1.2 Molecular dynamics simulations

    Molecular dynamics simulations were carried out on the four systems respectively,using the SANDER module of AMBER 9.0 with the Amber FF03[29-30]and GAFF force field[31].The parameters of ATP were provided by Amber web site[32].All simulations were carried out at neutral pH.Lys and Arg residues were positively charged,and Asp and Glu residues were negatively charged.Default His protonation state in AMBER9 was adopted.To maintain the electroneutrality of the systems,seven counterions(Cl-)were added into complex-2Mg;fivecounterions(Cl-)were added into complex-MgI and complex-MgII;and three counterions(Cl-)were added into complex-noMg.Every system was immersed in a 1 nm truncated octahedron periodic water box,and the structure water molecules were maintained.The box of water molecules in all systems contained around 13635 TIP3P[33]water molecules.A 2 fs time step was used in all simulations,and long-range electrostatic interactions were treated with the particle mesh Ewald(PME)procedure[34]with a 1 nm non-bonded cutoff.Bond lengths involving hydrogen atoms were constrained using the SHAKE algorithm[35].All systems were minimized prior to the production run.The minimization employed SANDER module under constant volume condition.The solvent molecules were firstly relaxed,while all heavy atoms in both protein and ATP were restrained with forces of 2.0×105kJ·mol-1·nm-2.Then,the systems were continually relaxed.All heavy atoms of the system were restrained with forces of 2.0×105kJ·mol-1·nm-2,except the atoms of the residues modeled by Loop Search module of Sybyl 6.8.Finally,all restraints were lifted and whole system was relaxed.The 3 steps above all featured 1000 cycles of steepest descent followed by 1000 cycles of conjugate gradient minimization.After the relaxation,300 ps of MD simulations were carried out at constant volume,with 4.0×103kJ·mol-1·nm-2restraint on solute.Then 2 ns of equilibration MD followed by 3 ns of production MD were respectively carried out on all systems at constant pressure(101325 Pa).All simulations were performed at 300 K.

    2 Results and discussion

    The root-mean-squared deviations(RMSD)value curves of backbone atoms during the MD simulation have been obtained.The curves in Fig.2 show that corresponding to the relaxation of the systems,the RMSD values of backbone atoms of the complex increase slowly before 1000 ps.And after 1000 ps,the RMSD values are fairly stable around 0.20 nm.The total potential energy fluctuates around a constant mean value after 2 ns.This indicates that the systems attain equilibrium.

    Mg2+can stabilize the structure of GSK-3β.RMS fluctuation(RMSF)values from structure provide an approach to evaluate the convergence of the dynamical properties of the system.As shown in Fig.3,the fluctuation values of complex-2Mg(black curve)are the lowest,while the values of complex-noMg(blue curve)are the highest.The fluctuation values of systems containing only one Mg2+are moderate,and the values of complex-MgI(green curve)are lower than that of complex-MgII(red curve).These indicate that Mg2+can stabilize GSK-3β,just like Mg2+in other kinases[26,36].Furthermore,we can conclude that Mgis more powerful than Mgin stabilizing GSK-3β,because of the lower fluctuation values of complex-MgI.

    Mg2+can influence the conformation of ATP.The stability of conformation of ATP is essential to catalytic reaction[37-38].RMSD values of ATP in different systems during simulations confirm the importance of Mg2+and the necessity of Mg.As shown in Fig.4,the RMSD values of ATP of complex-2Mg(black curve)and complex-MgI(green curve)are stable around 0.025 nm,while the values of complex-MgII are stable around 0.050 nm(red curve).The RMSD values of ATP of complex-noMg(blue curve)increase continuously,corresponding to remarkable conformation change of ATP,which is adverse to phosphoryl transfer.

    To facilitate phosphoryl transfer,ATP and substrates must keep the near-attack reactive conformations(in-line phosphoryl transfer mechanism)[38].The right conformation of ATP is guaranteed by the H-bond between γ-phosphate of ATP and conserved Lys183[1,39-40].As shown in Fig.5(a),in complex-2Mg,the oxygen atom on γ-phosphate of ATP can form H-bond with Lys183,and ATP can adopt right conformation.As shown in Fig.5(d),in complex-noMg,ATP moves away from phosphate transfer region and forms H-bond with Asn64 and Ser66,but without Lys183.As shown in Fig.5(b),in complex-MgII,ATP can form H-bond with Lys183,while as shown in Fig.5(c),in complex-MgI,ATP does not form H-bond with Lys183,but forms H-bond with Ser66.These indicate that Mgplays an important role in keeping the right position of γ-phosphate ofATP.

    Mg2+can influence the interactions between ATP and Lys85.Lys85 is a conserved catalytic residue which anchors α-and βphosphate of ATP by H-bond.Experimental studies illustrated that if Lys85 was mutated to Arg,GSK-3β would lose its activity[37,41].Calculation studies showed that in kinase,PKA for example,this conserved Lys could strongly stabilize the transition state through electrostatic interactions during phosphoryl transfer[1].To investigate the effect of Mg2+on the interactions between ATP and Lys85,the distances between atoms were monitored:the distances between the oxygen atom of ATP,O1α,and the nitrogen atom of Lys85,NZ,are shown in Fig.6;the distances between the oxygen atom of ATP,O2β,and the nitrogen atom of Lys85,NZ,are shown in Fig.7.As shown in Fig.6 and Fig.7,in complex-2Mg(black curve)and complex-MgI(green curve),the distances between O1αand NZ,and between O2βand NZ are around 0.30 nm,which indicates that stable H-bond between ATP and Lys85 can form,referring to Fig.5(a)and Fig.5(c).In complex-MgII(red curve),the distances are more than 0.35 nm,which indicates that stable H-bonds between ATP and Lys85 can not form,referring to Fig.5(b).In complex-noMg(blue curve),the distances increase continuously,which indicates that ATP is moving away from Lys85,referring to Fig.5(d).The interactions between ATP and Lys85 are important to phosphoryl transfer.The important roles of Mgare evident,because the interactions are demolished when Mgions are absent.

    Mg2+can influence the formation of the conserved H-bonds between adenine moiety of ATP and GSK-3β.The H-bonds between adenine moiety of ATP and Asp133,Val135 are conserved in kinase ATP binding sites[6].These H-bonds can strengthen the binding of ATP to kinases.As shown in Figs.5(a),5(b),and 5(c),in complex-2Mg,complex-MgII,and complex-MgI,the conserved H-bonds can form.As shown in Fig.5(d),in complex-noMg,the conserved H-bonds can not form,suggesting the drifting of ATP in binding site and the weakening ofATP binding.

    We found interesting phenomena during the simulations.Without Mg2+,ATP can form an intramolecular H-bond intermittently,like ATP in CheA histidine kinase[42].The distances between O3′and O1αwere monitored.As shown in Fig.8,in complex-2Mg(black curve),complex-MgII(red curve),and complex-MgI(green curve),the distances between O3′and O1αareabout 0.60 nm.H-bond can not form obviously.In complexnoMg(blue curve),the distances swing between 0.25 and 0.40 nm,indicating the intermittent forming of H-bond between O3′and O1α,Fig.9 shows the process of the H-bond formation.When this H-bond forms,ATP will adopt folded conformation,which is adverse to phosphoryl transfer.

    3 Conclusions

    Mg2+ions stabilize the structure of GSK-3β.Complex containing two Mg2+ions has the lowest RMSF values,while complex containing no Mg2+ion has the highest RMSF values.Mg2+Iis more powerful than Mgin stabilizing GSK-3β,because the RMSF values of complex-MgI are lower than those of complex-MgII.Mg2+can also stabilize the conformation of ATP.Without Mg2+,conformation of ATP will change remarkably and the in-line phosphoryl transfer mechanism will be demolished.Mgguarantees the interactions between ATP and Lys85,while Mgguarantees the right position of γ-phosphate of ATP.Without Mg2+,the conserved H-bonds between adenine moiety ofATP and GSK-3β can not form,and the binding of ATP will weaken.Without Mg2+,an intramolecular H-bond of ATP will form intermittently,which disturbs the catalytic reaction.Mg2+ions take an important role in GSK-3β.Mgseems more important than Mg,while Mgis not dispensable.

    1 Cheng,Y.H.;Zhang,Y.K.;McCammon,J.A.J.Am.Chem.Soc.,2005,127:1553

    2 Embi,N.;Rylatt,D.B.;Cohen,P.Eur.J.Biochem.,1980,107:519

    3 Cross,D.A.;Alessi,D.R.;Cohen,P.;Andelkovich,M.;Hemmings,B.A.Nature,1995,378:785

    4 Hoeflich,K.P.;Luo,J.;Rubie,E.A.;Tsao,M.S.;Jin,O.;Woodgett,J.R.Nature,2000,406:86

    5 Sun,H.;Jiang,Y.J.;Yu,Q.S.;Zou,J.W.Acta Phys.-Chim.Sin.,2009,25:635 [孫 浩,蔣勇軍,俞慶森,鄒建衛(wèi).物理化學(xué)學(xué)報(bào),2009,25:635]

    6 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhuang,S.L.;Jin,H.X.;Yu,Q.S.Proteins,2007,67:941

    7 Zhang,N.;Jiang,Y.J.;Zou,J.W.;Zhang,B.;Wang,Y.H.;Yu,Q.S.Eur.J.Med.Chem.,2006,41:373

    8 Martinez,A.;Castro,A.;Medina,M.Glycogen synthase kinase 3(gsk-3)and its inhibitors.New Jersey:Wiley,2006:51-54

    9 Fiol,C.J.;Wang,A.;Roeske,R.W.;Roach,P.J.J.Biol.Chem.,1990,265:6061

    10 Jope,R.S.;Johnson,G.V.Trends Biochem.Sci.,2004,29:95

    11 Summers,S.A.;Kao,A.W.;Kohn,A.D.;Backus,G.S.;Roth,R.A.;Pessin,J.E.;Birnbaum,M.J.J.Biol.Chem.,1999,274:17934

    12 Ross,S.E.;Erickson,R.L.;Hemati,N.;MacDougald,O.A.Mol.Cell.Biol.,1999,19:8433

    13 Wagman,A.S.;Johnson,K.W.;Bussiere,D.E.;Curr.Pharm.Des.,2004,10:1105

    14 Martinez,A.;Castro,A.;Dorronsoro,I.;Alonso,M.Med.Res.Rev.,2002,22:373

    15 Schafer,M.;Goodenough,S.;Moosmann,B.;Behl,C.Brain Res.,2004,1005:84

    16 Phiel,C.J.;Wilson,C.A.;Lee,V.M.;Klein,P.S.Nature,2003,423:435

    17 Hernandez,F.;Perez,M.;Lucas,J.J.;Mata,A.M.;Bhat,R.;Avila,J.J.Biol.Chem.,2004,279:3801

    18 Gould,T.D.;Zarate,C.A.;Manji,H.K.J.Clin.Psych.,2004,65:10

    19 Emamian,E.S.;Hall,D.;Birnbaum,M.J.;Karayiorgou,M.;Gogos,J.A.Nat.Genet.,2004,36:131

    20 Bhat,R.V.;Budd,H.S.L.;Avila,J.J.Neurochem.,2004,89:1313

    21 Ghosh,S.;Karin,M.Cell,2002,109:81

    22 Peifer,M.;Polakis,P.Science,2000,287:1606

    23 Pap,M.;Cooper,G.M.J.Biol.Chem.,1998,273:19929

    24 Diaz,N.;Suarez,D.Biochemistry,2007,46:8943

    25 Ryves,W.J.;Dajani,R.;Pearl,L.;Harwood,A.J.Biochem.Biophys.Res.Commun.,2002,290:967

    26 Herberg,F.W.;Doyle,M.L.;Cox,S.;Taylor,S.S.Biochemistry,1999,38:6352

    27 Valiev,M.;Kawai,R.;Adams,J.A.;Weare,J.H.J.Am.Chem.Soc.,2003,125:9926

    28 Diaz,N.;Field,M.J.J.Am.Chem.Soc.,2004,126:529

    29 Duan,Y.;Wu,C.;Chowdhury,S.;Lee,M.C.;Xiong,G.;Zhang,W.;Yang,R.;Cieplak,P.;Luo,R.;Lee,T.J.Comput.Chem.,2003,24:1999

    30 Lee,M.C.;Duan,Y.Proteins,2004,55:620

    31 Wang,J.;Wolf,R.M.;Caldwell,J.W.;Kollamn,P.A.;Case,D.A.J.Comput.Chem.,2004,25:1157

    32 Meagher,K.L.;Redman,L.T.;Carlson,H.A.J.Comput.Chem.,2003,24:1016

    33 Jorgensen,W.L.;Chandrasekhar,J.;Madura,J.;Klein,M.L.J.Chem.Phys.,1983,79:926

    34 Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.,1993,98:10089

    35 Ryckaert,J.P.;Ciccotti,G.;Berendsen,H.J.C.J.Comput.Phys.,1977,23:327

    36 Adams,J.A.;Taylor,S.S.Biochemistry,1992,31:8516

    37 Hao,S.;Jiang,Y.J.;Yu,Q.S.;Luo,C.C.;Zou,J.W.Biochem.Biophys.Res.Commun.,2008,377:962

    38 http://dx.doi.org/10.1007/s00894-010-0738-0

    39 Hanks,S.K.;Quinn,A.M.Methods Enzymol.,1991,200:38

    40 Knighton,D.R.;Cadena,D.L.;Zheng,J.H.;Teneyck,L.F.;Taylor,S.S.;Sowadski,J.M.;Gill,G.N.Proc.Natl.Acad.Sci.U.S.A.,1993,90:5001

    41 Gómez-Sintes,R.;Hernandez,F.;Avila,J.;Gotteland,J.P.;Zaratin,P.;Lucas,J.J.SENC.Rev.Neurol.,2005,41:71

    42 Zhang,J.;Xu,Y.H.;Shen,J.H.;Luo,X.M.;Chen,J.G.;Chen,K.X.;Zhu,W.L.;Jiang,H.L.J.Am.Chem.Soc.,2005,127:11709

    分子動(dòng)力學(xué)模擬研究結(jié)構(gòu)金屬鎂離子在GSK-3β激酶磷酸化中的作用

    孫 浩1蔣勇軍2,*俞慶森3高 慧3

    (1西南林業(yè)大學(xué),昆明650224;2浙江大學(xué)寧波理工學(xué)院分子設(shè)計(jì)與營養(yǎng)工程市重點(diǎn)實(shí)驗(yàn)室,浙江寧波315100;3浙江大學(xué)化學(xué)系,杭州310027)

    糖原合成酶激酶-3β(GSK-3β)是一種絲氨酸/蘇氨酸蛋白激酶,調(diào)節(jié)糖原合成酶的活性,并在生物體內(nèi)的多條信號通路中發(fā)揮作用.GSK-3β是糖尿病,腫瘤,急性炎癥,早老性癡呆等多種復(fù)雜疾病的藥物作用靶標(biāo).Mg2+是GSK-3β激酶的保守結(jié)構(gòu)金屬離子,與三磷酸腺苷(ATP)分子作用,在激酶的磷酸化中扮演重要的角色,本文闡明了兩個(gè)Mg2+離子(Mg,Mg)在激酶磷酸化中的作用:Mg2+穩(wěn)定GSK-3β與ATP的構(gòu)象.缺乏Mg2+離子,GSK-3β結(jié)構(gòu)的柔性增強(qiáng),同時(shí)ATP的構(gòu)象發(fā)生改變,相對Mg離子而言,Mg離子在磷酸化反應(yīng)中的作用更突出,但Mg離子也是必不可少的,如果沒有Mg離子,Lys183無法獨(dú)立穩(wěn)定ATP的合適構(gòu)象.當(dāng)兩個(gè)Mg2+離子都不存在時(shí),ATP形成分子內(nèi)的氫鍵,成為一種折疊的構(gòu)象.

    GSK-3β激酶; 磷酸化;Mg2+; 結(jié)構(gòu)金屬離子; 分子動(dòng)力學(xué)模擬

    O641

    Received:September 1,2010;Revised:October 15,2010;Published on Web:November 30,2010.

    ?Corresponding author.Email:yjjiang@nit.zju.edu.cn;Tel:+86-574-88229517.

    The project was supported by the National High Technology Research and Development Program of China(863)(2007AA02Z301),National Natural Science Foundation of China(20803063),Natural Science Foundation of Ningbo,China(2010A610024),and Key Scientific Research Foundation of Southwest Forestry University,China(110932).

    國家高技術(shù)研究發(fā)展計(jì)劃(863)(2007AA02Z301),國家自然科學(xué)基金(20803063),寧波市自然科學(xué)基金(2010A610024)及西南林業(yè)大學(xué)重點(diǎn)科研基金(110932)資助項(xiàng)目

    猜你喜歡
    林業(yè)大學(xué)構(gòu)象糖原
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    糖原在雙殼貝類中的儲(chǔ)存、轉(zhuǎn)運(yùn)和利用研究進(jìn)展
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    體育運(yùn)動(dòng)后快速補(bǔ)糖對肌糖原合成及運(yùn)動(dòng)能力的影響
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    《南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    王建設(shè):糖原累積癥
    肝博士(2021年1期)2021-03-29 02:32:08
    一種一枝黃花內(nèi)酯分子結(jié)構(gòu)與構(gòu)象的計(jì)算研究
    玉米麩質(zhì)阿拉伯木聚糖在水溶液中的聚集和構(gòu)象
    Cu2+/Mn2+存在下白花丹素對人血清白蛋白構(gòu)象的影響
    久久久久久久亚洲中文字幕| 午夜视频国产福利| 中文乱码字字幕精品一区二区三区| 卡戴珊不雅视频在线播放| 国产精品一区www在线观看| av国产久精品久网站免费入址| 老司机亚洲免费影院| 国产一级毛片在线| 日韩在线高清观看一区二区三区| 亚洲精品视频女| 一边亲一边摸免费视频| 在线 av 中文字幕| 亚洲丝袜综合中文字幕| 午夜福利在线观看免费完整高清在| 午夜av观看不卡| 91久久精品国产一区二区三区| 人妻人人澡人人爽人人| 精品人妻一区二区三区麻豆| 老司机影院毛片| 亚洲精品,欧美精品| 高清av免费在线| 国产在视频线精品| 国产日韩欧美亚洲二区| 熟女电影av网| 成人国产av品久久久| 亚洲av综合色区一区| 国产av一区二区精品久久| 国产成人精品无人区| 我的女老师完整版在线观看| 能在线免费看毛片的网站| 三上悠亚av全集在线观看| 亚洲无线观看免费| 69精品国产乱码久久久| 久久精品久久精品一区二区三区| 国产一级毛片在线| 亚洲经典国产精华液单| 久久久久精品久久久久真实原创| 毛片一级片免费看久久久久| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品久久久久久婷婷小说| 边亲边吃奶的免费视频| 久久99蜜桃精品久久| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 亚洲欧美色中文字幕在线| 插逼视频在线观看| 亚洲国产av影院在线观看| 亚洲欧美成人综合另类久久久| 黄色视频在线播放观看不卡| av播播在线观看一区| 午夜福利网站1000一区二区三区| 欧美精品一区二区大全| 波野结衣二区三区在线| 全区人妻精品视频| 国产精品偷伦视频观看了| 日韩伦理黄色片| 97超视频在线观看视频| 欧美日韩视频高清一区二区三区二| 欧美 亚洲 国产 日韩一| 色婷婷久久久亚洲欧美| 51国产日韩欧美| 亚洲精品国产av蜜桃| 国产精品三级大全| 欧美日韩视频高清一区二区三区二| 各种免费的搞黄视频| 国产在视频线精品| 日韩视频在线欧美| 欧美精品人与动牲交sv欧美| 一边亲一边摸免费视频| 国产69精品久久久久777片| 国产毛片在线视频| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 91久久精品国产一区二区成人| 日韩欧美精品免费久久| 久久99热6这里只有精品| 秋霞伦理黄片| 中文欧美无线码| 一级二级三级毛片免费看| 韩国高清视频一区二区三区| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 最近手机中文字幕大全| 黄色欧美视频在线观看| 日产精品乱码卡一卡2卡三| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 18+在线观看网站| 国产精品国产三级专区第一集| 9色porny在线观看| 蜜桃国产av成人99| 欧美日韩综合久久久久久| 免费大片18禁| 久久精品久久精品一区二区三区| 黄色欧美视频在线观看| 国产精品麻豆人妻色哟哟久久| 国产亚洲精品第一综合不卡 | 男男h啪啪无遮挡| 亚洲国产精品成人久久小说| 亚洲国产欧美日韩在线播放| 亚洲第一av免费看| 日本黄色日本黄色录像| 两个人的视频大全免费| 亚洲人成网站在线观看播放| 少妇被粗大的猛进出69影院 | 黑丝袜美女国产一区| 免费高清在线观看视频在线观看| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 久久久久国产网址| 97超视频在线观看视频| 99热这里只有是精品在线观看| 亚洲在久久综合| 亚洲天堂av无毛| 美女福利国产在线| 一级毛片aaaaaa免费看小| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 国产在线一区二区三区精| 99国产综合亚洲精品| 精品午夜福利在线看| 在线观看三级黄色| 久久精品久久精品一区二区三区| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 男女边吃奶边做爰视频| 国产爽快片一区二区三区| 亚洲av二区三区四区| 18禁裸乳无遮挡动漫免费视频| 日韩亚洲欧美综合| 考比视频在线观看| 亚洲美女视频黄频| a级毛片黄视频| 免费看不卡的av| 国产黄色免费在线视频| av卡一久久| 老女人水多毛片| 国产熟女欧美一区二区| 少妇的逼好多水| 国产精品一区www在线观看| 热99久久久久精品小说推荐| 视频区图区小说| 亚洲国产最新在线播放| 日韩在线高清观看一区二区三区| 国产一区二区在线观看av| 老司机亚洲免费影院| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 成人毛片60女人毛片免费| 97超视频在线观看视频| 国产视频内射| 少妇高潮的动态图| 亚洲内射少妇av| 韩国av在线不卡| 免费大片黄手机在线观看| 女人精品久久久久毛片| 国产黄色视频一区二区在线观看| av视频免费观看在线观看| 久久久久久久久久人人人人人人| 国产av国产精品国产| 老司机影院毛片| kizo精华| 亚洲人成77777在线视频| av在线观看视频网站免费| 少妇的逼好多水| 大香蕉97超碰在线| 特大巨黑吊av在线直播| 亚洲国产精品国产精品| 久久鲁丝午夜福利片| 制服诱惑二区| a级毛片免费高清观看在线播放| 热99国产精品久久久久久7| 丁香六月天网| 欧美一级a爱片免费观看看| 中文字幕人妻丝袜制服| 啦啦啦中文免费视频观看日本| 国产亚洲av片在线观看秒播厂| 边亲边吃奶的免费视频| 丝袜美足系列| 日韩精品免费视频一区二区三区 | 大陆偷拍与自拍| 草草在线视频免费看| 日韩亚洲欧美综合| 国产免费现黄频在线看| 亚洲欧洲精品一区二区精品久久久 | 老女人水多毛片| 亚洲av中文av极速乱| 美女福利国产在线| 亚洲国产精品999| 日韩制服骚丝袜av| 另类精品久久| 国产女主播在线喷水免费视频网站| 18禁在线播放成人免费| 亚洲av成人精品一区久久| 免费人妻精品一区二区三区视频| 亚洲综合精品二区| 看免费成人av毛片| 亚洲欧洲精品一区二区精品久久久 | 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久| 女性被躁到高潮视频| 亚洲,欧美,日韩| 亚洲国产精品专区欧美| 欧美亚洲日本最大视频资源| 欧美精品人与动牲交sv欧美| xxxhd国产人妻xxx| av在线老鸭窝| av免费观看日本| 99九九在线精品视频| 日韩欧美一区视频在线观看| 亚洲怡红院男人天堂| 最近的中文字幕免费完整| 少妇高潮的动态图| 中国国产av一级| videos熟女内射| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 精品视频人人做人人爽| 色婷婷av一区二区三区视频| 亚洲成人一二三区av| 国产有黄有色有爽视频| 亚洲欧美日韩卡通动漫| 免费看不卡的av| 亚洲av.av天堂| 久久99热6这里只有精品| 看免费成人av毛片| 极品人妻少妇av视频| 午夜激情av网站| 亚洲精品一二三| 欧美精品人与动牲交sv欧美| 一本大道久久a久久精品| 99re6热这里在线精品视频| 各种免费的搞黄视频| 91精品国产九色| 日本黄大片高清| 91在线精品国自产拍蜜月| 夜夜爽夜夜爽视频| 国产欧美日韩综合在线一区二区| 麻豆乱淫一区二区| 狠狠婷婷综合久久久久久88av| 丰满迷人的少妇在线观看| tube8黄色片| 午夜福利在线观看免费完整高清在| 久久影院123| 亚洲国产毛片av蜜桃av| 日本色播在线视频| 青春草国产在线视频| 久久人妻熟女aⅴ| xxxhd国产人妻xxx| 色5月婷婷丁香| 精品久久蜜臀av无| 国产爽快片一区二区三区| 日韩人妻高清精品专区| 午夜老司机福利剧场| 午夜福利,免费看| 中文精品一卡2卡3卡4更新| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品蜜桃在线观看| 亚洲精品久久久久久婷婷小说| 99久久精品国产国产毛片| www.av在线官网国产| xxx大片免费视频| 久久精品久久精品一区二区三区| 国产黄色免费在线视频| 五月伊人婷婷丁香| 国产av国产精品国产| videos熟女内射| 永久网站在线| 婷婷色综合大香蕉| av在线播放精品| 亚洲精品一区蜜桃| 成人免费观看视频高清| 18在线观看网站| 亚洲av福利一区| 一本大道久久a久久精品| 国产色爽女视频免费观看| 大话2 男鬼变身卡| 在线观看三级黄色| 欧美 亚洲 国产 日韩一| 99热全是精品| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 日日爽夜夜爽网站| 久久久久久久国产电影| 五月开心婷婷网| 欧美bdsm另类| 午夜91福利影院| 天天影视国产精品| 国产成人一区二区在线| 又大又黄又爽视频免费| 婷婷色综合www| 少妇的逼水好多| 国产精品偷伦视频观看了| 久久97久久精品| 国产亚洲精品第一综合不卡 | 国产亚洲精品久久久com| 99视频精品全部免费 在线| 插逼视频在线观看| 亚洲天堂av无毛| 久久久久久久精品精品| 欧美日韩亚洲高清精品| 国产av码专区亚洲av| 欧美精品国产亚洲| 国产精品国产三级国产专区5o| 大香蕉久久网| 一级毛片 在线播放| 久久久久网色| av专区在线播放| 日产精品乱码卡一卡2卡三| 亚洲欧美日韩卡通动漫| 免费黄频网站在线观看国产| 成人毛片a级毛片在线播放| 一边亲一边摸免费视频| 欧美3d第一页| 99国产综合亚洲精品| 免费av中文字幕在线| 如何舔出高潮| 亚洲成人av在线免费| 中文字幕最新亚洲高清| 国产黄色视频一区二区在线观看| 日韩一区二区视频免费看| 精品久久蜜臀av无| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产日韩欧美在线精品| 国产男人的电影天堂91| 精品视频人人做人人爽| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| av播播在线观看一区| 99热全是精品| 亚洲精品亚洲一区二区| 水蜜桃什么品种好| 久久热精品热| 热99国产精品久久久久久7| 免费av不卡在线播放| 校园人妻丝袜中文字幕| 日本黄色日本黄色录像| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 制服人妻中文乱码| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 一级毛片aaaaaa免费看小| 亚洲国产欧美在线一区| tube8黄色片| 中国三级夫妇交换| 涩涩av久久男人的天堂| 亚洲精品色激情综合| 丝袜喷水一区| 午夜激情久久久久久久| av专区在线播放| 免费久久久久久久精品成人欧美视频 | 亚洲,一卡二卡三卡| 十八禁网站网址无遮挡| 日本爱情动作片www.在线观看| 91精品三级在线观看| 综合色丁香网| 国产精品一区二区三区四区免费观看| 91精品伊人久久大香线蕉| 黄色一级大片看看| 丝袜美足系列| 夜夜看夜夜爽夜夜摸| 插阴视频在线观看视频| 在线看a的网站| 大香蕉97超碰在线| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 久热久热在线精品观看| 精品久久久久久久久亚洲| 久热久热在线精品观看| av福利片在线| 黑人巨大精品欧美一区二区蜜桃 | 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 91精品伊人久久大香线蕉| 少妇高潮的动态图| 最后的刺客免费高清国语| 久久久久久久久久人人人人人人| 大片免费播放器 马上看| 久久女婷五月综合色啪小说| 夜夜骑夜夜射夜夜干| 熟女电影av网| 曰老女人黄片| av在线观看视频网站免费| 久久精品久久久久久久性| 中文欧美无线码| 亚洲精品456在线播放app| 日本av免费视频播放| 性色av一级| 制服诱惑二区| 亚洲美女搞黄在线观看| 日韩大片免费观看网站| 成年女人在线观看亚洲视频| 成人影院久久| 日韩,欧美,国产一区二区三区| 久久久久久久精品精品| 免费av不卡在线播放| 一级毛片我不卡| 国产有黄有色有爽视频| 曰老女人黄片| 久久99精品国语久久久| 纯流量卡能插随身wifi吗| 亚洲av成人精品一二三区| 亚洲不卡免费看| 亚洲伊人久久精品综合| 成人综合一区亚洲| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验| 日韩成人av中文字幕在线观看| 亚洲精品美女久久av网站| 一区二区三区四区激情视频| 99国产综合亚洲精品| 亚洲av免费高清在线观看| 午夜福利网站1000一区二区三区| 久久精品国产亚洲网站| 成人黄色视频免费在线看| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 大又大粗又爽又黄少妇毛片口| 一级a做视频免费观看| 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 看免费成人av毛片| 亚洲综合精品二区| 日韩一本色道免费dvd| 青春草国产在线视频| 日本色播在线视频| av在线app专区| 午夜激情久久久久久久| 日日摸夜夜添夜夜添av毛片| 亚洲,一卡二卡三卡| 久久国产精品大桥未久av| 亚洲四区av| 久久久久久久久久久久大奶| 成人二区视频| 亚洲综合色惰| 亚洲丝袜综合中文字幕| 色视频在线一区二区三区| 日韩熟女老妇一区二区性免费视频| 日韩欧美精品免费久久| av网站免费在线观看视频| 国产乱来视频区| 国产一区二区在线观看日韩| 一个人免费看片子| 欧美另类一区| 国产欧美亚洲国产| 欧美 亚洲 国产 日韩一| 日韩人妻高清精品专区| 久热久热在线精品观看| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 免费观看性生交大片5| 色网站视频免费| 国产老妇伦熟女老妇高清| 日产精品乱码卡一卡2卡三| 99九九线精品视频在线观看视频| 精品酒店卫生间| 精品久久久精品久久久| 久久99一区二区三区| 人妻系列 视频| 最新中文字幕久久久久| 国产日韩欧美在线精品| 18禁在线播放成人免费| 久久国产精品大桥未久av| 美女国产高潮福利片在线看| 国产精品无大码| 亚洲国产精品国产精品| 多毛熟女@视频| 伊人久久精品亚洲午夜| 美女cb高潮喷水在线观看| 日韩av不卡免费在线播放| 国产精品久久久久久久久免| 一区二区av电影网| 亚洲精品久久成人aⅴ小说 | 国产乱人偷精品视频| 国产极品粉嫩免费观看在线 | 久久av网站| 丰满乱子伦码专区| 亚洲av成人精品一区久久| 成人黄色视频免费在线看| 一级黄片播放器| 国产免费一级a男人的天堂| 一本大道久久a久久精品| 欧美最新免费一区二区三区| av在线播放精品| a级片在线免费高清观看视频| 97在线视频观看| 精品一品国产午夜福利视频| 97超视频在线观看视频| 老女人水多毛片| 爱豆传媒免费全集在线观看| 丁香六月天网| 18禁裸乳无遮挡动漫免费视频| 午夜福利视频在线观看免费| 日韩大片免费观看网站| 日本91视频免费播放| 草草在线视频免费看| 久久精品熟女亚洲av麻豆精品| 观看美女的网站| 99国产综合亚洲精品| 久久久久国产精品人妻一区二区| 视频区图区小说| 免费人成在线观看视频色| 天美传媒精品一区二区| 免费观看在线日韩| 妹子高潮喷水视频| 亚州av有码| 亚洲无线观看免费| 最近手机中文字幕大全| 欧美三级亚洲精品| 久久人人爽人人片av| 九九久久精品国产亚洲av麻豆| 久久这里有精品视频免费| 国产亚洲午夜精品一区二区久久| 黄色一级大片看看| a 毛片基地| 久久精品国产自在天天线| 男人添女人高潮全过程视频| 精品少妇久久久久久888优播| 免费观看在线日韩| 成人二区视频| 欧美精品国产亚洲| 黄色配什么色好看| 亚洲国产色片| 国产极品粉嫩免费观看在线 | 亚洲综合色惰| a级片在线免费高清观看视频| 午夜91福利影院| 18在线观看网站| 十八禁高潮呻吟视频| 欧美少妇被猛烈插入视频| videosex国产| 亚洲精品第二区| 亚洲综合色惰| 人妻一区二区av| 大香蕉97超碰在线| 69精品国产乱码久久久| 成年女人在线观看亚洲视频| 国产免费视频播放在线视频| 日韩人妻高清精品专区| av线在线观看网站| 国产高清国产精品国产三级| 全区人妻精品视频| 国产精品久久久久久精品古装| 免费不卡的大黄色大毛片视频在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av免费高清在线观看| av免费观看日本| 成年女人在线观看亚洲视频| 国产精品久久久久久av不卡| 婷婷色麻豆天堂久久| 精品亚洲成a人片在线观看| 一级二级三级毛片免费看| 免费观看在线日韩| 欧美成人精品欧美一级黄| 精品午夜福利在线看| 久久鲁丝午夜福利片| 人妻少妇偷人精品九色| 又大又黄又爽视频免费| 免费看不卡的av| 亚洲精品国产av成人精品| 欧美日韩视频精品一区| 成年女人在线观看亚洲视频| 大片免费播放器 马上看| 免费高清在线观看视频在线观看| 丝袜喷水一区| 啦啦啦中文免费视频观看日本| 中文天堂在线官网| 亚洲av在线观看美女高潮| 亚洲精品国产色婷婷电影| 在线天堂最新版资源| 91精品国产九色| 国产亚洲午夜精品一区二区久久| 国产男女超爽视频在线观看| 国产日韩欧美视频二区| 精品久久蜜臀av无| 亚洲中文av在线| 一级黄片播放器| 爱豆传媒免费全集在线观看| 九草在线视频观看| 在线免费观看不下载黄p国产| 99久久中文字幕三级久久日本| 久久久久久久久久成人| 亚洲欧美中文字幕日韩二区| 亚洲伊人久久精品综合| 欧美人与善性xxx| 亚洲欧美中文字幕日韩二区| 国产精品熟女久久久久浪| 欧美人与性动交α欧美精品济南到 | 日韩强制内射视频| 大陆偷拍与自拍| 999精品在线视频| 男女边吃奶边做爰视频| 插逼视频在线观看| 欧美成人精品欧美一级黄| a级毛片免费高清观看在线播放| 熟女电影av网| 中文字幕制服av| 久久久久人妻精品一区果冻| 男女免费视频国产| 亚洲图色成人| 观看美女的网站| 日韩人妻高清精品专区| 久久久国产欧美日韩av| 日日爽夜夜爽网站| 蜜臀久久99精品久久宅男| 久久国产精品男人的天堂亚洲 | 丝瓜视频免费看黄片| 99九九线精品视频在线观看视频| 午夜福利网站1000一区二区三区|