• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size

    2014-10-14 03:44:40SUNGangWeiSONGWenHuaLIUXiaoJunQIAOWenMingLINGLiCheng
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:正負(fù)極負(fù)極電荷

    SUN Gang-Wei SONG Wen-Hua LIU Xiao-Jun QIAO Wen-Ming LING Li-Cheng

    (State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,P.R.China)

    Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size

    SUN Gang-Wei SONG Wen-Hua LIU Xiao-Jun QIAO Wen-Ming LING Li-Cheng*

    (State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,P.R.China)

    Abstract: We reported on the capacitive behaviors regarding to the relationship between ion size and pore architecture,using activated carbons with an adjusted pore structure as electrode materials.The results revealed that an asymmetric capacitance response occurred in both electrodes.The gravimetric capacitances for the positive and negative electrodes were 113 and 7 F·g-1,respectively.A significant current decay was presented in the negative region of cyclic voltammetry curve.Experimental and calculated maximum storage charges had a good agreement.This results suggested that the insufficiently developed pore architecture for cation accommodation led to a saturation effect on the active surface,consequently,a deteriorated capacitive performance in the negative electrode.Contrarily,when pore size was larger than tetrafluoroborate dimension,the saturation effect was not found.However,this was at the expense of the lower specific area capacitance in the positive electrode.The poor capacitive behavior of the negative electrode would limit the usable voltage of the cell system and consequently the deliverable energy and power.As a result,an optimal match between the pores size and the ion dimension with respect to each electrode would be considered to obtain the maximum capacitance for the capacitor unit.

    Key Words:Electrochemical capacitor;Organic electrolyte;Asymmetric capacitance behavior;Pore size distribution;Ion dimension

    1 Introduction

    Electrochemical capacitors(ECs)are extensively studied due to their promising properties in terms of energy storage and power supply,which could fill the gap between the secondary batteries and the conventional dielectric capacitors.1,2Today′s major research efforts focus on increasing the deliverable energy of ECs,which is still lower than that achievable with batteries.The energy E is defined by the relationship

    where C and U are the capacitance and voltage,respectively.Energy improvements require increasing both capacitance and voltage.3-6

    Presently,organic-based industrial systems are preferred,operating at a maximum voltage of 2.7 V as compared to 1 V for aqueous ones.7,8A good matching between the pore size of electrode material and ion dimension of electrolyte is critical for an optimal capacitance.9-11A noticeable increase in specific capacitance has recently been demonstrated for pore size of less than 1 nm,with maximum for an average pore size of 0.7 nm.This suggested that solvated ions were capable of at least partially removing their solvent shell to enter such small pores,consequently,leading to a higher capacitance.12-17Due to the difference in sizes of cation and anion adsorbed at the negative and positive electrodes,respectively,a deep study should be carried out to study the capacitance behaviors of each electrode separately during the charge/discharge of ECs.Below,an asymmetric capacitive property between two electrodes can be observed where a decay of capacitive current occurs in the negative electrode as charging processes.This phenomenon highlights the need to adapt the nanotextural properties of each electrode to size of specific ions for maximizing the capacitance and thus the energy density.

    2 Materials and methods

    2.1 Preparation and characterization of the electrode materials

    Three nanoporous activated carbons from petroleum coke were produced by KOH(purity>88%)activation(mass ratio of KOH to coke from 1:1 to 3:1,800°C,1 h).The as-prepared activated carbons were labeled as PAC-1,PAC-2,and PAC-3,where number represents the mass ratio of KOH to coke.The porosity was investigated by nitrogen adsorption at 77 K(Micromeritcs ASAP2020,USA).Preliminarily,the samples were outgassed for 12 h at 300°C.The Brunauer-Emmett-Teller(BET)method was utilized to calculate the specific surface area.The pore size distribution was evaluated according to the density functional theory(DFT)approach.18

    2.2 Electrochemical measurements

    Electrodes were prepared by mixing as-prepared specimen(85%,mass fraction,the same below)with carbon black(5%,Mitsubishi Chemical,Inc.)and polytetrafluoroethlyene(10%,Mitsui Dupont Fluorochemicals,Inc.).Electrochemical experiments were carried out with Teflon Swagelok?type two-electrode configuration,which was constructed with two identical carbon pellets,sandwiched with a porous polymeric separator(Celgard,USA).A silver wire(2 mm)placed between the electrodes acted as quasi-reference electrode.It was assumed that the concentration of silver ions at the silver electrode did not change during cycling,and therefore,potential remained constant.Electrolyte was 1.0 mol·L-1solution of terabutylammonium terafluoroborate(Bu4NBF4,Sigma-Aldrich,CAS#429-42-5,H2O<10×10-6,purity>99.99%)in propylene carbonate(PC,Sigma-Aldrich,CAS#108-32-7).Galvanostatic charge-discharge tests were conducted to calculate the specific capacitance using an Arbin SCTS supercapacitor testing system(Arbin instrument,TN,USA).Cyclic voltammetry(CV)was recorded in a potential range of-1.2 to 0 V and 0 to 1.2 V on a PCI4/300 potentiostat(Gamry,PA,USA).

    3 Results and discussion

    Fig.1(a,b)represent the N2adsorption-desorption isotherms and the pore size distributions of three carbon samples,respectively.The increased nitrogen adsorbed volume with the mass ratio of KOH to coke increasing suggests a rising specific sur-face area(SSA)from PAC-1 to PAC-3.PAC-1 is strictly ultramicroporous,i.e.,in the range of the recommended size of 0.84 nm for the Bu4N+cation,whereas PAC-2 presents substantial amount of mesopores(>2 nm),in addition to large micropores(>1 nm).For PAC-3,a broad pore size distribution in the range of 0.5 to 4 nm can be observed.Table 1 summarizes the porosity parameters of activated carbon samples.The difference in absolute values betweenSBETandSDFTis expected as both types of calculations are based on different assumptions,which might not be justified with the utmost accuracy for all samples under study.It is well established that BET model gives adequate accurate SSA for mesoporous materials,it may not be accurate when micropores(<1-2 nm)are present,while DFT model is better for calculation of SSA of most micropores.19,20PAC-1 has somewhat lowerSBETthan PAC-2;whereas,SDFTfor PAC-1 is higher than that of the latter,which is associated with their difference in the terms of pore dimension and distribution.It is necessary to note that the surface functionality generated by activation does not impact the capacitance behaviors in non-aqueous electrolyte.21The electrochemical results will depend exclusively on the effect of porosity.

    Table 1 Porosity parameters of activated carbon samples

    The dimensions of cation and anion are evaluated using a computer model(MS Modeling v 3.2.0.0)which is a modified version of the Allinger′s MM2 force field.22For the organic electrolyte solution,the computed value accounts for the nonsolvated state of the ions specie,given that the number of solvent molecules(salvation shell)is unknown.Based on energy optimization,terabutylammonium cation(Bu4N+)has a shape far from spherical-like geometry as presented in Fig.2.Therefore,we select a representative value for ion size according to the van der Waals volume.The radii for Bu4N+and BF-4are 0.42 and 0.24 nm,respectively,which is in good agreement with value reported in literature.23

    For corroborating ion accessibility during the capacitor operation,the potential range of each individual electrode(positive and negative)versusquasi-reference electrode is recorded while charging-discharging the capacitor is up to a given voltage,as depicted in Fig.3.A close look at Fig.3a reveals a nonlinear shape of the“potential-time”curve in the negative electrode.This is not a resistively related effect due to a low current density of 100 mA·g-1.By contrast,in the case of the positive electrode,a well-defined linear shape of discharge curvecan be observed.In addition,the potential range of the positive electrode(ΔE+)is smaller than that of negative one(ΔE-).For a symmetric capacitor with two electrodes having the same mass,this indicates that the capacitance given by the positive electrode is larger than that of negative one.As opposed to those of PAC-1,capacitance behaviors between the positive and negative electrodes with respect to the PAC-2 and PAC-3 become nearly equal(shown in Fig.3b and 3c).Based on aforementioned analysis,it is reasonable to ascribe such asymmetric capacitance behavior of PAC-1 into a narrow pore distribution of small size.

    Fig.4a compares the gravimetric capacitances given by the positive with those given by the negative.PAC-1 provides significantly higher capacitance value in the positive electrode than that in the negative one,which are 113 and 7 F·g-1,respectively.However,the nearly identical gravimetric capacitances of each electrode can be obtained for PAC-3.As observed from Fig.4b,difference in specific area capacitances of both electrodes is not as obvious as gravimetric capacitance for PAC-1.Amazingly,in the case of PAC-3,specific area capacitance of negative is superior to that of positive electrode.The detailed explanation will be presented later.

    Fig.5a shows the CV curves of PAC-1 from open-circuit potential(OCP)down to negative potential(-1.2 V vs reference electrode)and from OCP up to the positive potential(1.2 V vs reference electrode)at a voltage scan rate of 2 mV·s-1.As the potential scan range is higher than OCP(electrodes are kept positively charged during the whole scan),the capacitance behavior is originated from adsorption/desorption of anions,i.e.,BF4-;when potential range is lower than OCP(electrodes are kept negatively charged during the whole scan),the capacitance property reflects adsorption/desorption of cations,i.e.,Et4N+.A remarkable feature of the CV curves for PAC-1 is that capacitive current of the negative electrode is greatly diminished during charging processes as compared to that of the positive one,which is in good agreement with results from galvanostatics tests.This effect negatively affects the deliverable energy because the overall capacitance is limited by the electrode with poor capacitive behavior.

    Such a current decay in the negative electrode could arise from the salt depletion,referred to as the“electrolyte starvation”effect.24,25This explanation does not sound satisfactory if applied to our case because 1 mol·L-1electrolyte is more concentrated than the solutions usually exhibiting the starvation ef-fect.What′s more,if this is the case,both the positive and negative electrodes should demonstrate the same starvation effect.To state definitively whether the current decrease in the negative regions can be linked to electrolyte shortage or not,one should make a comparison between the amount of charge available in the cell(Qcell)and the amount of experimentally stored charge(Qexp).The amount of stored chargeQexpcan be established from the Eq.(2):

    Table 2 Experimental and calculated charge values of each electrode for PAC-1

    whereidlis the response current with the integration limits over the time of scan between-1.2-0 V(or 0-1.2 V).Table 2 presents data on the charge stored in the experiment,Qexpfor the negative electrode is 22.7 C·g-1.On the other hand,the total available anionic charge can be calculated to beQcell=770.6 C·g-1on account of the amount of electrolyte used,its concentration,and the electrode mass.TheQcellis one order of magnitude larger thanQexp.Thus it seems unlikely that“electrolyte starvation”causes a significant current decay in the negative potential.

    Herein,a novel explanation is proposed that the accessible surface area with respect to each electrode is different,determined by the ion dimension.Taking into account the porosity data obtained from gas adsorption on PAC-1,it appears that bulky Bu4N+cation cannot accommodate its size so as to enter into the ultramicropores of carbon,leading to the electrode surface saturation in the negative electrode.However,given the small size of the counteranion,it can access to pores of smaller sizes.Such reasoning can be verified through comparing maximum storage charge(Qmax)with the experimental one,according to the pore structure of electrode material and desolvated ion dimension of salt.TheQmaxof electrode material can be calculated using the SSA(available from DFT data),which is accessible to electrolyte ions.For the negative electrode,the maximum number of Bu4N+cations(0.84 nm)can be evaluated by dividing the SSA into two regions:(i)the region of a single cation-layer between the pore walls,with corresponding surface areaSa1(the surface area relating to the pore size between 0.83 and 1.66 nm)and(ii)the region of a double cations-layer between pore walls,with corresponding surface areaSa2(the surface area of pores over 1.66 nm).26It is considered that surface area per cation is equal to the surface area of a circle of radius.The number of cations on this surface is 1.3×1020ions·g-1,which translates into the maximum charge,Qmax=20.6 C·g-1.This value is in good match withQexp,22.7 C·g-1.Therefore,the decay of capacitive current in the negative electrode can really be associated with the complete coverage of the electrode surface by cations.The slight discrepancies betweenQexpandQmaxcan point to the uncertainties of cation size and ion distortion,which permits the cation to enter pores smaller than its rigid size.

    Contrarily to the negative electrode,no saturation feature is observed from CV curve in the positive electrode which can be corroborated by calculations(as done for the negative electrode).The experimentally stored charge for the positive electrode,Qexp=90.5 C·g-1,is lower than the maximum charge for electrode material,Qmax=542.0 C·g-1as listed in Table 2.As a consequence,the saturation effect of electrode surface area would not occur in the positive potential range.

    The effect of pore size distribution on capacitance behaviors of both electrodes can be further clarified by introducing samples of PAC-2 and PAC-3.The nearly rectangular shape of CV curves for these two carbons demonstrates that the differences in pore texture among three samples are of prime influence on surface saturation in the negative electrode as revealed from Fig.5b.Using the same calculation method as the one detailed above,the fact ofQmax>Qexp(not shown here)for each electrode is agreement with the shape of the experimental voltammograms in the case of PAC-2 and PAC-3.Notably,although PAC-2 has the lowerSDFTthan PAC-1,symmetric CV curves can be obtained as compared to that of PAC-1,which is indicative of the importance for matching between electrode pore size and ion dimension.For the larger ion dimension than pore size,ions are not able to sufficiently distort for adjusting its dimensions to the pore sizes,and only a fraction of the porosity is accessible to the electrolyte ions.In this situation,the capacitive current decay would be take place without regarding to the SSAof electrode material.

    On the other hand,as observed from Fig.4b,the specific area capacitances in the positive electrode experience slight decrease with the pore size increasing.In the case of PAC-3,above 99%of the overall porosity is accessible for the Banion(above 0.48 nm)as compared to 53%for the Bu4N+cation(above 0.83 nm),whereas specific area capacitance of the positive electrode is lower than that of the negative one.Such behaviors could be understood as a consequence of the difference in pore-ion interaction.The distance(d)between the pores surface and the ions is larger for the anion than for cation.Thus the specific area capacitance would be smaller for the positive electrode according to the Eq.(3):

    whereCsrepresents the specific area capacitance,εis the dielectric constant(permittivity)of the electrolyte,anddis thecharge separation.It appears that pores are too wider for an effective interaction of anions with pore walls.Therefore,a large fraction of the pore volume is underused.27It is necessary to point out that too narrow pore size would lead to the surface saturation;whereas,too wide pore dimension would decrease the utilization efficiency of electrode materials.Both situations would deteriorate the capacitance properties.Therefore,the optimal match between the pore size and the ion dimension with respect to each electrode should be considered for the maximum capacitance value of the capacitor unit.

    4 Conclusions

    In summary,for some nanoporous activated carbons,an asymmetric capacitance response can be observed between the positive electrode and negative one.The gravimetric capacitance of the positive electrode is significantly higher than that of the negative one.The disproportional match between pores size and Bu4N+dimension would lead to porosity saturation in the negative electrode.This can be explained by the fact that bulky cation is unable to accommodate its size so as to enter in the narrow micropores of activated carbon.On the contrary,there is no saturation phenomena observed in the positive electrode due to the mostly pores remarkable higher than the anion size.The values of maximum storage charge are in good agreement with the experimentally measured ones,which further clarify the effect of pore architecture on the charge storage effectiveness.However,too wide pore size for ion accommodation would also have detrimental impact on the capacitance performance due to the weak pore-ion interaction.The inferior capacitance value in the negative electrode would limit the overall performance of the electrochemical capacitor unit.The different matching requirements between porosity characteristics and ionic type related to the asymmetric capacitance behaviors should be considered in order to optimize the electrochemical performance.

    (1)Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (2)Chen,H.S.;Cong,T.N.;Yang,W.;Tan,C.Q.;Li,Y.L.;Ding,Y.L.Prog.Nat.Sci.2009,19,291.

    (3)Wang,D.W.;Li,F.;Liu,M.;Lu,G.Q.;Cheng,H.M.Angew.Chem.Int.Edit.2008,47,373.

    (4)Frackowia,E.Phys.Chem.Chem.Phys.2007,9,1774.

    (5) Pandolfo,A.G.;Hollenkamp,A.F.J.Power Sources 2006,157,11.

    (6) Liu,B.;Shioyama,H.;Akita,T.;Xu,Q.J.Am.Chem.Soc.2008,130,5390.

    (7) Korenblit,Y.;Rose,M.;Kockrick,E.;Borchardt,L.;Kvit,A.;Kaskel,S.;Yushin,G.ACS Nano 2010,4,1337.

    (8) Janes,A.;Lust,E.J.Electrochem.Soc.2006,153,A113.

    (9) Largeot,C.;Portet,C.;Chmiola,J.;Taberna,P.L.;Gogotsi,Y.;Simon,P.J.Am.Chem.Soc.2008,130,2730.

    (10) Chmiola,J.;Largeot,C.;Taberna,P.L.;Simon,P.;Gogotsi,Y.Angew.Chem.Int.Edit.2008,47,3392.

    (11) Lin,R.;Taberna,P.L.;Chmiola,J.;Guay,D.;Gogotsi,Y.;Simon,P.J.Electrochem.Soc.2009,156,A7.

    (12) Gogotsi,Y.;Nikitin,A.;Ye,H.;Zhou,W.;Fischer,J.E.;Yi,B.;Foley,H.C.;Barsoum,M.W.Nat.Mater.2003,2,591.

    (13) Shanina,B.D.;Konchits,A.A.;Kolesnik,S.P.;Veynger,A.I.;Danishevskii,A.M.;Popov,V.V.;Gordeev,S.K.Carbon 2003,41,3027.

    (14) Permann,L.;Latt,M.;Leis,J.;Arulepp,M.Electrochim.Acta 2006,51,1274.

    (15) Dash,R.;Chmiola,J.;Yushin,G.;Gogotsi,Y.;Laudisio,G.;Singer,J.;Fischer,J.;Kucheyev,S.Carbon 2006,44,2489.

    (16) Fernandez,J.A.;Arulepp,M.;Leis,J.;Stoeckli,F.;Centeno,T.A.Electrochim.Acta 2008,53,7111.

    (17) Latt,M.;Kaarik,M.;Permann,L.;Kuura,H.;Arulepp,M.;Leis,J.J.Solid State Electrochem.2010,14,543.

    (18) Ravikovitch,P.I.;Neimark,A.V.Langmuir 2006,22,11171.

    (19) King,K.S.W.;Everett,D.H.Pure Appl.Chem.1985,57,603.

    (20) Ravikovitch,P.L.;Neimark,A.V.Colloids Surf.A 2001,187-188,11.

    (21) Hulicova-Jurcakova,D.;Seredych,M.;Lu,G.Q.;Bandosz,T.J.Adv.Funct.Mater.2008,18,1.

    (22) Brunauer,B.;Deming,L.S.;Deming,W.E.;Teller,E.J.Am.Chem.Soc.1940,62,1723.

    (23) Ue,M.J.Electrochem.Soc.1994,141,3336.

    (24)Pell,W.G.;Conway,B.E.;Marincic,N.J.Electroanal.Chem.2000,491,9.

    (25) Zheng,P.L.;Jow,T.R.J.Electrochem.Soc.1997,144,2417.

    (26) Mysyk,R.;Raymundo-Pinero,E.;Pernak,J.;Beguin,F.J.Phys.Chem.C 2009,113,13443.

    (27)Ania,C.O.;Pernak,J.;Stefaniak,F.;Raymundo-Pinero,E.;Beguin,F.Carbon 2009,47,3158.

    基于離子尺寸與孔徑關(guān)系的不對(duì)稱電容行為

    孫剛偉 宋文華 劉小軍 喬文明 凌立成*

    (華東理工大學(xué)化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200237)

    采用具有不同孔徑分布的活性炭作為電極材料,研究了離子尺寸與孔結(jié)構(gòu)對(duì)電容性能的影響.結(jié)果表明,正負(fù)極表現(xiàn)出不對(duì)稱的電容行為,正負(fù)極的質(zhì)量比電容分別為113和7 F·g-1.在負(fù)極電位區(qū)間,循環(huán)伏安曲線的響應(yīng)電流明顯減小.材料表面最大電荷存儲(chǔ)量的理論計(jì)算與實(shí)驗(yàn)結(jié)果有著很好的一致性,這些結(jié)果表明用于陽離子電荷存儲(chǔ)的電極孔隙空間不夠發(fā)達(dá),導(dǎo)致電容器在充電過程中負(fù)極材料表面達(dá)到電荷飽和狀態(tài),進(jìn)而表現(xiàn)出較差的電容行為.然而,四氟硼酸根陰離子可以進(jìn)入到正極電極材料大多數(shù)孔道中,電極未發(fā)生電荷飽和效應(yīng),表現(xiàn)出優(yōu)異的電容行為.負(fù)極較低的比電容將會(huì)影響電容器的整體性能.因此,正負(fù)極應(yīng)當(dāng)根據(jù)離子尺寸與電極材料孔結(jié)構(gòu)的構(gòu)效關(guān)系進(jìn)行匹配,以使電容器的比電容最大化.

    電化學(xué)電容器;有機(jī)電解液;不對(duì)稱電容行為;孔徑分布;離子尺寸

    O646

    Received:October 15,2010;Revised:November 19,2010;Published on Web:December 21,2010.

    ?Corresponding author.Email:lchling@ecust.edu.cn;Tel:+86-21-64252924;Fax:86-21-64252914.

    The project was supported by the National Natural Science Foundation of China(50730003).

    國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(50730003)資助

    猜你喜歡
    正負(fù)極負(fù)極電荷
    學(xué)通幾種方法 快速判斷正負(fù)極
    連續(xù)分布電荷體系電荷元的自能問題*
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    電池迷宮
    基于正負(fù)極動(dòng)力學(xué)特性的鋰離子電池優(yōu)化充電方法
    電荷知識(shí)知多少
    電荷守恒在化學(xué)解題中的應(yīng)用
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    正負(fù)極互換式小球藻光合微生物燃料電池性能
    国产国拍精品亚洲av在线观看| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 午夜福利视频精品| 精品久久国产蜜桃| 日韩伦理黄色片| 日韩欧美 国产精品| 免费大片黄手机在线观看| 国产色爽女视频免费观看| 99热这里只有精品一区| 最近2019中文字幕mv第一页| 国产精品久久久久久av不卡| 色吧在线观看| 国产真实伦视频高清在线观看| 亚洲一区二区三区欧美精品| 精品人妻偷拍中文字幕| 91久久精品电影网| 女性生殖器流出的白浆| 国产成人午夜福利电影在线观看| 国产免费又黄又爽又色| 伊人久久国产一区二区| 少妇熟女欧美另类| 曰老女人黄片| 高清欧美精品videossex| 国产成人免费无遮挡视频| 青春草亚洲视频在线观看| 精品午夜福利在线看| 少妇人妻久久综合中文| 日本午夜av视频| 欧美精品高潮呻吟av久久| 成人毛片60女人毛片免费| 国语对白做爰xxxⅹ性视频网站| 国产高清不卡午夜福利| 亚洲va在线va天堂va国产| 一区在线观看完整版| 九草在线视频观看| 蜜桃在线观看..| 亚洲人成网站在线观看播放| 日韩欧美一区视频在线观看 | 精品一区二区三卡| 亚洲图色成人| 国产精品久久久久久久久免| 一级黄片播放器| 国产中年淑女户外野战色| 女性被躁到高潮视频| 高清不卡的av网站| 一级毛片久久久久久久久女| 99九九线精品视频在线观看视频| 国产日韩一区二区三区精品不卡 | 大陆偷拍与自拍| 国产在线免费精品| 中文资源天堂在线| 在线观看免费视频网站a站| 观看免费一级毛片| 97在线人人人人妻| 老女人水多毛片| 久久久a久久爽久久v久久| 丁香六月天网| 成人二区视频| a级毛色黄片| 国产69精品久久久久777片| 热re99久久精品国产66热6| 免费黄色在线免费观看| a 毛片基地| 在线 av 中文字幕| 大香蕉97超碰在线| 中文乱码字字幕精品一区二区三区| 日日摸夜夜添夜夜爱| 视频中文字幕在线观看| 久久ye,这里只有精品| 国产精品三级大全| 亚洲内射少妇av| 日本猛色少妇xxxxx猛交久久| 一级毛片 在线播放| 最黄视频免费看| 少妇人妻一区二区三区视频| 成人黄色视频免费在线看| 国产极品粉嫩免费观看在线 | 在线观看免费视频网站a站| 精品视频人人做人人爽| 一二三四中文在线观看免费高清| 亚洲欧美清纯卡通| 国产成人免费无遮挡视频| 夜夜看夜夜爽夜夜摸| 欧美激情国产日韩精品一区| 99热这里只有是精品在线观看| 亚洲国产最新在线播放| 一级毛片我不卡| 久久影院123| 美女国产视频在线观看| 成人国产av品久久久| 亚洲欧洲精品一区二区精品久久久 | 99视频精品全部免费 在线| 免费人成在线观看视频色| 亚洲国产欧美日韩在线播放 | 男人狂女人下面高潮的视频| 精品午夜福利在线看| 精品国产乱码久久久久久小说| 肉色欧美久久久久久久蜜桃| 人妻一区二区av| 少妇 在线观看| 能在线免费看毛片的网站| 成人漫画全彩无遮挡| 国产成人精品婷婷| 国产高清国产精品国产三级| 亚洲自偷自拍三级| 女人精品久久久久毛片| 最黄视频免费看| 在线观看av片永久免费下载| 亚洲精品久久久久久婷婷小说| 三级国产精品欧美在线观看| 国产欧美亚洲国产| 国产午夜精品一二区理论片| 久久久久久久久久久丰满| 丰满饥渴人妻一区二区三| av不卡在线播放| 久久国产亚洲av麻豆专区| 午夜免费鲁丝| 大片电影免费在线观看免费| 久久99蜜桃精品久久| 大话2 男鬼变身卡| 我的老师免费观看完整版| 赤兔流量卡办理| 久久久久久久久久久丰满| 亚洲人成网站在线播| 国产在线一区二区三区精| 伊人久久国产一区二区| 晚上一个人看的免费电影| 狂野欧美白嫩少妇大欣赏| 男人和女人高潮做爰伦理| 国产黄片视频在线免费观看| 一级a做视频免费观看| 大片电影免费在线观看免费| 精品国产乱码久久久久久小说| 三级国产精品欧美在线观看| 午夜av观看不卡| 亚洲久久久国产精品| 亚洲av成人精品一区久久| 热re99久久精品国产66热6| 水蜜桃什么品种好| 男男h啪啪无遮挡| 精品久久国产蜜桃| 青春草亚洲视频在线观看| 久久久精品94久久精品| 一边亲一边摸免费视频| 国产成人免费观看mmmm| 国产极品粉嫩免费观看在线 | 亚洲欧洲国产日韩| 国产午夜精品久久久久久一区二区三区| 亚洲电影在线观看av| 国产一区二区三区综合在线观看 | 欧美变态另类bdsm刘玥| 99re6热这里在线精品视频| 中文字幕久久专区| 伊人久久国产一区二区| 涩涩av久久男人的天堂| 亚洲精品中文字幕在线视频 | 啦啦啦在线观看免费高清www| 2018国产大陆天天弄谢| 国产一区亚洲一区在线观看| 色婷婷av一区二区三区视频| 少妇被粗大猛烈的视频| 日本色播在线视频| 国产黄频视频在线观看| 久久亚洲国产成人精品v| 中文在线观看免费www的网站| 丝袜脚勾引网站| 热99国产精品久久久久久7| 国产精品人妻久久久影院| 亚洲精品乱久久久久久| 欧美日韩精品成人综合77777| 久久久亚洲精品成人影院| 中文字幕人妻丝袜制服| 插逼视频在线观看| 精品少妇黑人巨大在线播放| 新久久久久国产一级毛片| 精品亚洲成国产av| 久久久a久久爽久久v久久| 亚洲国产精品国产精品| 精品一区二区三区视频在线| 性色avwww在线观看| 日本爱情动作片www.在线观看| 亚洲内射少妇av| 久久久久视频综合| 国产成人91sexporn| 一区二区av电影网| 国产真实伦视频高清在线观看| 国产精品成人在线| 久久免费观看电影| 我的老师免费观看完整版| 亚洲av欧美aⅴ国产| 精品熟女少妇av免费看| 精品酒店卫生间| 精品人妻熟女毛片av久久网站| 伊人久久精品亚洲午夜| 久久狼人影院| 夜夜爽夜夜爽视频| 亚洲精品国产av蜜桃| 99热全是精品| 91精品国产国语对白视频| 天堂8中文在线网| 丰满迷人的少妇在线观看| 97在线视频观看| 久久午夜综合久久蜜桃| a级毛片免费高清观看在线播放| 一区在线观看完整版| 自拍偷自拍亚洲精品老妇| 久久国产乱子免费精品| 男女边摸边吃奶| 夜夜看夜夜爽夜夜摸| 成人亚洲欧美一区二区av| 一级毛片黄色毛片免费观看视频| 欧美区成人在线视频| 天堂中文最新版在线下载| 国产免费一级a男人的天堂| 三级国产精品欧美在线观看| 熟女电影av网| 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| www.av在线官网国产| 久久久欧美国产精品| 在线精品无人区一区二区三| 欧美xxxx性猛交bbbb| 麻豆乱淫一区二区| 国产亚洲精品久久久com| 国产精品99久久99久久久不卡 | 男人狂女人下面高潮的视频| 久久精品久久久久久久性| 亚洲精品成人av观看孕妇| 91精品国产九色| 熟妇人妻不卡中文字幕| 欧美一级a爱片免费观看看| 国产中年淑女户外野战色| 九色成人免费人妻av| 国产亚洲欧美精品永久| 国产精品三级大全| 91久久精品国产一区二区三区| 丰满乱子伦码专区| 亚洲内射少妇av| 五月玫瑰六月丁香| 日韩不卡一区二区三区视频在线| 自拍偷自拍亚洲精品老妇| 狂野欧美白嫩少妇大欣赏| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 曰老女人黄片| 日韩三级伦理在线观看| 国产亚洲5aaaaa淫片| 99国产精品免费福利视频| 男人添女人高潮全过程视频| 新久久久久国产一级毛片| 如何舔出高潮| 嘟嘟电影网在线观看| 少妇人妻精品综合一区二区| 一本一本综合久久| 一本大道久久a久久精品| 精品少妇内射三级| 18禁裸乳无遮挡动漫免费视频| 亚洲,欧美,日韩| 热re99久久精品国产66热6| 国产日韩欧美视频二区| 国产精品久久久久久精品古装| 狂野欧美激情性bbbbbb| 久久久久国产精品人妻一区二区| 亚洲av免费高清在线观看| 美女福利国产在线| 欧美日韩视频高清一区二区三区二| 两个人的视频大全免费| 三级国产精品欧美在线观看| 天堂中文最新版在线下载| 国产精品偷伦视频观看了| 成人亚洲欧美一区二区av| 国产精品一区二区三区四区免费观看| 久久久国产精品麻豆| 99久久精品一区二区三区| 在线免费观看不下载黄p国产| 男人爽女人下面视频在线观看| 国产一区亚洲一区在线观看| 日韩制服骚丝袜av| 欧美激情国产日韩精品一区| 国产高清有码在线观看视频| 国产亚洲欧美精品永久| 一边亲一边摸免费视频| 有码 亚洲区| 男女国产视频网站| 国精品久久久久久国模美| a级毛片免费高清观看在线播放| 丰满乱子伦码专区| 久久久国产一区二区| 精品久久久久久久久av| 中文精品一卡2卡3卡4更新| 丰满人妻一区二区三区视频av| 午夜日本视频在线| 美女脱内裤让男人舔精品视频| 欧美人与善性xxx| 午夜视频国产福利| 久热久热在线精品观看| 丰满饥渴人妻一区二区三| 久热久热在线精品观看| 国产一级毛片在线| 99热全是精品| 在线 av 中文字幕| 亚洲av不卡在线观看| 熟妇人妻不卡中文字幕| 免费黄网站久久成人精品| 久久狼人影院| 国产精品一区二区三区四区免费观看| 美女脱内裤让男人舔精品视频| 国产成人精品无人区| av福利片在线观看| 国产免费福利视频在线观看| 亚洲天堂av无毛| 成人亚洲精品一区在线观看| 久久人妻熟女aⅴ| 国产精品偷伦视频观看了| 日韩,欧美,国产一区二区三区| 热re99久久精品国产66热6| 男人狂女人下面高潮的视频| 内地一区二区视频在线| 亚洲人成网站在线观看播放| 久久久久国产网址| 高清午夜精品一区二区三区| 亚洲av中文av极速乱| 亚洲成色77777| 国产永久视频网站| 深夜a级毛片| 欧美另类一区| 免费观看无遮挡的男女| av一本久久久久| 热re99久久国产66热| 我要看黄色一级片免费的| 亚洲国产精品成人久久小说| 在线观看www视频免费| 国产乱人偷精品视频| 久久婷婷青草| 日韩在线高清观看一区二区三区| 免费看不卡的av| 大香蕉久久网| 国产又色又爽无遮挡免| 久久精品国产亚洲av天美| 熟妇人妻不卡中文字幕| 久久人人爽人人片av| 久久人人爽人人片av| 亚洲综合精品二区| 久久99热这里只频精品6学生| 美女xxoo啪啪120秒动态图| 麻豆成人午夜福利视频| 久久97久久精品| 免费av中文字幕在线| 高清不卡的av网站| 国产亚洲精品久久久com| 免费观看性生交大片5| 在现免费观看毛片| 国产精品欧美亚洲77777| 日韩伦理黄色片| 亚洲伊人久久精品综合| 在线看a的网站| 久久免费观看电影| av福利片在线| 久久人人爽人人爽人人片va| 亚州av有码| 亚洲综合精品二区| 亚洲精品国产av蜜桃| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 亚洲经典国产精华液单| 日本色播在线视频| 91aial.com中文字幕在线观看| 国产欧美日韩综合在线一区二区 | 久久精品夜色国产| 国产亚洲最大av| 亚洲婷婷狠狠爱综合网| 三级国产精品片| 精品一区二区三卡| 日韩熟女老妇一区二区性免费视频| 国产精品福利在线免费观看| 亚洲av成人精品一二三区| 成人影院久久| 精品少妇内射三级| 国产日韩欧美视频二区| 伊人久久国产一区二区| 一级毛片aaaaaa免费看小| 人人妻人人澡人人爽人人夜夜| 哪个播放器可以免费观看大片| 一级毛片电影观看| 春色校园在线视频观看| 久久精品国产亚洲av天美| 一个人看视频在线观看www免费| 制服丝袜香蕉在线| 寂寞人妻少妇视频99o| 少妇人妻 视频| 啦啦啦视频在线资源免费观看| 国产精品熟女久久久久浪| 香蕉精品网在线| videos熟女内射| 成人亚洲精品一区在线观看| 国产午夜精品久久久久久一区二区三区| 夫妻午夜视频| 在线 av 中文字幕| 亚洲美女搞黄在线观看| 亚洲精华国产精华液的使用体验| 国内少妇人妻偷人精品xxx网站| 日韩三级伦理在线观看| 亚洲精品久久午夜乱码| 在线 av 中文字幕| 在线 av 中文字幕| 久久久久久久久久久丰满| 在线播放无遮挡| 大话2 男鬼变身卡| 我的女老师完整版在线观看| 91精品国产国语对白视频| 精品国产一区二区久久| 国产av精品麻豆| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 九九爱精品视频在线观看| 男女无遮挡免费网站观看| 欧美三级亚洲精品| 欧美bdsm另类| 国产亚洲最大av| 国产淫片久久久久久久久| 特大巨黑吊av在线直播| 亚洲成色77777| 精品久久久久久久久亚洲| 九草在线视频观看| 男女免费视频国产| 少妇被粗大猛烈的视频| 激情五月婷婷亚洲| 日韩欧美精品免费久久| 少妇熟女欧美另类| 亚洲国产毛片av蜜桃av| 国产成人精品无人区| 99久久中文字幕三级久久日本| 狂野欧美激情性xxxx在线观看| 亚洲四区av| 91在线精品国自产拍蜜月| 国产中年淑女户外野战色| 乱系列少妇在线播放| 国产老妇伦熟女老妇高清| 日韩视频在线欧美| 国产免费又黄又爽又色| 人妻制服诱惑在线中文字幕| 亚洲成人一二三区av| 亚洲美女搞黄在线观看| 欧美变态另类bdsm刘玥| 少妇 在线观看| 国产成人aa在线观看| 观看免费一级毛片| 色5月婷婷丁香| 我的老师免费观看完整版| 久久精品久久久久久噜噜老黄| 一边亲一边摸免费视频| 男人和女人高潮做爰伦理| 日韩精品免费视频一区二区三区 | 18禁动态无遮挡网站| 一个人看视频在线观看www免费| 成人亚洲精品一区在线观看| 亚洲国产精品一区二区三区在线| 日本av手机在线免费观看| av播播在线观看一区| 亚洲情色 制服丝袜| 免费不卡的大黄色大毛片视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产欧美在线一区| 亚洲高清免费不卡视频| 中文精品一卡2卡3卡4更新| 水蜜桃什么品种好| 日韩视频在线欧美| 女性生殖器流出的白浆| 视频区图区小说| 丰满少妇做爰视频| videos熟女内射| 在线精品无人区一区二区三| 成人午夜精彩视频在线观看| 久久久久久久久久久久大奶| 丰满人妻一区二区三区视频av| 精品少妇内射三级| 18禁动态无遮挡网站| 亚洲成色77777| 国产成人91sexporn| 美女xxoo啪啪120秒动态图| 九九在线视频观看精品| 久久鲁丝午夜福利片| 亚洲精品日韩在线中文字幕| 另类亚洲欧美激情| 免费不卡的大黄色大毛片视频在线观看| 激情五月婷婷亚洲| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜爱| 精品亚洲成a人片在线观看| 中文字幕制服av| 成人亚洲精品一区在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲,一卡二卡三卡| 亚洲精品乱码久久久v下载方式| 久久久久久久大尺度免费视频| 精品久久久噜噜| 大香蕉久久网| 女人精品久久久久毛片| 老司机影院成人| 赤兔流量卡办理| 欧美bdsm另类| 国产av国产精品国产| 三级国产精品片| 两个人免费观看高清视频 | 欧美日韩精品成人综合77777| 精品久久久精品久久久| 一个人免费看片子| 亚洲激情五月婷婷啪啪| 成人漫画全彩无遮挡| 国产精品久久久久久久久免| 少妇人妻一区二区三区视频| 18禁在线播放成人免费| av国产久精品久网站免费入址| 九九爱精品视频在线观看| 80岁老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 亚洲怡红院男人天堂| 国精品久久久久久国模美| 中文字幕人妻熟人妻熟丝袜美| 人妻系列 视频| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 热re99久久国产66热| 一级爰片在线观看| 中文欧美无线码| 久久久久人妻精品一区果冻| 人妻系列 视频| 我要看黄色一级片免费的| 日本欧美视频一区| 国产精品偷伦视频观看了| 六月丁香七月| 91精品国产国语对白视频| 少妇人妻精品综合一区二区| 青春草视频在线免费观看| 久久狼人影院| 蜜臀久久99精品久久宅男| 久久久久久久精品精品| 成年人午夜在线观看视频| 久久综合国产亚洲精品| 狂野欧美激情性bbbbbb| 国产欧美日韩精品一区二区| 亚洲精品乱码久久久久久按摩| 亚洲欧洲精品一区二区精品久久久 | 18禁在线无遮挡免费观看视频| 极品教师在线视频| 久久久欧美国产精品| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 国产精品欧美亚洲77777| 一本大道久久a久久精品| 国产精品久久久久久久久免| 日韩,欧美,国产一区二区三区| 99久久精品热视频| 国国产精品蜜臀av免费| 18禁裸乳无遮挡动漫免费视频| 黄色怎么调成土黄色| 亚洲精品乱久久久久久| 国内精品宾馆在线| 亚洲精华国产精华液的使用体验| 人体艺术视频欧美日本| 中国三级夫妇交换| 亚洲av日韩在线播放| 精品国产一区二区久久| 久久久久久久精品精品| 亚洲精品一区蜜桃| 久久久久久久国产电影| 亚洲成色77777| 免费av中文字幕在线| 国产69精品久久久久777片| 在线观看人妻少妇| 边亲边吃奶的免费视频| 女的被弄到高潮叫床怎么办| 亚洲经典国产精华液单| 3wmmmm亚洲av在线观看| 能在线免费看毛片的网站| 水蜜桃什么品种好| 99热6这里只有精品| 亚洲国产日韩一区二区| 亚洲怡红院男人天堂| 男男h啪啪无遮挡| 性色av一级| 又爽又黄a免费视频| 日韩av在线免费看完整版不卡| 久久ye,这里只有精品| 国产深夜福利视频在线观看| 伊人久久国产一区二区| 久久久久久久亚洲中文字幕| 一区在线观看完整版| 国产精品久久久久久精品电影小说| 建设人人有责人人尽责人人享有的| 国产精品.久久久| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| 午夜影院在线不卡| 欧美bdsm另类| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 99久久中文字幕三级久久日本| 老司机影院成人| 国产精品不卡视频一区二区| 男人舔奶头视频| 免费黄色在线免费观看| 一个人免费看片子| 又粗又硬又长又爽又黄的视频| 亚洲,一卡二卡三卡| 女人久久www免费人成看片| 各种免费的搞黄视频| 狂野欧美白嫩少妇大欣赏| 国产伦精品一区二区三区四那| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站| 国产淫语在线视频| 成人特级av手机在线观看|