• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size

    2014-10-14 03:44:40SUNGangWeiSONGWenHuaLIUXiaoJunQIAOWenMingLINGLiCheng
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:正負(fù)極負(fù)極電荷

    SUN Gang-Wei SONG Wen-Hua LIU Xiao-Jun QIAO Wen-Ming LING Li-Cheng

    (State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,P.R.China)

    Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size

    SUN Gang-Wei SONG Wen-Hua LIU Xiao-Jun QIAO Wen-Ming LING Li-Cheng*

    (State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,P.R.China)

    Abstract: We reported on the capacitive behaviors regarding to the relationship between ion size and pore architecture,using activated carbons with an adjusted pore structure as electrode materials.The results revealed that an asymmetric capacitance response occurred in both electrodes.The gravimetric capacitances for the positive and negative electrodes were 113 and 7 F·g-1,respectively.A significant current decay was presented in the negative region of cyclic voltammetry curve.Experimental and calculated maximum storage charges had a good agreement.This results suggested that the insufficiently developed pore architecture for cation accommodation led to a saturation effect on the active surface,consequently,a deteriorated capacitive performance in the negative electrode.Contrarily,when pore size was larger than tetrafluoroborate dimension,the saturation effect was not found.However,this was at the expense of the lower specific area capacitance in the positive electrode.The poor capacitive behavior of the negative electrode would limit the usable voltage of the cell system and consequently the deliverable energy and power.As a result,an optimal match between the pores size and the ion dimension with respect to each electrode would be considered to obtain the maximum capacitance for the capacitor unit.

    Key Words:Electrochemical capacitor;Organic electrolyte;Asymmetric capacitance behavior;Pore size distribution;Ion dimension

    1 Introduction

    Electrochemical capacitors(ECs)are extensively studied due to their promising properties in terms of energy storage and power supply,which could fill the gap between the secondary batteries and the conventional dielectric capacitors.1,2Today′s major research efforts focus on increasing the deliverable energy of ECs,which is still lower than that achievable with batteries.The energy E is defined by the relationship

    where C and U are the capacitance and voltage,respectively.Energy improvements require increasing both capacitance and voltage.3-6

    Presently,organic-based industrial systems are preferred,operating at a maximum voltage of 2.7 V as compared to 1 V for aqueous ones.7,8A good matching between the pore size of electrode material and ion dimension of electrolyte is critical for an optimal capacitance.9-11A noticeable increase in specific capacitance has recently been demonstrated for pore size of less than 1 nm,with maximum for an average pore size of 0.7 nm.This suggested that solvated ions were capable of at least partially removing their solvent shell to enter such small pores,consequently,leading to a higher capacitance.12-17Due to the difference in sizes of cation and anion adsorbed at the negative and positive electrodes,respectively,a deep study should be carried out to study the capacitance behaviors of each electrode separately during the charge/discharge of ECs.Below,an asymmetric capacitive property between two electrodes can be observed where a decay of capacitive current occurs in the negative electrode as charging processes.This phenomenon highlights the need to adapt the nanotextural properties of each electrode to size of specific ions for maximizing the capacitance and thus the energy density.

    2 Materials and methods

    2.1 Preparation and characterization of the electrode materials

    Three nanoporous activated carbons from petroleum coke were produced by KOH(purity>88%)activation(mass ratio of KOH to coke from 1:1 to 3:1,800°C,1 h).The as-prepared activated carbons were labeled as PAC-1,PAC-2,and PAC-3,where number represents the mass ratio of KOH to coke.The porosity was investigated by nitrogen adsorption at 77 K(Micromeritcs ASAP2020,USA).Preliminarily,the samples were outgassed for 12 h at 300°C.The Brunauer-Emmett-Teller(BET)method was utilized to calculate the specific surface area.The pore size distribution was evaluated according to the density functional theory(DFT)approach.18

    2.2 Electrochemical measurements

    Electrodes were prepared by mixing as-prepared specimen(85%,mass fraction,the same below)with carbon black(5%,Mitsubishi Chemical,Inc.)and polytetrafluoroethlyene(10%,Mitsui Dupont Fluorochemicals,Inc.).Electrochemical experiments were carried out with Teflon Swagelok?type two-electrode configuration,which was constructed with two identical carbon pellets,sandwiched with a porous polymeric separator(Celgard,USA).A silver wire(2 mm)placed between the electrodes acted as quasi-reference electrode.It was assumed that the concentration of silver ions at the silver electrode did not change during cycling,and therefore,potential remained constant.Electrolyte was 1.0 mol·L-1solution of terabutylammonium terafluoroborate(Bu4NBF4,Sigma-Aldrich,CAS#429-42-5,H2O<10×10-6,purity>99.99%)in propylene carbonate(PC,Sigma-Aldrich,CAS#108-32-7).Galvanostatic charge-discharge tests were conducted to calculate the specific capacitance using an Arbin SCTS supercapacitor testing system(Arbin instrument,TN,USA).Cyclic voltammetry(CV)was recorded in a potential range of-1.2 to 0 V and 0 to 1.2 V on a PCI4/300 potentiostat(Gamry,PA,USA).

    3 Results and discussion

    Fig.1(a,b)represent the N2adsorption-desorption isotherms and the pore size distributions of three carbon samples,respectively.The increased nitrogen adsorbed volume with the mass ratio of KOH to coke increasing suggests a rising specific sur-face area(SSA)from PAC-1 to PAC-3.PAC-1 is strictly ultramicroporous,i.e.,in the range of the recommended size of 0.84 nm for the Bu4N+cation,whereas PAC-2 presents substantial amount of mesopores(>2 nm),in addition to large micropores(>1 nm).For PAC-3,a broad pore size distribution in the range of 0.5 to 4 nm can be observed.Table 1 summarizes the porosity parameters of activated carbon samples.The difference in absolute values betweenSBETandSDFTis expected as both types of calculations are based on different assumptions,which might not be justified with the utmost accuracy for all samples under study.It is well established that BET model gives adequate accurate SSA for mesoporous materials,it may not be accurate when micropores(<1-2 nm)are present,while DFT model is better for calculation of SSA of most micropores.19,20PAC-1 has somewhat lowerSBETthan PAC-2;whereas,SDFTfor PAC-1 is higher than that of the latter,which is associated with their difference in the terms of pore dimension and distribution.It is necessary to note that the surface functionality generated by activation does not impact the capacitance behaviors in non-aqueous electrolyte.21The electrochemical results will depend exclusively on the effect of porosity.

    Table 1 Porosity parameters of activated carbon samples

    The dimensions of cation and anion are evaluated using a computer model(MS Modeling v 3.2.0.0)which is a modified version of the Allinger′s MM2 force field.22For the organic electrolyte solution,the computed value accounts for the nonsolvated state of the ions specie,given that the number of solvent molecules(salvation shell)is unknown.Based on energy optimization,terabutylammonium cation(Bu4N+)has a shape far from spherical-like geometry as presented in Fig.2.Therefore,we select a representative value for ion size according to the van der Waals volume.The radii for Bu4N+and BF-4are 0.42 and 0.24 nm,respectively,which is in good agreement with value reported in literature.23

    For corroborating ion accessibility during the capacitor operation,the potential range of each individual electrode(positive and negative)versusquasi-reference electrode is recorded while charging-discharging the capacitor is up to a given voltage,as depicted in Fig.3.A close look at Fig.3a reveals a nonlinear shape of the“potential-time”curve in the negative electrode.This is not a resistively related effect due to a low current density of 100 mA·g-1.By contrast,in the case of the positive electrode,a well-defined linear shape of discharge curvecan be observed.In addition,the potential range of the positive electrode(ΔE+)is smaller than that of negative one(ΔE-).For a symmetric capacitor with two electrodes having the same mass,this indicates that the capacitance given by the positive electrode is larger than that of negative one.As opposed to those of PAC-1,capacitance behaviors between the positive and negative electrodes with respect to the PAC-2 and PAC-3 become nearly equal(shown in Fig.3b and 3c).Based on aforementioned analysis,it is reasonable to ascribe such asymmetric capacitance behavior of PAC-1 into a narrow pore distribution of small size.

    Fig.4a compares the gravimetric capacitances given by the positive with those given by the negative.PAC-1 provides significantly higher capacitance value in the positive electrode than that in the negative one,which are 113 and 7 F·g-1,respectively.However,the nearly identical gravimetric capacitances of each electrode can be obtained for PAC-3.As observed from Fig.4b,difference in specific area capacitances of both electrodes is not as obvious as gravimetric capacitance for PAC-1.Amazingly,in the case of PAC-3,specific area capacitance of negative is superior to that of positive electrode.The detailed explanation will be presented later.

    Fig.5a shows the CV curves of PAC-1 from open-circuit potential(OCP)down to negative potential(-1.2 V vs reference electrode)and from OCP up to the positive potential(1.2 V vs reference electrode)at a voltage scan rate of 2 mV·s-1.As the potential scan range is higher than OCP(electrodes are kept positively charged during the whole scan),the capacitance behavior is originated from adsorption/desorption of anions,i.e.,BF4-;when potential range is lower than OCP(electrodes are kept negatively charged during the whole scan),the capacitance property reflects adsorption/desorption of cations,i.e.,Et4N+.A remarkable feature of the CV curves for PAC-1 is that capacitive current of the negative electrode is greatly diminished during charging processes as compared to that of the positive one,which is in good agreement with results from galvanostatics tests.This effect negatively affects the deliverable energy because the overall capacitance is limited by the electrode with poor capacitive behavior.

    Such a current decay in the negative electrode could arise from the salt depletion,referred to as the“electrolyte starvation”effect.24,25This explanation does not sound satisfactory if applied to our case because 1 mol·L-1electrolyte is more concentrated than the solutions usually exhibiting the starvation ef-fect.What′s more,if this is the case,both the positive and negative electrodes should demonstrate the same starvation effect.To state definitively whether the current decrease in the negative regions can be linked to electrolyte shortage or not,one should make a comparison between the amount of charge available in the cell(Qcell)and the amount of experimentally stored charge(Qexp).The amount of stored chargeQexpcan be established from the Eq.(2):

    Table 2 Experimental and calculated charge values of each electrode for PAC-1

    whereidlis the response current with the integration limits over the time of scan between-1.2-0 V(or 0-1.2 V).Table 2 presents data on the charge stored in the experiment,Qexpfor the negative electrode is 22.7 C·g-1.On the other hand,the total available anionic charge can be calculated to beQcell=770.6 C·g-1on account of the amount of electrolyte used,its concentration,and the electrode mass.TheQcellis one order of magnitude larger thanQexp.Thus it seems unlikely that“electrolyte starvation”causes a significant current decay in the negative potential.

    Herein,a novel explanation is proposed that the accessible surface area with respect to each electrode is different,determined by the ion dimension.Taking into account the porosity data obtained from gas adsorption on PAC-1,it appears that bulky Bu4N+cation cannot accommodate its size so as to enter into the ultramicropores of carbon,leading to the electrode surface saturation in the negative electrode.However,given the small size of the counteranion,it can access to pores of smaller sizes.Such reasoning can be verified through comparing maximum storage charge(Qmax)with the experimental one,according to the pore structure of electrode material and desolvated ion dimension of salt.TheQmaxof electrode material can be calculated using the SSA(available from DFT data),which is accessible to electrolyte ions.For the negative electrode,the maximum number of Bu4N+cations(0.84 nm)can be evaluated by dividing the SSA into two regions:(i)the region of a single cation-layer between the pore walls,with corresponding surface areaSa1(the surface area relating to the pore size between 0.83 and 1.66 nm)and(ii)the region of a double cations-layer between pore walls,with corresponding surface areaSa2(the surface area of pores over 1.66 nm).26It is considered that surface area per cation is equal to the surface area of a circle of radius.The number of cations on this surface is 1.3×1020ions·g-1,which translates into the maximum charge,Qmax=20.6 C·g-1.This value is in good match withQexp,22.7 C·g-1.Therefore,the decay of capacitive current in the negative electrode can really be associated with the complete coverage of the electrode surface by cations.The slight discrepancies betweenQexpandQmaxcan point to the uncertainties of cation size and ion distortion,which permits the cation to enter pores smaller than its rigid size.

    Contrarily to the negative electrode,no saturation feature is observed from CV curve in the positive electrode which can be corroborated by calculations(as done for the negative electrode).The experimentally stored charge for the positive electrode,Qexp=90.5 C·g-1,is lower than the maximum charge for electrode material,Qmax=542.0 C·g-1as listed in Table 2.As a consequence,the saturation effect of electrode surface area would not occur in the positive potential range.

    The effect of pore size distribution on capacitance behaviors of both electrodes can be further clarified by introducing samples of PAC-2 and PAC-3.The nearly rectangular shape of CV curves for these two carbons demonstrates that the differences in pore texture among three samples are of prime influence on surface saturation in the negative electrode as revealed from Fig.5b.Using the same calculation method as the one detailed above,the fact ofQmax>Qexp(not shown here)for each electrode is agreement with the shape of the experimental voltammograms in the case of PAC-2 and PAC-3.Notably,although PAC-2 has the lowerSDFTthan PAC-1,symmetric CV curves can be obtained as compared to that of PAC-1,which is indicative of the importance for matching between electrode pore size and ion dimension.For the larger ion dimension than pore size,ions are not able to sufficiently distort for adjusting its dimensions to the pore sizes,and only a fraction of the porosity is accessible to the electrolyte ions.In this situation,the capacitive current decay would be take place without regarding to the SSAof electrode material.

    On the other hand,as observed from Fig.4b,the specific area capacitances in the positive electrode experience slight decrease with the pore size increasing.In the case of PAC-3,above 99%of the overall porosity is accessible for the Banion(above 0.48 nm)as compared to 53%for the Bu4N+cation(above 0.83 nm),whereas specific area capacitance of the positive electrode is lower than that of the negative one.Such behaviors could be understood as a consequence of the difference in pore-ion interaction.The distance(d)between the pores surface and the ions is larger for the anion than for cation.Thus the specific area capacitance would be smaller for the positive electrode according to the Eq.(3):

    whereCsrepresents the specific area capacitance,εis the dielectric constant(permittivity)of the electrolyte,anddis thecharge separation.It appears that pores are too wider for an effective interaction of anions with pore walls.Therefore,a large fraction of the pore volume is underused.27It is necessary to point out that too narrow pore size would lead to the surface saturation;whereas,too wide pore dimension would decrease the utilization efficiency of electrode materials.Both situations would deteriorate the capacitance properties.Therefore,the optimal match between the pore size and the ion dimension with respect to each electrode should be considered for the maximum capacitance value of the capacitor unit.

    4 Conclusions

    In summary,for some nanoporous activated carbons,an asymmetric capacitance response can be observed between the positive electrode and negative one.The gravimetric capacitance of the positive electrode is significantly higher than that of the negative one.The disproportional match between pores size and Bu4N+dimension would lead to porosity saturation in the negative electrode.This can be explained by the fact that bulky cation is unable to accommodate its size so as to enter in the narrow micropores of activated carbon.On the contrary,there is no saturation phenomena observed in the positive electrode due to the mostly pores remarkable higher than the anion size.The values of maximum storage charge are in good agreement with the experimentally measured ones,which further clarify the effect of pore architecture on the charge storage effectiveness.However,too wide pore size for ion accommodation would also have detrimental impact on the capacitance performance due to the weak pore-ion interaction.The inferior capacitance value in the negative electrode would limit the overall performance of the electrochemical capacitor unit.The different matching requirements between porosity characteristics and ionic type related to the asymmetric capacitance behaviors should be considered in order to optimize the electrochemical performance.

    (1)Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (2)Chen,H.S.;Cong,T.N.;Yang,W.;Tan,C.Q.;Li,Y.L.;Ding,Y.L.Prog.Nat.Sci.2009,19,291.

    (3)Wang,D.W.;Li,F.;Liu,M.;Lu,G.Q.;Cheng,H.M.Angew.Chem.Int.Edit.2008,47,373.

    (4)Frackowia,E.Phys.Chem.Chem.Phys.2007,9,1774.

    (5) Pandolfo,A.G.;Hollenkamp,A.F.J.Power Sources 2006,157,11.

    (6) Liu,B.;Shioyama,H.;Akita,T.;Xu,Q.J.Am.Chem.Soc.2008,130,5390.

    (7) Korenblit,Y.;Rose,M.;Kockrick,E.;Borchardt,L.;Kvit,A.;Kaskel,S.;Yushin,G.ACS Nano 2010,4,1337.

    (8) Janes,A.;Lust,E.J.Electrochem.Soc.2006,153,A113.

    (9) Largeot,C.;Portet,C.;Chmiola,J.;Taberna,P.L.;Gogotsi,Y.;Simon,P.J.Am.Chem.Soc.2008,130,2730.

    (10) Chmiola,J.;Largeot,C.;Taberna,P.L.;Simon,P.;Gogotsi,Y.Angew.Chem.Int.Edit.2008,47,3392.

    (11) Lin,R.;Taberna,P.L.;Chmiola,J.;Guay,D.;Gogotsi,Y.;Simon,P.J.Electrochem.Soc.2009,156,A7.

    (12) Gogotsi,Y.;Nikitin,A.;Ye,H.;Zhou,W.;Fischer,J.E.;Yi,B.;Foley,H.C.;Barsoum,M.W.Nat.Mater.2003,2,591.

    (13) Shanina,B.D.;Konchits,A.A.;Kolesnik,S.P.;Veynger,A.I.;Danishevskii,A.M.;Popov,V.V.;Gordeev,S.K.Carbon 2003,41,3027.

    (14) Permann,L.;Latt,M.;Leis,J.;Arulepp,M.Electrochim.Acta 2006,51,1274.

    (15) Dash,R.;Chmiola,J.;Yushin,G.;Gogotsi,Y.;Laudisio,G.;Singer,J.;Fischer,J.;Kucheyev,S.Carbon 2006,44,2489.

    (16) Fernandez,J.A.;Arulepp,M.;Leis,J.;Stoeckli,F.;Centeno,T.A.Electrochim.Acta 2008,53,7111.

    (17) Latt,M.;Kaarik,M.;Permann,L.;Kuura,H.;Arulepp,M.;Leis,J.J.Solid State Electrochem.2010,14,543.

    (18) Ravikovitch,P.I.;Neimark,A.V.Langmuir 2006,22,11171.

    (19) King,K.S.W.;Everett,D.H.Pure Appl.Chem.1985,57,603.

    (20) Ravikovitch,P.L.;Neimark,A.V.Colloids Surf.A 2001,187-188,11.

    (21) Hulicova-Jurcakova,D.;Seredych,M.;Lu,G.Q.;Bandosz,T.J.Adv.Funct.Mater.2008,18,1.

    (22) Brunauer,B.;Deming,L.S.;Deming,W.E.;Teller,E.J.Am.Chem.Soc.1940,62,1723.

    (23) Ue,M.J.Electrochem.Soc.1994,141,3336.

    (24)Pell,W.G.;Conway,B.E.;Marincic,N.J.Electroanal.Chem.2000,491,9.

    (25) Zheng,P.L.;Jow,T.R.J.Electrochem.Soc.1997,144,2417.

    (26) Mysyk,R.;Raymundo-Pinero,E.;Pernak,J.;Beguin,F.J.Phys.Chem.C 2009,113,13443.

    (27)Ania,C.O.;Pernak,J.;Stefaniak,F.;Raymundo-Pinero,E.;Beguin,F.Carbon 2009,47,3158.

    基于離子尺寸與孔徑關(guān)系的不對(duì)稱電容行為

    孫剛偉 宋文華 劉小軍 喬文明 凌立成*

    (華東理工大學(xué)化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海200237)

    采用具有不同孔徑分布的活性炭作為電極材料,研究了離子尺寸與孔結(jié)構(gòu)對(duì)電容性能的影響.結(jié)果表明,正負(fù)極表現(xiàn)出不對(duì)稱的電容行為,正負(fù)極的質(zhì)量比電容分別為113和7 F·g-1.在負(fù)極電位區(qū)間,循環(huán)伏安曲線的響應(yīng)電流明顯減小.材料表面最大電荷存儲(chǔ)量的理論計(jì)算與實(shí)驗(yàn)結(jié)果有著很好的一致性,這些結(jié)果表明用于陽離子電荷存儲(chǔ)的電極孔隙空間不夠發(fā)達(dá),導(dǎo)致電容器在充電過程中負(fù)極材料表面達(dá)到電荷飽和狀態(tài),進(jìn)而表現(xiàn)出較差的電容行為.然而,四氟硼酸根陰離子可以進(jìn)入到正極電極材料大多數(shù)孔道中,電極未發(fā)生電荷飽和效應(yīng),表現(xiàn)出優(yōu)異的電容行為.負(fù)極較低的比電容將會(huì)影響電容器的整體性能.因此,正負(fù)極應(yīng)當(dāng)根據(jù)離子尺寸與電極材料孔結(jié)構(gòu)的構(gòu)效關(guān)系進(jìn)行匹配,以使電容器的比電容最大化.

    電化學(xué)電容器;有機(jī)電解液;不對(duì)稱電容行為;孔徑分布;離子尺寸

    O646

    Received:October 15,2010;Revised:November 19,2010;Published on Web:December 21,2010.

    ?Corresponding author.Email:lchling@ecust.edu.cn;Tel:+86-21-64252924;Fax:86-21-64252914.

    The project was supported by the National Natural Science Foundation of China(50730003).

    國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(50730003)資助

    猜你喜歡
    正負(fù)極負(fù)極電荷
    學(xué)通幾種方法 快速判斷正負(fù)極
    連續(xù)分布電荷體系電荷元的自能問題*
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    電池迷宮
    基于正負(fù)極動(dòng)力學(xué)特性的鋰離子電池優(yōu)化充電方法
    電荷知識(shí)知多少
    電荷守恒在化學(xué)解題中的應(yīng)用
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    正負(fù)極互換式小球藻光合微生物燃料電池性能
    自拍偷自拍亚洲精品老妇| 国产在线精品亚洲第一网站| 国产精品嫩草影院av在线观看 | 在线天堂最新版资源| 亚洲人成网站在线播放欧美日韩| 亚洲欧美清纯卡通| 国产一区二区激情短视频| 97人妻精品一区二区三区麻豆| 婷婷精品国产亚洲av在线| 日韩中文字幕欧美一区二区| 欧美最新免费一区二区三区 | 亚洲专区中文字幕在线| 亚洲精品在线美女| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜添av毛片 | 国产高清三级在线| 男人狂女人下面高潮的视频| 99在线视频只有这里精品首页| 乱人视频在线观看| 久久这里只有精品中国| 2021天堂中文幕一二区在线观| 国产亚洲精品久久久久久毛片| 欧美日本视频| 亚洲av成人精品一区久久| 成熟少妇高潮喷水视频| 精品一区二区三区视频在线| 久久久久久久精品吃奶| av视频在线观看入口| 久久久久久久午夜电影| 国产91精品成人一区二区三区| 美女大奶头视频| 嫩草影视91久久| 99视频精品全部免费 在线| 看黄色毛片网站| 人妻丰满熟妇av一区二区三区| 欧美成人免费av一区二区三区| 无人区码免费观看不卡| 男人的好看免费观看在线视频| 国产精品一区二区三区四区久久| 亚洲欧美日韩无卡精品| 亚洲成人久久性| 我的老师免费观看完整版| 一个人看的www免费观看视频| 亚洲成av人片在线播放无| 亚洲久久久久久中文字幕| 成人性生交大片免费视频hd| 一个人观看的视频www高清免费观看| 草草在线视频免费看| 成人毛片a级毛片在线播放| 亚洲国产日韩欧美精品在线观看| 久久精品国产亚洲av天美| 在线免费观看不下载黄p国产 | 日本精品一区二区三区蜜桃| 亚洲激情在线av| 国产精品av视频在线免费观看| 久久欧美精品欧美久久欧美| 亚洲精品在线美女| 黄色一级大片看看| 怎么达到女性高潮| 夜夜躁狠狠躁天天躁| 国产精品一区二区免费欧美| 亚洲第一电影网av| 一级黄片播放器| 俺也久久电影网| 我要搜黄色片| 免费高清视频大片| 久久久久亚洲av毛片大全| 老熟妇乱子伦视频在线观看| 国产亚洲精品av在线| 亚洲在线自拍视频| 久久久国产成人精品二区| 久99久视频精品免费| 亚洲精品久久国产高清桃花| 国产黄色小视频在线观看| 久久这里只有精品中国| 久久人人精品亚洲av| 1000部很黄的大片| 欧美绝顶高潮抽搐喷水| 国产熟女xx| 国产熟女xx| 国产视频一区二区在线看| 日韩精品中文字幕看吧| 亚洲 欧美 日韩 在线 免费| 色在线成人网| 亚洲自偷自拍三级| 久久精品综合一区二区三区| 搡老妇女老女人老熟妇| 日本一二三区视频观看| 成年免费大片在线观看| 久久国产精品人妻蜜桃| 久久久精品大字幕| 国产成+人综合+亚洲专区| 欧美日韩国产亚洲二区| 国内精品美女久久久久久| 亚洲第一区二区三区不卡| 欧美中文日本在线观看视频| 超碰av人人做人人爽久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品久久国产高清桃花| 麻豆成人午夜福利视频| 人妻久久中文字幕网| 亚洲在线自拍视频| 在线观看免费视频日本深夜| 日韩成人在线观看一区二区三区| 九色成人免费人妻av| 18美女黄网站色大片免费观看| 美女高潮的动态| 免费在线观看日本一区| 欧美日韩瑟瑟在线播放| 成人毛片a级毛片在线播放| 少妇被粗大猛烈的视频| 色综合站精品国产| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 一区二区三区高清视频在线| 99久久精品热视频| 国产一区二区三区在线臀色熟女| 一边摸一边抽搐一进一小说| 97超级碰碰碰精品色视频在线观看| 国产综合懂色| 激情在线观看视频在线高清| 国产男靠女视频免费网站| 日本a在线网址| 国产成人啪精品午夜网站| 成人特级黄色片久久久久久久| 久久精品影院6| 无人区码免费观看不卡| 激情在线观看视频在线高清| 床上黄色一级片| 国产麻豆成人av免费视频| 怎么达到女性高潮| 国产精品国产高清国产av| 永久网站在线| 少妇的逼好多水| 免费在线观看亚洲国产| 黄色日韩在线| 亚洲精品粉嫩美女一区| 亚洲av不卡在线观看| 欧美区成人在线视频| 波多野结衣高清作品| 中文字幕精品亚洲无线码一区| 国产伦一二天堂av在线观看| 免费av毛片视频| 亚洲av免费高清在线观看| 免费一级毛片在线播放高清视频| eeuss影院久久| 亚洲欧美清纯卡通| 色综合婷婷激情| 18禁黄网站禁片免费观看直播| 97热精品久久久久久| 中文字幕久久专区| 亚洲精品日韩av片在线观看| 麻豆国产av国片精品| 在线播放无遮挡| 精品人妻视频免费看| 老鸭窝网址在线观看| 久久久久久久亚洲中文字幕 | 青草久久国产| 99久久99久久久精品蜜桃| 色噜噜av男人的天堂激情| 男人的好看免费观看在线视频| 亚洲av中文字字幕乱码综合| 色噜噜av男人的天堂激情| 亚洲最大成人手机在线| 国产精品99久久久久久久久| 免费高清视频大片| 欧美高清性xxxxhd video| 一个人看视频在线观看www免费| 日韩人妻高清精品专区| 草草在线视频免费看| 男女之事视频高清在线观看| 美女高潮的动态| 日韩大尺度精品在线看网址| 夜夜看夜夜爽夜夜摸| 亚洲av美国av| 欧美黑人巨大hd| 51国产日韩欧美| 亚洲久久久久久中文字幕| 99精品在免费线老司机午夜| 亚洲欧美日韩东京热| 国产精品一区二区性色av| 亚洲精品在线观看二区| 热99在线观看视频| 51午夜福利影视在线观看| 久久性视频一级片| aaaaa片日本免费| 久久伊人香网站| 国产成人a区在线观看| 中文字幕久久专区| 亚洲国产日韩欧美精品在线观看| 成人国产综合亚洲| 亚洲中文字幕一区二区三区有码在线看| 国产高潮美女av| av中文乱码字幕在线| 日韩成人在线观看一区二区三区| 国产一区二区在线观看日韩| 亚洲综合色惰| 久久精品影院6| 我要搜黄色片| 成人性生交大片免费视频hd| 国产精品伦人一区二区| 国产探花在线观看一区二区| 成人高潮视频无遮挡免费网站| 国语自产精品视频在线第100页| 午夜影院日韩av| 精品乱码久久久久久99久播| 国产一区二区三区在线臀色熟女| 中国美女看黄片| 国产麻豆成人av免费视频| 精品久久久久久成人av| 淫妇啪啪啪对白视频| 少妇熟女aⅴ在线视频| 在线天堂最新版资源| 国产野战对白在线观看| 哪里可以看免费的av片| 中亚洲国语对白在线视频| 一个人观看的视频www高清免费观看| 狂野欧美白嫩少妇大欣赏| 如何舔出高潮| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 婷婷色综合大香蕉| www.999成人在线观看| 亚洲狠狠婷婷综合久久图片| 国模一区二区三区四区视频| 99久久精品国产亚洲精品| 国产综合懂色| 色5月婷婷丁香| 成人高潮视频无遮挡免费网站| 不卡一级毛片| 久久国产乱子伦精品免费另类| 国产精品免费一区二区三区在线| 久久精品综合一区二区三区| 69人妻影院| 禁无遮挡网站| 久久99热6这里只有精品| 精品午夜福利视频在线观看一区| 国产又黄又爽又无遮挡在线| 99热精品在线国产| 搞女人的毛片| 夜夜看夜夜爽夜夜摸| 欧美日本亚洲视频在线播放| 久久久成人免费电影| 色综合站精品国产| 亚洲精华国产精华精| 一进一出抽搐动态| 欧美3d第一页| 精品久久久久久久久久免费视频| 国产熟女xx| 欧美最新免费一区二区三区 | 国产精品一区二区性色av| 欧美bdsm另类| 国产精品三级大全| 天天躁日日操中文字幕| 在线看三级毛片| 中文在线观看免费www的网站| 真人做人爱边吃奶动态| 黄色配什么色好看| 国产高潮美女av| 国内揄拍国产精品人妻在线| 国产一区二区亚洲精品在线观看| 午夜福利在线观看吧| 桃色一区二区三区在线观看| 日日摸夜夜添夜夜添小说| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 亚洲黑人精品在线| 精品日产1卡2卡| 中文资源天堂在线| 每晚都被弄得嗷嗷叫到高潮| 色综合亚洲欧美另类图片| 91久久精品国产一区二区成人| 欧美黄色淫秽网站| 亚洲成av人片在线播放无| 精品一区二区三区视频在线观看免费| www日本黄色视频网| 国产精品日韩av在线免费观看| 欧美成狂野欧美在线观看| 国内久久婷婷六月综合欲色啪| 老司机深夜福利视频在线观看| 国产乱人视频| 97超视频在线观看视频| 欧美成人a在线观看| 特大巨黑吊av在线直播| 亚洲国产日韩欧美精品在线观看| 国产爱豆传媒在线观看| 国产精品一及| 性插视频无遮挡在线免费观看| 亚洲人与动物交配视频| 又黄又爽又刺激的免费视频.| 欧美最新免费一区二区三区 | 搡女人真爽免费视频火全软件 | 麻豆国产av国片精品| 精品99又大又爽又粗少妇毛片 | 中文字幕人妻熟人妻熟丝袜美| 黄色配什么色好看| 色在线成人网| 色综合站精品国产| 成人性生交大片免费视频hd| 窝窝影院91人妻| 久久热精品热| 色吧在线观看| 久久午夜福利片| 亚洲不卡免费看| 又黄又爽又免费观看的视频| 国产精品久久久久久亚洲av鲁大| 深夜精品福利| 男女视频在线观看网站免费| 亚洲一区高清亚洲精品| 亚洲av中文字字幕乱码综合| 不卡一级毛片| 国产精品一及| 日韩高清综合在线| 亚洲不卡免费看| 国产毛片a区久久久久| 午夜免费成人在线视频| 成人特级av手机在线观看| 欧美成狂野欧美在线观看| 又爽又黄a免费视频| 国产精品国产高清国产av| 无遮挡黄片免费观看| 久久精品综合一区二区三区| 午夜精品在线福利| 尤物成人国产欧美一区二区三区| 内射极品少妇av片p| 国产av在哪里看| 亚洲国产欧美人成| 亚洲av免费高清在线观看| 精品人妻一区二区三区麻豆 | 看黄色毛片网站| 亚洲一区二区三区色噜噜| 国产一区二区激情短视频| 成人性生交大片免费视频hd| 精品一区二区三区av网在线观看| 女同久久另类99精品国产91| 国产私拍福利视频在线观看| 亚洲欧美日韩高清专用| 午夜日韩欧美国产| 神马国产精品三级电影在线观看| 中文字幕熟女人妻在线| 99热这里只有是精品在线观看 | 亚洲国产欧美人成| 三级毛片av免费| 中文字幕高清在线视频| av天堂在线播放| 岛国在线免费视频观看| 日本三级黄在线观看| h日本视频在线播放| 国产伦精品一区二区三区视频9| 亚洲精华国产精华精| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| 少妇人妻精品综合一区二区 | 国产欧美日韩一区二区精品| 淫妇啪啪啪对白视频| 不卡一级毛片| АⅤ资源中文在线天堂| 精品一区二区三区视频在线| 成人精品一区二区免费| ponron亚洲| 舔av片在线| 国产v大片淫在线免费观看| 亚洲欧美日韩东京热| 久久精品国产亚洲av香蕉五月| 欧美成人a在线观看| 国产69精品久久久久777片| 亚洲无线观看免费| 99国产极品粉嫩在线观看| 一个人免费在线观看的高清视频| 99久久精品国产亚洲精品| 日本熟妇午夜| 免费高清视频大片| 亚洲欧美激情综合另类| 人妻制服诱惑在线中文字幕| 久久精品国产亚洲av香蕉五月| 久久久久国内视频| 天堂网av新在线| 一级黄色大片毛片| 美女高潮喷水抽搐中文字幕| 美女 人体艺术 gogo| 黄色配什么色好看| 国产av不卡久久| 极品教师在线视频| 精品一区二区三区视频在线观看免费| 18禁在线播放成人免费| 亚洲不卡免费看| 国产乱人视频| a在线观看视频网站| 中文资源天堂在线| 美女大奶头视频| 热99在线观看视频| 51国产日韩欧美| 熟女电影av网| 天美传媒精品一区二区| 日本一本二区三区精品| 亚洲欧美日韩无卡精品| 国产人妻一区二区三区在| .国产精品久久| 欧美一区二区亚洲| 脱女人内裤的视频| www.色视频.com| 国产精品伦人一区二区| 91久久精品电影网| 18美女黄网站色大片免费观看| 一本综合久久免费| 国产av不卡久久| 精品人妻一区二区三区麻豆 | 欧美激情在线99| 国产精品不卡视频一区二区 | 国产探花在线观看一区二区| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 午夜精品久久久久久毛片777| 成人高潮视频无遮挡免费网站| 一二三四社区在线视频社区8| 非洲黑人性xxxx精品又粗又长| 网址你懂的国产日韩在线| 国产av不卡久久| 国产精品伦人一区二区| 三级国产精品欧美在线观看| 一个人免费在线观看电影| www.熟女人妻精品国产| 中文字幕av成人在线电影| 亚洲av熟女| 久久久成人免费电影| 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 亚洲av成人av| 亚洲人成网站在线播| ponron亚洲| а√天堂www在线а√下载| av在线老鸭窝| 91午夜精品亚洲一区二区三区 | 深夜a级毛片| www.www免费av| 99久久精品一区二区三区| 一级a爱片免费观看的视频| 国产成人影院久久av| 中文字幕av在线有码专区| 国产一区二区在线观看日韩| 免费大片18禁| 中出人妻视频一区二区| 国产老妇女一区| 琪琪午夜伦伦电影理论片6080| 欧美中文日本在线观看视频| 三级男女做爰猛烈吃奶摸视频| 久久人人爽人人爽人人片va | 国产 一区 欧美 日韩| 精华霜和精华液先用哪个| 桃色一区二区三区在线观看| 欧美日韩乱码在线| 天堂网av新在线| 成人三级黄色视频| 真人一进一出gif抽搐免费| 国产熟女xx| 免费av毛片视频| 三级毛片av免费| 国产精品1区2区在线观看.| 十八禁网站免费在线| 久久久久性生活片| 国产老妇女一区| 亚洲av日韩精品久久久久久密| 如何舔出高潮| 国产精品综合久久久久久久免费| 欧美性猛交黑人性爽| 丰满人妻熟妇乱又伦精品不卡| 日韩人妻高清精品专区| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 国产一级毛片七仙女欲春2| 我要搜黄色片| 淫妇啪啪啪对白视频| 精品久久久久久,| 男人的好看免费观看在线视频| 91在线观看av| 久久婷婷人人爽人人干人人爱| 亚洲国产色片| 婷婷亚洲欧美| 国产国拍精品亚洲av在线观看| 麻豆av噜噜一区二区三区| 久久香蕉精品热| 中文字幕熟女人妻在线| 国产综合懂色| 国产主播在线观看一区二区| 99热6这里只有精品| 精品一区二区三区视频在线观看免费| 欧美成人a在线观看| 成人精品一区二区免费| 久久精品国产自在天天线| 日本撒尿小便嘘嘘汇集6| 亚洲电影在线观看av| 国产伦人伦偷精品视频| 亚洲av成人精品一区久久| 国产主播在线观看一区二区| 很黄的视频免费| 成年女人看的毛片在线观看| а√天堂www在线а√下载| 看黄色毛片网站| 久久久久久久久大av| 国产69精品久久久久777片| 国产精品综合久久久久久久免费| 久久6这里有精品| 夜夜躁狠狠躁天天躁| 亚洲av.av天堂| 婷婷丁香在线五月| 日韩欧美国产一区二区入口| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 欧美精品国产亚洲| 老司机福利观看| 亚洲精品在线观看二区| 青草久久国产| 国产精品98久久久久久宅男小说| 一个人免费在线观看电影| 啦啦啦韩国在线观看视频| 国产高清激情床上av| 国产麻豆成人av免费视频| 变态另类成人亚洲欧美熟女| 狠狠狠狠99中文字幕| 美女被艹到高潮喷水动态| 国内揄拍国产精品人妻在线| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 91在线观看av| 国产高清视频在线观看网站| 亚洲不卡免费看| 91字幕亚洲| 久久性视频一级片| 亚洲av二区三区四区| 国产精品女同一区二区软件 | 久久久久性生活片| 成年女人看的毛片在线观看| or卡值多少钱| 国产成人a区在线观看| 亚洲成人中文字幕在线播放| 在现免费观看毛片| 757午夜福利合集在线观看| 超碰av人人做人人爽久久| 亚洲在线观看片| 欧美bdsm另类| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 久久久久久久亚洲中文字幕 | 很黄的视频免费| 身体一侧抽搐| 欧美在线一区亚洲| 久久精品国产亚洲av涩爱 | 国产精品爽爽va在线观看网站| 国产大屁股一区二区在线视频| 久久亚洲精品不卡| 亚洲精品456在线播放app | 动漫黄色视频在线观看| 18禁裸乳无遮挡免费网站照片| 麻豆成人av在线观看| 午夜免费激情av| 亚洲成人免费电影在线观看| 给我免费播放毛片高清在线观看| 久久香蕉精品热| 最后的刺客免费高清国语| 在线天堂最新版资源| 国产一区二区三区在线臀色熟女| 国产av麻豆久久久久久久| 天堂动漫精品| 99精品在免费线老司机午夜| 国产高清视频在线观看网站| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 欧美最黄视频在线播放免费| 国产精品,欧美在线| 色av中文字幕| 午夜影院日韩av| 国产成人av教育| 国内精品美女久久久久久| 欧美成人a在线观看| 国产精品99久久久久久久久| 黄色视频,在线免费观看| 成人一区二区视频在线观看| 91麻豆精品激情在线观看国产| 婷婷丁香在线五月| 精品人妻视频免费看| 国产v大片淫在线免费观看| 日韩欧美国产一区二区入口| 欧美成狂野欧美在线观看| 伦理电影大哥的女人| 听说在线观看完整版免费高清| 99久久精品一区二区三区| 亚洲,欧美精品.| 色尼玛亚洲综合影院| 丁香欧美五月| 一级av片app| 又粗又爽又猛毛片免费看| 1024手机看黄色片| 国产精品一区二区性色av| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 欧美成人a在线观看| 成人国产综合亚洲| 亚洲aⅴ乱码一区二区在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性感艳星| 国产成+人综合+亚洲专区| 极品教师在线免费播放| 激情在线观看视频在线高清| 亚洲精品影视一区二区三区av| .国产精品久久| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 又爽又黄无遮挡网站| 美女大奶头视频|