• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution

    2014-10-14 03:45:12ZHANGQiBoHUAYiXin
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:咪唑極化電位

    ZHANG Qi-Bo HUAYi-Xin

    (Key Laboratory of Ionic Liquids Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)

    Effect of Alkylimidazolium Ionic Liquids on the Corrosion Inhibition of Copper in Sulfuric Acid Solution

    ZHANG Qi-Bo*HUAYi-Xin

    (Key Laboratory of Ionic Liquids Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,P.R.China)

    Abstract: The effects of three newly synthesized alkylimidazolium based ionic liquids:1-butyl-3-methylimidazolium hydrogen sulfate([BMIM]HSO4),1-hexyl-3-methylimidazolium hydrogen sulfate([HMIM]HSO4),and 1-octyl-3-methylimidazolium hydrogen sulfate([OMIM]HSO4),on the corrosion inhibition of copper in 0.5 mol·L-1H2SO4solution were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy.All the measurements show that these alkylimidazolium ionic liquids are excellent inhibitors for copper in sulfuric acid media and the effectiveness of these inhibitors decreases as follows: [OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4at the same concentration.Potentiodynamic polarization studies indicate that the three inhibitors are mixed type inhibitors and that both the cathodic and anodic processes of copper corrosion are suppressed.The electrochemical impedance results were evaluated using an equivalent circuit in which two constant phase elements(CPE)were offered for these systems with two time constants.Changes in impedance parameters(charge transfer resistance and double layer capacitance)with the addition of the inhibitors also suggest that these imidazolium based molecules act by adsorbing at the copper/solution interface.The adsorption of these imidazolium based compounds on the copper surface in an acidic solution is found to fit the Langmuir adsorption isotherm.Thermodynamic calculations reveal that the adsorption of inhibitors on the metal surface occurs by a physisorption-based mechanism involving a spontaneous process.

    Key Words:Corrosion inhibitor;Alkylimidazolium ionic liquid;Copper;Potentiodynamic polarization;Electrochemical impedance spectroscopy

    1 Introduction

    Copper and its alloys have been found widespread applications in many industrial processes such as industrial equipment,building construction,electricity,electronics,coinages and ornamental parts due to their electrical,thermal,mechanical and corrosion resistance properties.1However,the presence of aggressive ions like chlorides,sulphates or nitrates creates extensive localized attack.2-4One effective approach to protect metals against the general aggression of acid solutions is the use of organic inhibitors,which can effectively control the metal dissolution and eliminate the undesirable acid consumption.Many organic compounds including triazole,imidazole,thiazole,tetrazole,5-9indole and its derivatives10have been developed as corrosion inhibitors to inhibit copper corrosion in aggressive environments.It is noticed that,most of the effective organic inhibitors used contain heteroatoms such as O,S,N and multiple bonds in their molecules through which they can adsorb on the metal surface.11-15Generally,the adsorption depends mainly on certain physico-chemical properties of the inhibitor group,such as functional groups,π-orbital character,electron density at the donor atom and the electronic structure of the molecule.16,17However,most of commercially available corrosion inhibitors are toxic compounds that should be replaced with new environmental friendly inhibitors.18In the past two decades,research in the field of“green”corrosion inhibitors has been aimed at using cheap,effective molecules with low or“zero”environmental impact.19The inhibitive action of some non-toxic inhibitors,such as imidazole derivatives,18purine and adenine,19and phthalazin derivatives,20on copper corrosion in sulphuric acid was investigated.

    Ionic liquids have attracted considerable attention in recent years.They have been identified as“green solvents”because of their attractive properties such as chemical and thermal stability,nonflammability,very low or negligible vapor pressure,high ionic conductivity,a wide electrochemical potential window and avirulence,21,22which makes them potentially attractive alternatives for volatile organic solvents.Recently,ionic liquids with imidazolium23and pyridinium cations24have showed excellent corrosion inhibition performance on mild steel in acidic environment.We have recently reported imidazolium ionic liquids for the corrosion inhibition of mild steel25and aluminum.26It was found that the action of such inhibitors depended on the specific interaction between the functional groups and the metal surface,due to the presence of the-C=N-group and electronegative nitrogen in the molecule.

    The objective of the present study is to investigate the inhibitive action of three synthesized non-toxic imidazolium ionic liquids,namely 1-butyl-3-methylimidazolium hydrogen sulfate([BMIM]HSO4),1-hexyl-3-methylimidazolium hydrogen sulfate([HMIM]HSO4),and 1-octyl-3-methylimidazolium hydrogen sulfate([OMIM]HSO4)(Table 1)on copper in sulphuric acid,as well as to study the inhibition mechanism of the synthesized compounds.There is almost the same chemical structure,and the main difference is the carbon chain length of the alkyl connecting with N(3)of imidazolium ring of these compounds.The investigation was performed using potentiodynamic polarization,electrochemical impedance spectroscopy techniques,and thermodynamic calculations.

    2 Experimental

    The corrosion inhibitors,[BMIM]HSO4,[HMIM]HSO4,and[OMIM]HSO4,were synthesized in the laboratory as mentioned elsewhere.27,28The general structures of these inhibitors are shown in Table 1.

    Potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)measurements were carried out using an electrochemical work station(GAMRY USA,PCl4/300).All electrochemical experiments were performed in a conventional three-electrode electrochemical cell under atmospheric condition with a platinum disk(Ф1 mm,10 mm)and a saturated calomel electrode(SCE)as the counter and reference electrodes,respectively.The corrosive solution(0.5 mol·L-1H2SO4)was prepared by dilution of analytical grade H2SO4using double distilled water.The working electrode copper disk(Ф4 mm,99.995%)inserted in a Teflon tube with exposed surface of 0.1256 cm2,was placed into the degassed corrosive solution,and then the open circuit potential was measured after 30 min.Before each experiment the electrode was ground with a sequence of emery papers of different grades(600#,800#,and 1200#)and polished using 0.5 μm high-purity alumina,washed with double distilled water and dried with acetone.Potentiodynamic polarization studies were performed after 60 min immersion with a scan rate of 0.5 mV·s-1in the potential range from ca 150 mV below the open circuit potential to ca 150 mV above the open circuit potential(for Tafel extrapolation method).EIS measurements were performed at the open circuit potential over a frequency range of 100 kHz-10 mHz with a signal amplitude perturbation of 5 mV using ac signals.All potentials were recorded with respect to the SCE.

    Table 1 Name and molecular structures of alkylimidazolium ionic liquids

    3 Results and discussion

    3.1 Potentiodynamic polarization measurements

    The potentiodynamic polarization curves for copper in 0.5 mol·L-1H2SO4solution in the absence and presence of various concentrations of inhibitors at 303 K are shown in Fig.1.It is observed that both the cathodic and anodic reactions are suppressed in the presence of ionic liquids studied in comparison to those recorded in the inhibitor-free solution.This behavior indicates that all the inhibitors have an inhibition effect on both cathodic and anodic reactions of the corrosion process.Generally,the presence of these compounds decreases the corrosion current density and causes more negative shift in corrosion potential(Ecorr)and this effect is more evident at higher concentrations.This can be explained by a small domination of the cathodic reaction inhibition.Thus these compounds could be classified as mixed type inhibitors with a predominantly cathodic action.

    Corrosion kinetics parameters,i.e.,corrosion potential(Ecorr),cathodic Tafel slope(βc),anodic Tafel slope(βa),and corrosion current density(jcorr),can be obtained from the Tafel extrapolation of the polarizationcurves and the corresponding data are given in Table 2.The inhibition efficiency(η)was calculated by using the following equation:29

    wherejcorrandjcorr(inh)are the corrosion current densities without and with addition of the inhibitors,respectively.As can be seen from Table 2,Tafel slope valuesβcandβado not change significantly in the inhibited solution as compared to the uninhibited solution;this observation indicates that the inhibiting action simply blocks the metal surface without affecting the mechanism of corrosion reactions.Theηincreases with the addition of inhibitors,which could be explained on the basis of the adsorption of inhibitor on the copper/solution interface where theadsorbed molecules partly hinder the active sites of the corrodent and then decrease the dissolution rate of the metallic material occurred.Additionally,the increase in η observed at higher inhibitor concentrations suggests that the adsorption process enhances with increasing inhibitor concentration,which leads to more adsorption of inhibitor molecules on the metal surface and results in larger surface coverage.The η obtained in the presence of inhibitors studied at a given concentration follows the order:[OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4.This behavior could be due to the surface adsorbability of the inhibitors enhancing with increasing molecular size and hence molecular mass.30,31

    Table 2 Electrochemical polarization parameters for copper in 0.5 mol·L-1H2SO4solution in the absence and presence of various concentrations of inhibitors at 303 K

    3.2 Electrochemical impedance spectroscopy measurements

    The typical set of Nyquist plots for copper in 0.5 mol·L-1H2SO4solution in the absence and presence of various concentrations of inhibitors are shown in Fig.2.The impedance spectra obtained yield depressed semicircles and the diameters of the semicircles increase with increasing inhibitor concentrations.In addition,the presence of these inhibitors increases the impedance but does not change the profile of the Nyquist plots.These results support the results obtained from polarization measurements that these inhibitors do not alter the electrochemical reactions responsible for corrosion.They inhibit corrosion primarily through their adsorption on the copper surface.

    It is significantly to note that each curve in Fig.2 appears only one depressed semicircle;however,this semicircle with a center that lies below the real axis should be interpreted in terms of a process with two time constants as observed from the Bode plots(Fig.3).The first time constant can be assigned to the charge transfer step of the corrosion process while the second time constant accounts for the adsorption of the adsorbed species on the metal surface.The only one depressed semicircle with its center below the real axis observed is actually composed of two capacitive semicircles that merge together.The depressed form of the impedance loop reflects the surface inhomogeneity of structural or interfacial origin such as those found in adsorption processes.32

    According the above-mentioned discussion,the impedance data of copper in 0.5 mol·L-1H2SO4are analyzed using the equivalent circuit in Fig.4 as previously reported.33The equivalent circuit consists of solution resistance,Rs,in series with a constant phase element,CPEd,in parallel to the charge resistance,Rc,which is in series to the parallel combination of another constant phase element,CPEa,and adsorption resistance,Ra.The impedance of CPE is given by:34

    where ω is the angular frequency,Y0is frequency-independent parameter,n has the meaning of a phase shift which can be explained as a degree of surface inhomogeneity.35Depending on the value of n,Y0may be a resistance,R(n=0);a Warburg impedance,W(n=0.5);a capacitance,C(n=1)or an inductance,L(n=-1)36.Considering that the impedance of a double layer does not behave as an ideal capacitor in the presence of dispersing effect,CPE is used in place of capacitor in Fig.4 to fit more accurately the impedance behavior of the electric double-layer.37Hosseini et al.38had discussed previously that the idealized capacitance values can be calculated from CPE parameter values Y0and n using the expression:

    whereω=(1/RctY0)1/n.Values of these components are derived from impedance measurements and theηof all examined inhibitors is presented in Table 3.In the case of the electrochemical impedance spectroscopy,theηis calculated using charge transfer resistance as follow:39

    whereRctandRct(inh)are the charge transfer resistances without and with inhibitor,respectively,andRctis the sum ofRcandRaaccording to literature.38,40

    From Table 3,it could be found that theηand theRctvalues increase with an increase in the concentration of inhibitor while the values ofCdl(includingCdl,dandCdl,a,respectively)decrease,and this trend is more pronounced at higher inhibitor concentrations.The decrease inCdlvalues which can result from a decrease in local dielectric constant and/or an increase in the thickness of double layer is attributed to the gradual replacement of water molecules and other ions originally adsorbed on the surface by adsorption of inhibitor molecules on the metal surface.41The value of the phase shift(n),which is an indication for a depression of the semicircle,can be used as a measure of the surface inhomogeneity.It gives certain information on the inhibitor′s adsorption as well.No significant change in the values ofn(bothncandna)is observed after the addition of various concentrations of inhibitors.This result indicates that the charge transfer process controls the dissolution mechanism of copper in 0.5 mol·L-1H2SO4solution in the absence and presence of various concentrations of inhibitors.42The adsorption of inhibitor molecules at metal/solution interface results in an increase of resistance,which reduces corrosion rate of copper.These results obtained from the EIS method support those results obtained from potentiodynamic polarization measurement.Theηobtained in the presence of inhibitors at a given concentration follows the order:[OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4.

    3.3 Effect of temperature

    The effect of temperature on theηfor copper in 0.5 mol·L-1H2SO4solution in the absence and presence of 5 mmol·L-1inhibitors at temperatures ranging from 303 to 333 K was investigated by potentiodynamic polarization measurements.Electrochemical parameters and the correspondingηvalues are given in Table 4.

    In both cases of uninhibited and inhibited solutions,thejcorrincreases with increasing temperature,while theηis found to decrease with increasing the solution temperature from 303 to 333 K.This behavior can be interpreted on the basis that the increase in temperature results in the desorption of the inhibitors from the copper surface.

    3.4 Thermodynamics parameters

    A plot of the natural logarithm of the corrosion rate(jcorr)of copper obtained from polarization measurementsvs1/Tgave straight lines as shown in Fig.5.The apparent activation energy(Ea)was calculated by using following relationship and the values are given in Table 5.

    whereRis the general gas constant,Ais the Arrhenius pre-exponential factor andTis the absolute temperature.An alternative formula of the Arrhenius equation is the transition state equation:43

    wherehis the Planck′s constant,Nis the Avogadro′s number,ΔSis the entropy of activation,and ΔHis the enthalpy of activation.A plot of ln(jcorr/T)vs1/Tshould give a straight line(Fig.6)with a slope of(-ΔH/R)and an intercept of[(ln(R/Nh))+(ΔS/R)],from which the values of ΔSand ΔHare calculated and presented in Table 5.It is observed that the thermodynamic parameters(Eaand ΔH)for the corrosion of copper in 0.5 mol·L-1H2SO4solution in the presence of the inhibitors arehigher than those in the inhibitor-free acid solution,indicating more energy barrier for the anodic and cathodic reactions is attained,and as a result the corrosion process on the copper surface is mitigated.The entropy of activation ΔSin the presence of the inhibitor is large.This suggests that an increase in disordering takes place on going from reactants to the activated complex,which could be attributed to the adsorption of only one surfactant molecule by desorption of more water molecules.44

    Table 3 Electrochemical impedance parameters for copper in 0.5 mol·L-1H2SO4solution in the absence and presence of various concentrations of inhibitors at 303 K

    Table 4 Electrochemical polarization parameters for copper in 0.5 mol·L-1H2SO4solution in the absence and presence of 5.0 mmol·L-1inhibitors at different temperatures

    3.5 Adsorption isotherm

    There is a general agreement in the literature that organic inhibitors establish their inhibitionviathe adsorption of the inhibitor molecules on the metal surface and the adsorption process is influenced by various aspect factors such as the chemical structures of organic compounds,the distribution of charge in molecule,the nature and surface charge of metal and the type of aggressive media.45,46Since the adsorption isotherm can provide the basic information on the interaction between the inhibitor and the metal surface.47The surface coverage,θ(η/100),for the different concentrations of the studied inhibitors was used to explain the best adsorption isotherm.Theθvalues are calculated from the following equation:

    According to the data obtained from the different techniques,it can be concluded that the best description of the adsorption behavior of these inhibitors can be explained by Langmuir adsorption isotherm.As shown in Fig.7,a straight line was obtained on plottingc/θ versus c(concentration of inhibitors)which suggested that the surface adsorption process of the inhibitors studied on copper follows Langmuir′s adsorption isotherm.Theθvalues obtained from potentiodynamic polariza-tion and EIS measurements are in good agreement and both obey Langmuir adsorption isotherm.

    Table 5 Activation parameters for copper in 0.5 mol·L-1H2SO4solution in the presence of 5.0 mmol·L-1inhibitors obtained from electrochemical polarization measurement

    The standard free energy of adsorption(ΔGads)at different temperatures is calculated from the equation:48

    whereKadsis equilibrium constant and is given by:

    whereθis degree of surface coverage of the metal surface andcis the concentration of inhibitors.

    The equilibrium constants and standard free energies for copper in 0.5 mol·L-1H2SO4solution in the presence of 5.0 mmol·L-1inhibitors are given in Table 6.

    It is generally accepted that the standard free energy of adsorption values of 40 kJ·mol-1or more negative involves charge sharing or transfer from the inhibitor molecules to the metal surface to form a co-ordinate covalent bond(chemical adsorption);those of 20 kJ·mol-1or less negative are associated with an electrostatic interaction between charged molecules and charged metal surface(physical adsorption).49Since the absolute values of standard free energy of adsorption(ΔGads)calculated in the presence of the inhibitors studied are found to be low and less than 30 kJ·mol-1.The results show that the adsorption of the inhibitors on the metal surface is more physical than chemical one and their negative sign indicates a spontaneous interaction of inhibitor molecule with the corroding copper surface.50In addition,theKadsdecreases with increasing temperature,also suggesting that the inhibitors are physically adsorbed on the metal surface and desorption process enhances with elevating temperature.

    Table 6 Equilibrium constants and standard free energy values for copper in 0.5 mol·L-1H2SO4solution in the presence of 5.0 mmol·L-1alkylimidazolium ionic liquids at different temperatures

    3.6 Mechanism of corrosion inhibition

    A general mechanism for the dissolution of copper in sulfuric acid solution could be similar to that reported in the literature.51The anodic dissolution of copper proceedsviaa two-step reaction mechanism and can be described as follows:

    The cathodic corrosion reaction follows the step:

    It is assumed that the negative sulphated ions are first adsorbed onto the positively charged metal surface by columbic attraction.Since the imidazolium group as well as nitrogen atom in heteroaromatic ring of imidazolium compounds can be protonated in acidic solutions,53the protonated inhibitor molecules can be adsorbed through electrostatic interactions between the positively charged molecules and the negatively charged metal surface.25These adsorbed imidazolium compound molecules will interact with(CuS)adsions generated from step(a)to form a protective layer(by forming a complex)at active sites,which hiders both mass and charge transfers and blocks the further oxidation reaction of(CuS)adsto Cu2+as shown by step(b).Moreover,the protonated imidazolium molecules also block the transfer of oxygen from the bulk solution to the copper/solution interface that going to reduce the cathodic reaction of oxygen.In this case,this adsorption would have occurred through polar centers as nitrogen atom in the-C=N-group.Meanwhile,the presence of the electron donating group(S)on the imidazolium compounds structure will increase theelectron density on the nitrogen of the-C=N- group.25In particular,this effect is more pronounced with increase in the carbon chain length of the alkyl connecting with N(3)of imidazolium ring due to their electron-releasing ability.Therefore,compound[OMIM]HSO4is the best inhibitor and the η follows the order: [OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4.Based on the discussion above,it could be deduced that imidazolium molecules,which had a number of active centers(N and S atoms),might form a good protective layer on the copper surface to retard its further corrosion.25,26

    4 Conclusions

    (1)The three alkylimidazolium based ionic liquids have proved to be excellent inhibitors for the corrosion inhibition of copper in 0.5 mol·L-1H2SO4solution and the inhibiting efficiency of these inhibitors follows the order of[OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4.

    (2)The potentiodynamic polarization curves indicate the alkylimidazolium based inhibitors behave as mixed type inhibitors with a predominantly cathodic action.

    (3)The corrosion inhibitive action of these imidazolium based compounds is mainly due to their adsorption on the surface of copper and the adsorption obeys Langmuir adsorption isotherm.

    (4)Thermodynamic values obtained from this study reveal that these inhibitors adsorb on copper surface by a physisorption-based mechanism involving a spontaneous process.

    (1) Tavakoli,H.;Shahrabi,T.;Hosseini,M.G.Mater.Chem.Phys.2008,109,281.

    (2) Elmorsi,M.A.;Hassanein,A.M.Corrosion Sci.1999,41,2337.

    (3) Gassa,L.M.;Ribotta,S.B.;Folquer,M.E.;Vilche,J.R.Corrosion 1998,54,179.

    (4) Zucchi,F.;Grassi,V.;Frignani,A.;Trabanelli,G.Corrosion Sci.2004,46,2853.

    (5) Walker,R.Corrosion 1973,29,290.

    (6) Walker,R.Corrosion 1975,31,97.

    (7) Kuron,D.;Rother,H.J.;Graefen,H.Werkst.Korros.1981,32,409.

    (8) Zhao,Y.S.;Pang,Z.Z.Acta Phys.-Chim.Sin.2003,19,419.[趙永生,龐正智,物理化學(xué)學(xué)報(bào),2003,19,419.]

    (9)Wang,X.Q.;Liu,R.Q.;Zhu,L.Q.;Gong,J.W.Acta Phys.-Chim.Sin.2007,23,21.[王獻(xiàn)群,劉瑞泉,朱麗琴,宮建偉.物理化學(xué)學(xué)報(bào),2007,23,21.]

    (10) Scendo,M.;Poddebniak,D.;Malyszko,J.J.Appl.Electrochem.2003,33,287.

    (11) Quraishi,M.A.;Ansari,F.A.J.Appl.Electrochem.2006,36,309.

    (12) Quraishi,M.A.;Rafiquee,M.Z.A.;Saxena,N.;Khan,S.J.Corrosion Sci.Eng.2006,10,11.

    (13)El Rehim,S.S.A.;Hassan,H.H.;Amin,M.A.Mater.Chem.Phys.2003,78,337.

    (14) Bentiss,F.;Traisnel,M.;Chaibi,N.;Mernari,B.;Vezin,H.;Lagrenee,M.Corrosion Sci.2002,44,2271.

    (15)Lebrini,M.;Lagrenee,M.;Vezin,H.;Gengembre,L.;Bentiss,F.Corrosion Sci.2005,47,485.

    (16)Li,S.L.;Wang,Y.G.;Chen,S.H.;Yu,R.;Lei,S.B.;Ma,H.Y.;Liu,D.X.Corrosion Sci.1999,41,1769.

    (17) Scendo,M.Corrosion Sci.2008,50,2070.

    (18) Stupni?ek-Lisac,E.;Gazivoda,A.;Modzarac,M.Electrochim.Acta 2002,47,4189.

    (19) Scendo,M.Corrosion Sci.2007,49,2985.

    (20) El-Maksoud,S.A.A.Electrochim.Acta 2004,49,4205.

    (21) Forsyth,S.A.;Pringle,J.M.;MacFarlane,D.R.Aust.J.Chem.2004,57,113.

    (22) Earle,M.J.;Seddon,K.R.Ionic Liquids:Green Solvents for the Future;PureAppl.Chem.ACS Publications:Washington,DC,2000.

    (23)Ashassi-Sorkhabi,H.;Eshaghi,M.Mater.Chem.Phys.2009,114,267.

    (24)Likhanova,N.V.;Dominguez-Aguilar,M.A.;Olivares-Xometl,O.;Nava-Entzana,N.;Arce,E.;Dorantes,H.Corrosion Sci.2010,52,2088.

    (25) Zhang,Q.B.;Hua,Y.X.Electrochim.Acta 2009,54,1881.

    (26)Zhang,Q.B.;Hua,Y.X.Mater.Chem.Phys.2010,119,57.

    (27) Zhang,Q.B.;Hua,Y.X.J.Appl.Electrochem.2009,39,261.

    (28) Zhang,Q.B.;Hua,Y.X.J.Appl.Electrochem.2009,39,1185.

    (29) Bentiss,F.;Lagrenee,M.;Traisnel,M.;Mernari,B.;Elattari,H.J.Hetrocycl.Chem.1999,36,149.

    (30)Tripathy,B.C.;Das,S.C.;Singh,P.;Hefter,G.T.;Misra,V.N.J.Electroanal.Chem.2004,565,49.

    (31) Stupnisek-Lisac,E.;Podbrscek,S.;Soric,T.J.Appl.Electrochem.1994,24,779.

    (32)Goncalves,R.S.;Azambuja,D.S.;Lucho,A.M.S.Corrosion Sci.2002,44,467.

    (33) Popova,A.;Raicheva,S.;Sokolova,E.;Christov,M.Langmuir 1996,12,2083.

    (34) Hsu,C.H.;Mansfeld,F.Corrosion 2001,57,747.

    (35) Oquzie,E.E.;Li,Y.;Wang,F.H.J.Colloid Interface Sci.2007,310,90.

    (36) Khaled,K.F.;Hackerman,N.Electrochim.Acta 2004,49,485.

    (37) Behpour,M.;Ghoreishi,S.M.;Soltani,N.;Salavati-Niasari,M.Corrosion Sci.2009,51,1073.

    (38) Hosseini,M.;Mertens,S.F.L.;Ghorbani,M.;Arshadi,M.R.Mater.Chem.Phys.2003,78,800.

    (39) Elkadi,L.;Mernari,B.;Traisnel,M.;Bentiss,F.;Lagrenee,M.Corrosion Sci.2000,42,703.

    (40)Yan,Y.;Li,W.H.;Cai,L.K.;Hou,B.R.Electrochim.Acta 2008,53,5953.

    (41) Ashassi-Sorkhabi,H.;Shaabani,B.;Seifzadeh,D.Appl.Surf.Sci.2005,239,154.

    (42)Hermas,A.A.;Morad,M.S.;Wahdan,M.H.J.Appl.Electrochem.2004,34,95.

    (43)Abd El Rehim,S.S.;Hassan,H.H.;Amin,M.A.Mater.Chem.Phys.2001,70,64.

    (44)Saleh,M.M.Mater.Chem.Phys.2006,98,83.

    (45) Saleh,M.R.;Din,A.M.S.E.Corrosion Sci.1972,12,689.

    (46) Maayta,A.K.;Al-Rawashdeh,N.A.F.Corrosion Sci.2004,46,1129.

    (47) Lagrenée,B.M.;Bouanisb,M.M.;Traisnelc,M.;Bentiss,F.Corrosion Sci.2002,44,573.

    (48) Cases,J.M.;Villieras,F.Langmuir 1992,8,1251.

    (49)Abiola,O.K.;Oforka,N.C.Mater.Chem.Phys.2004,83,315.(50)Gomma,G.K.;Wahdan,M.H.Mater.Chem.Phys.1995,39,209.

    (51)Smyrl,W.H.;Bockris,J.O.M.;Conway,B.E.;Yeager,E.;White,R.E.Comprehensive Treatise of Electrochemistry;Plenum Press:New York,1981,Vol.4.

    (52)Ma,H.Y.;Chen,S.H.;Yin,B.S.;Zhao,S.Y.;Liu,X.Q.Corrosion Sci.2003,45,867.

    (53) Quraishi,M.A.;Rafiquee,M.Z.A.;Khan,S.;Saxena,N.J.Appl.Electrochem.2007,37,1153.

    咪唑離子液體對(duì)銅在硫酸溶液中的緩蝕作用

    張啟波*華一新

    (昆明理工大學(xué)冶金與能源工程學(xué)院,離子液體冶金重點(diǎn)實(shí)驗(yàn)室,昆明650093)

    采用動(dòng)電位極化和電化學(xué)阻抗譜技術(shù)研究了三種新型烷基咪唑離子液體,1-丁基-3-甲基咪唑硫酸氫鹽([BMIM]HSO4),1-已基-3-甲基咪唑硫酸氫鹽([HMIM]HSO4),1-辛基-3-甲基咪唑硫酸氫鹽([OMIM]HSO4),對(duì)銅在0.5 mol·L-1H2SO4溶液中的緩蝕作用.實(shí)驗(yàn)結(jié)果表明:咪唑離子液體能有效抑制銅在硫酸溶液中的腐蝕,相同濃度下的緩蝕效率大小順序?yàn)閇OMIM]HSO4>[HMIM]HSO4>[BMIM]HSO4.動(dòng)電位極化表明三種咪唑化合物的加入對(duì)銅的陰陽(yáng)極腐蝕過(guò)程均有抑制作用,屬于混合型緩蝕劑.電化學(xué)阻抗譜用帶兩個(gè)常相位原件的等效電路對(duì)含兩個(gè)時(shí)間常數(shù)的體系進(jìn)行擬合,發(fā)現(xiàn)咪唑化合物的添加會(huì)引起電荷傳遞電阻和雙電層電容等阻抗參數(shù)的變化,表明此類化合物通過(guò)吸附于銅電極與溶液界面起到緩蝕作用,且這種吸附符合Langmuir吸附等溫關(guān)系.吸附過(guò)程熱力學(xué)計(jì)算說(shuō)明咪唑化合物在銅表面發(fā)生了自發(fā)的物理吸附.

    緩蝕劑;咪唑離子液體;銅;動(dòng)電位極化;電化學(xué)阻抗譜

    O646

    Received:October 20,2010;Revised:December 30,2010;Published on Web:February 21,2011.

    ?Corresponding author.Email:qibozhang@yahoo.com.cn;Tel:+86-871-5162008.

    The project was supported by the National Natural Science Foundation of China(50864009,50904031)and Research Fund for the Doctoral Program of Higher Education of China(20070674001).

    國(guó)家自然科學(xué)基金(50864009,50904031)及高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20070674001)資助項(xiàng)目

    猜你喜歡
    咪唑極化電位
    認(rèn)知能力、技術(shù)進(jìn)步與就業(yè)極化
    電位滴定法在食品安全檢測(cè)中的應(yīng)用
    益氣養(yǎng)陰方聯(lián)合甲巰咪唑片治療甲狀腺功能亢進(jìn)癥的臨床觀察
    雙頻帶隔板極化器
    電鍍廢水處理中的氧化還原電位控制
    淺談等電位聯(lián)結(jié)
    左咪唑與丙硫苯咪唑驅(qū)豬體內(nèi)寄生蟲(chóng)的效果對(duì)比試驗(yàn)
    普萘洛爾與甲巰咪唑?qū)卓哼M(jìn)癥的臨床治療效果觀察
    基于PWM控制的新型極化電源設(shè)計(jì)與實(shí)現(xiàn)
    右美托咪定聯(lián)合咪唑安定鎮(zhèn)靜在第三磨牙拔除術(shù)中的應(yīng)用
    色综合欧美亚洲国产小说| 色播亚洲综合网| 亚洲精品美女久久av网站| 亚洲国产欧洲综合997久久,| 少妇被粗大的猛进出69影院| av中文乱码字幕在线| 老熟妇仑乱视频hdxx| 亚洲精品在线美女| 亚洲人成网站在线播放欧美日韩| 一边摸一边做爽爽视频免费| 精品不卡国产一区二区三区| 亚洲成人免费电影在线观看| 欧美三级亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 欧美又色又爽又黄视频| 人人妻人人澡欧美一区二区| 男女午夜视频在线观看| 亚洲美女视频黄频| 亚洲av日韩精品久久久久久密| 狠狠狠狠99中文字幕| 青草久久国产| 大型av网站在线播放| 亚洲五月婷婷丁香| 亚洲欧美激情综合另类| 日韩 欧美 亚洲 中文字幕| 伊人久久大香线蕉亚洲五| 伊人久久大香线蕉亚洲五| 日韩 欧美 亚洲 中文字幕| 久久天堂一区二区三区四区| 天堂√8在线中文| 舔av片在线| 夜夜爽天天搞| 两性夫妻黄色片| 久99久视频精品免费| 国产97色在线日韩免费| 日本在线视频免费播放| 一级毛片女人18水好多| 欧美乱色亚洲激情| 又紧又爽又黄一区二区| 午夜视频精品福利| 丁香欧美五月| 天堂动漫精品| videosex国产| 亚洲人成77777在线视频| 制服丝袜大香蕉在线| 亚洲av熟女| 亚洲一码二码三码区别大吗| 久久天躁狠狠躁夜夜2o2o| 黄片大片在线免费观看| 久久香蕉激情| 最新在线观看一区二区三区| 色av中文字幕| 国产精品野战在线观看| 日本熟妇午夜| 老司机靠b影院| 日韩 欧美 亚洲 中文字幕| 九色成人免费人妻av| 香蕉丝袜av| 免费搜索国产男女视频| 亚洲人成电影免费在线| 欧美另类亚洲清纯唯美| 丁香六月欧美| 婷婷精品国产亚洲av| 亚洲av成人不卡在线观看播放网| 精品人妻1区二区| 婷婷六月久久综合丁香| 国产成年人精品一区二区| videosex国产| cao死你这个sao货| 91国产中文字幕| 久久久久久亚洲精品国产蜜桃av| 国产人伦9x9x在线观看| 中文字幕av在线有码专区| netflix在线观看网站| 中文亚洲av片在线观看爽| 悠悠久久av| 18禁黄网站禁片免费观看直播| 亚洲,欧美精品.| 精品国产乱码久久久久久男人| 给我免费播放毛片高清在线观看| 国产日本99.免费观看| 成人18禁高潮啪啪吃奶动态图| 伦理电影免费视频| 一级毛片精品| 成人永久免费在线观看视频| 国产精品免费视频内射| 亚洲全国av大片| 亚洲国产看品久久| www.999成人在线观看| 黄色视频,在线免费观看| 亚洲aⅴ乱码一区二区在线播放 | 黑人操中国人逼视频| 欧美三级亚洲精品| 久久精品国产亚洲av香蕉五月| 听说在线观看完整版免费高清| 午夜精品久久久久久毛片777| 国产久久久一区二区三区| 国产精品野战在线观看| 国产精品国产高清国产av| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 日本 欧美在线| 国产成人欧美在线观看| 国产久久久一区二区三区| 91九色精品人成在线观看| 亚洲中文字幕日韩| 一级a爱片免费观看的视频| 美女高潮喷水抽搐中文字幕| 最近最新中文字幕大全免费视频| 久久香蕉激情| 国产高清videossex| 久久久久久久久中文| 麻豆成人av在线观看| 国产男靠女视频免费网站| 免费在线观看完整版高清| 免费观看人在逋| 午夜福利视频1000在线观看| 18禁黄网站禁片午夜丰满| 一本精品99久久精品77| 国产精品乱码一区二三区的特点| 亚洲中文字幕一区二区三区有码在线看 | 欧美中文日本在线观看视频| 最新美女视频免费是黄的| 黑人操中国人逼视频| 黄色成人免费大全| 人人妻人人澡欧美一区二区| 亚洲国产欧洲综合997久久,| 大型av网站在线播放| 午夜精品久久久久久毛片777| 特大巨黑吊av在线直播| 黄色丝袜av网址大全| 欧美高清成人免费视频www| 色哟哟哟哟哟哟| 国产精品免费一区二区三区在线| 又黄又爽又免费观看的视频| 国产精品98久久久久久宅男小说| 久久久久久免费高清国产稀缺| 国产主播在线观看一区二区| 亚洲七黄色美女视频| x7x7x7水蜜桃| 日日夜夜操网爽| 亚洲精品在线美女| 久久中文看片网| 母亲3免费完整高清在线观看| 亚洲一区高清亚洲精品| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 国产av一区二区精品久久| 久久久精品欧美日韩精品| 亚洲色图 男人天堂 中文字幕| 美女扒开内裤让男人捅视频| 亚洲国产日韩欧美精品在线观看 | 校园春色视频在线观看| 亚洲国产日韩欧美精品在线观看 | 淫妇啪啪啪对白视频| 精品少妇一区二区三区视频日本电影| 国产一区在线观看成人免费| 露出奶头的视频| 午夜福利视频1000在线观看| 国产又黄又爽又无遮挡在线| 国产精品免费视频内射| 国产男靠女视频免费网站| 国产欧美日韩精品亚洲av| 岛国视频午夜一区免费看| 欧美黄色片欧美黄色片| av在线播放免费不卡| 色综合站精品国产| 日韩大码丰满熟妇| 又爽又黄无遮挡网站| 欧美最黄视频在线播放免费| 国语自产精品视频在线第100页| 日本五十路高清| 男女床上黄色一级片免费看| 免费搜索国产男女视频| 久99久视频精品免费| 麻豆一二三区av精品| 在线观看免费视频日本深夜| 国产免费av片在线观看野外av| 日本 欧美在线| 亚洲天堂国产精品一区在线| 老司机深夜福利视频在线观看| 国产成人系列免费观看| 亚洲av第一区精品v没综合| 久久午夜亚洲精品久久| 最新美女视频免费是黄的| 亚洲人成网站在线播放欧美日韩| 国产免费av片在线观看野外av| 亚洲精华国产精华精| 午夜成年电影在线免费观看| av免费在线观看网站| 国产主播在线观看一区二区| 亚洲精华国产精华精| 亚洲欧洲精品一区二区精品久久久| 国产精品免费视频内射| 久久精品国产清高在天天线| 这个男人来自地球电影免费观看| www国产在线视频色| 亚洲国产日韩欧美精品在线观看 | 一级毛片精品| 久久久久久人人人人人| 久久精品影院6| 久9热在线精品视频| 99精品在免费线老司机午夜| 久久精品91蜜桃| 免费在线观看完整版高清| 成年人黄色毛片网站| 天堂影院成人在线观看| 黑人巨大精品欧美一区二区mp4| 国产高清激情床上av| 1024视频免费在线观看| 欧美国产日韩亚洲一区| 国产黄片美女视频| 亚洲精品久久成人aⅴ小说| 99国产精品一区二区蜜桃av| 99热这里只有精品一区 | 中出人妻视频一区二区| 日韩欧美在线乱码| 亚洲全国av大片| 国产欧美日韩精品亚洲av| 黄片大片在线免费观看| 伦理电影免费视频| 亚洲av五月六月丁香网| 97人妻精品一区二区三区麻豆| 国产三级黄色录像| 桃红色精品国产亚洲av| 久久伊人香网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人国产一区在线观看| 成人手机av| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 国产欧美日韩精品亚洲av| 女警被强在线播放| 黄色丝袜av网址大全| 午夜激情av网站| 久久精品aⅴ一区二区三区四区| 亚洲精华国产精华精| 国产精品一区二区免费欧美| 我的老师免费观看完整版| www.999成人在线观看| 成人av在线播放网站| 99久久99久久久精品蜜桃| 日韩成人在线观看一区二区三区| 51午夜福利影视在线观看| 国产成人啪精品午夜网站| 一边摸一边做爽爽视频免费| 亚洲精品美女久久av网站| x7x7x7水蜜桃| 久久久久国产精品人妻aⅴ院| 久久亚洲精品不卡| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 精品电影一区二区在线| 亚洲av第一区精品v没综合| 亚洲国产中文字幕在线视频| 欧美成人午夜精品| 色精品久久人妻99蜜桃| 成年免费大片在线观看| 日韩精品中文字幕看吧| 欧美黑人精品巨大| 两个人视频免费观看高清| 精品久久蜜臀av无| 国产精品乱码一区二三区的特点| 久久这里只有精品中国| 久久久久国内视频| 免费观看精品视频网站| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品 | 欧美精品啪啪一区二区三区| 久久精品国产亚洲av香蕉五月| 给我免费播放毛片高清在线观看| 男男h啪啪无遮挡| 每晚都被弄得嗷嗷叫到高潮| 天天添夜夜摸| 99热这里只有精品一区 | 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 青草久久国产| 欧美高清成人免费视频www| 天天躁狠狠躁夜夜躁狠狠躁| 久久人妻福利社区极品人妻图片| 亚洲人成伊人成综合网2020| 欧美日本视频| 亚洲美女黄片视频| 国产成人精品久久二区二区91| 国产激情久久老熟女| 国产精品免费视频内射| 美女黄网站色视频| 欧美色视频一区免费| 久久 成人 亚洲| 亚洲全国av大片| 成在线人永久免费视频| 亚洲av电影不卡..在线观看| 不卡一级毛片| 亚洲av电影在线进入| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 黄色视频,在线免费观看| 高清在线国产一区| 免费在线观看影片大全网站| 亚洲精品美女久久av网站| 女人被狂操c到高潮| 夜夜看夜夜爽夜夜摸| 久久久久久国产a免费观看| 中出人妻视频一区二区| 妹子高潮喷水视频| 欧美日韩亚洲综合一区二区三区_| 欧美中文综合在线视频| 国产黄片美女视频| 午夜免费观看网址| 欧美色视频一区免费| 亚洲一区二区三区不卡视频| 婷婷六月久久综合丁香| av福利片在线| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久人人做人人爽| 精品熟女少妇八av免费久了| 亚洲最大成人中文| 亚洲,欧美精品.| 国内精品久久久久久久电影| www日本在线高清视频| 91麻豆精品激情在线观看国产| 老司机午夜十八禁免费视频| 欧美精品亚洲一区二区| 五月玫瑰六月丁香| 免费在线观看黄色视频的| 欧美乱色亚洲激情| 美女高潮喷水抽搐中文字幕| 国产亚洲欧美98| 在线a可以看的网站| 91成年电影在线观看| 国产亚洲欧美98| 激情在线观看视频在线高清| 国产欧美日韩一区二区三| 欧美人与性动交α欧美精品济南到| 久久久久久久久中文| 国产一区在线观看成人免费| 高清毛片免费观看视频网站| 久久 成人 亚洲| 美女大奶头视频| 国产精品久久视频播放| 人妻丰满熟妇av一区二区三区| 国产高清视频在线播放一区| 18禁美女被吸乳视频| 国产成人av激情在线播放| 在线视频色国产色| 男人的好看免费观看在线视频 | 香蕉丝袜av| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2| 日本a在线网址| 一级毛片精品| 色综合亚洲欧美另类图片| e午夜精品久久久久久久| 全区人妻精品视频| 岛国视频午夜一区免费看| www国产在线视频色| 国产午夜福利久久久久久| 午夜亚洲福利在线播放| 淫妇啪啪啪对白视频| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 免费在线观看视频国产中文字幕亚洲| 欧美午夜高清在线| 国产视频内射| 精品少妇一区二区三区视频日本电影| 国产一区二区三区在线臀色熟女| 久久午夜综合久久蜜桃| 成人三级黄色视频| 欧美日韩一级在线毛片| 老司机在亚洲福利影院| 一个人免费在线观看的高清视频| 天堂影院成人在线观看| 村上凉子中文字幕在线| 欧美成狂野欧美在线观看| 特级一级黄色大片| 天堂√8在线中文| 久久伊人香网站| 国产av在哪里看| 久久精品91无色码中文字幕| 天堂影院成人在线观看| 国产亚洲精品第一综合不卡| 色精品久久人妻99蜜桃| 亚洲中文日韩欧美视频| 男女做爰动态图高潮gif福利片| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av电影在线进入| 国产久久久一区二区三区| 黄色 视频免费看| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 久久久国产欧美日韩av| 别揉我奶头~嗯~啊~动态视频| 三级男女做爰猛烈吃奶摸视频| 午夜免费观看网址| 久久久久性生活片| 亚洲中文字幕一区二区三区有码在线看 | 在线观看www视频免费| 性色av乱码一区二区三区2| 麻豆一二三区av精品| 欧美午夜高清在线| 欧美3d第一页| 国产爱豆传媒在线观看 | 又紧又爽又黄一区二区| 国产精品av久久久久免费| 淫妇啪啪啪对白视频| 在线观看一区二区三区| x7x7x7水蜜桃| 一区二区三区高清视频在线| 亚洲国产欧美一区二区综合| 国产又黄又爽又无遮挡在线| 亚洲国产精品999在线| 1024手机看黄色片| 色老头精品视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲avbb在线观看| 亚洲专区中文字幕在线| 国产成人精品久久二区二区91| 日日夜夜操网爽| 久久亚洲精品不卡| 麻豆国产av国片精品| 久久精品国产综合久久久| 一区福利在线观看| 国产熟女午夜一区二区三区| 欧美激情久久久久久爽电影| 欧美黑人欧美精品刺激| 夜夜夜夜夜久久久久| 一边摸一边做爽爽视频免费| 亚洲性夜色夜夜综合| 高清在线国产一区| 男人舔奶头视频| 久久久久国内视频| 欧美绝顶高潮抽搐喷水| 午夜免费观看网址| 精品久久蜜臀av无| 波多野结衣高清无吗| 成年人黄色毛片网站| 久久婷婷人人爽人人干人人爱| 91在线观看av| 18禁黄网站禁片免费观看直播| 老司机午夜十八禁免费视频| 三级国产精品欧美在线观看 | 麻豆国产av国片精品| 国产亚洲精品久久久久久毛片| 日日干狠狠操夜夜爽| 久久久久免费精品人妻一区二区| 国内揄拍国产精品人妻在线| 少妇的丰满在线观看| 神马国产精品三级电影在线观看 | 天天躁夜夜躁狠狠躁躁| 亚洲欧美日韩高清专用| 久久久久久免费高清国产稀缺| 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看 | 欧美人与性动交α欧美精品济南到| 欧美日韩瑟瑟在线播放| 国产一区二区三区在线臀色熟女| 日本一本二区三区精品| www日本黄色视频网| x7x7x7水蜜桃| 两个人的视频大全免费| 一级片免费观看大全| 一本大道久久a久久精品| 久久香蕉国产精品| 欧美久久黑人一区二区| 午夜a级毛片| 成年免费大片在线观看| 久久久久久人人人人人| 日本一二三区视频观看| 亚洲成人免费电影在线观看| 久久精品成人免费网站| 成人国产综合亚洲| 一个人免费在线观看电影 | 亚洲人成网站在线播放欧美日韩| 舔av片在线| 麻豆一二三区av精品| 亚洲精品国产精品久久久不卡| 日韩大尺度精品在线看网址| 岛国视频午夜一区免费看| 久久人妻av系列| 久久天堂一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 黄色女人牲交| 国产精品久久电影中文字幕| 国内揄拍国产精品人妻在线| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| 欧美丝袜亚洲另类 | 999久久久精品免费观看国产| 丝袜人妻中文字幕| 变态另类成人亚洲欧美熟女| 久久精品91无色码中文字幕| 麻豆成人av在线观看| 这个男人来自地球电影免费观看| 在线a可以看的网站| 又大又爽又粗| 国产视频一区二区在线看| 久久精品91无色码中文字幕| 小说图片视频综合网站| 丝袜人妻中文字幕| 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 免费在线观看影片大全网站| 亚洲一卡2卡3卡4卡5卡精品中文| 两个人的视频大全免费| 午夜精品久久久久久毛片777| 国产高清视频在线播放一区| 国产成人av教育| av天堂在线播放| 亚洲欧美激情综合另类| 精品久久久久久久久久久久久| 99国产极品粉嫩在线观看| 日本一区二区免费在线视频| 老司机靠b影院| 欧美乱妇无乱码| 精品不卡国产一区二区三区| 午夜福利在线观看吧| 白带黄色成豆腐渣| 亚洲av第一区精品v没综合| 一本综合久久免费| 99国产综合亚洲精品| 中文字幕av在线有码专区| 国产三级黄色录像| 成人精品一区二区免费| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 91av网站免费观看| 欧美精品啪啪一区二区三区| 日本免费一区二区三区高清不卡| 欧美日韩一级在线毛片| 欧美+亚洲+日韩+国产| 亚洲五月婷婷丁香| 老司机靠b影院| 国产麻豆成人av免费视频| 免费看a级黄色片| 国产v大片淫在线免费观看| 午夜a级毛片| 最新美女视频免费是黄的| 一二三四社区在线视频社区8| 免费观看精品视频网站| 久久久久久大精品| 又黄又粗又硬又大视频| 最近最新中文字幕大全免费视频| av免费在线观看网站| 国产亚洲av嫩草精品影院| 久久久久久人人人人人| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品999在线| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 级片在线观看| АⅤ资源中文在线天堂| 亚洲国产欧美网| 一个人免费在线观看电影 | 国产爱豆传媒在线观看 | 精华霜和精华液先用哪个| 国产精品 欧美亚洲| 亚洲熟妇中文字幕五十中出| 精品高清国产在线一区| 男女之事视频高清在线观看| 国产精品免费视频内射| 久9热在线精品视频| 免费看a级黄色片| 欧洲精品卡2卡3卡4卡5卡区| 国产精品免费一区二区三区在线| 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 91在线观看av| 69av精品久久久久久| 欧美三级亚洲精品| 非洲黑人性xxxx精品又粗又长| 五月伊人婷婷丁香| 精品第一国产精品| 久久香蕉国产精品| 超碰成人久久| 国产成人影院久久av| 国产午夜福利久久久久久| 真人一进一出gif抽搐免费| 国产一区二区三区视频了| 99精品久久久久人妻精品| 久久精品人妻少妇| 国产视频内射| 国产真人三级小视频在线观看| 欧美另类亚洲清纯唯美| 亚洲国产看品久久| 很黄的视频免费| 国产一级毛片七仙女欲春2| 久久久国产成人免费| 午夜两性在线视频| 欧美在线一区亚洲| 欧美不卡视频在线免费观看 | 婷婷精品国产亚洲av| 国产av又大| 亚洲乱码一区二区免费版| svipshipincom国产片| 亚洲av成人av| 久久精品国产综合久久久| 母亲3免费完整高清在线观看| 最新在线观看一区二区三区| 国产av一区二区精品久久| 成人一区二区视频在线观看| 日本免费a在线| 亚洲熟女毛片儿| 中文字幕精品亚洲无线码一区| 国产又色又爽无遮挡免费看| 91大片在线观看| 最近视频中文字幕2019在线8| 精品福利观看| 亚洲人成电影免费在线| 五月伊人婷婷丁香| 久久久精品大字幕| 国产精品av久久久久免费| 小说图片视频综合网站| 99久久国产精品久久久|