• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-varying confidence interval forecasting of travel timefor urban arterials using ARIMA-GARCH model

    2014-09-06 10:49:44CuiQinghuaXiaJingxin
    關(guān)鍵詞:主干道波動性置信區(qū)間

    Cui Qinghua Xia Jingxin

    (Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China)

    ?

    Time-varying confidence interval forecasting of travel timefor urban arterials using ARIMA-GARCH model

    Cui Qinghua Xia Jingxin

    (Intelligent Transportation System Research Center, Southeast University, Nanjing 210096, China)

    To improve the forecasting reliability of travel time, the time-varying confidence interval of travel time on arterials is forecasted using an autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH) model. In which, the ARIMA model is used as the mean equation of the GARCH model to model the travel time levels and the GARCH model is used to model the conditional variances of travel time. The proposed method is validated and evaluated using actual traffic flow data collected from the traffic monitoring system of Kunshan city. The evaluation results show that, compared with the conventional ARIMA model, the proposed model cannot significantly improve the forecasting performance of travel time levels but has advantage in travel time volatility forecasting. The proposed model can well capture the travel time heteroskedasticity and forecast the time-varying confidence intervals of travel time which can better reflect the volatility of observed travel times than the fixed confidence interval provided by the ARIMA model.

    confidence interval forecasting; travel time; autoregressive integrated moving average and generalized autoregressive conditional heteroskedasticity (ARIMA-GARCH); conditional variance; reliability

    The development of efficient methodologies for accurately forecasting travel time is an important issue for ITS. However, conventional travel time forecasting concentrates on forecasting travel time levels with a presumed homogeneous variance. The time-varying confidence interval forecasting of travel time has not attracted more concern until travel time reliability was emphasized recently for the uncertainty of travel time forecasts. The time-varying confidence interval forecasting of travel time is related to both travel time level forecasting and conditional variance forecasting.

    The models for travel time level forecasting range from linear weighted regression[1-2], Kalman filtering[3], time series[4-5],k-nearest neighbors[6], neural networks[7-8]and support vector machine[9]to combined or hybrid models[8]. However, the development of approaches for forecasting the conditional variance of travel time has received rather limited attention. Van Lint et al.[7-8]used neural networks to model the conditional variance, but the neural networks are limited to online applications because the model trainning is time-consuming. Recently, the generalized autoregressive conditional heteroskedasticity (GARCH) model[10]was used for the short-term forecasting of urban traffic variability. The model concentrates on the underlying volatility dynamics for generating travel time and can be used to calculate the conditional variance.

    To date, the autoregressive integrated moving average (ARIMA) model which is one of the most important time series has shown comprehensive advantages in both forecasting accuracy and online applications. However, in the ARIMA model, the variance is assumed to be constant, which does not conform to the actual situation that heteroscedasticity has been found in travel time data. As we know, the GARCH model can capture heteroscedasticity characteristics. Therefore, the ARIMA model and the GARCH model are combined in this paper to forecast the conditional means and the conditional variances of travel time for calculating the time-varying confidence intervals of travel time.

    1 Proposed Model

    The ARIMA model has been acknowledged as an efficient way for the short-term travel time level forecasting. Assuming that the estimated travel time seriesXtis stationary, the basic idea of the ARMA model for modeling the travel time series is that the current travel timeXtis a linear combination ofpterms of lagged travel times andqterms of lagged errors as

    Xt=φ1Xt-1+φ2Xt-2+…+φpXt-p+

    ut-θ1ut-1-θ2ut-2-…-θqut-q

    (1)

    where the constants (φ1,φ2,…,φp) are called the autoregressive coefficients;utis the residual at timet; the constants (θ1,θ2,…,θq) are the moving average coefficients. By introducing the backshift operatorBand definingBjXt=Xt-1, Eq.(1) can be simplified as

    φ(B)Xt=θ(B)ut

    (2)

    whereφ(B)=1-φ1B-φ2B2-…-φpBpandθ(B)=1-θ1B-θ2B2-…-θqBq.

    Due to the fact that the most travel time series are non-stationary, the process of the series difference is usually applied withXtreplaced by (1-B)dXt, wheredis the difference index ofXt. Thus, the ARIMA model can be defined as

    (1-B)dφ(B)Xt=θ(B)ut

    (3)

    Once there is a significant heteroskedasticity of the residual seriesutgenerated by the ARIMA model, the GARCH model can be applied for capturing the heteroskedasticity. The GARCH (p,q) model[11]is defined as

    ut=σtet

    (4)

    (5)

    2 Model Validation

    In this section, the travel time data used in this study are described, and the ARIMA-GARCH method is validated.

    2.1 Data description

    The travel time data used in this study were estimated from actual traffic flow data and intersection signal timing data collected by the traffic monitoring system of Kunshan city. Two arterial segments described in Tab.1 were selected as the research object. The travel time data from May 9, 2011 to May 13, 2011 were estimated at a 5-min interval in seconds. The travel time data on May 9, 2011 were used for model validation, and the others were used for model performance evaluation.

    Tab.1 Segment description

    2.2 Stationarity test for the travel time series

    In this study, the ARIMA model is chosen as the travel time level forecasting model. The presumption of the ARIMA model is that the travel time series should be stationary or differenced to be stationary. Therefore, the unit root test based on the augmented Dickey-Fuller (ADF) approach is used. The test results show that original travel time series are non-stationary, but the first-order differenced travel time series are stationary. Therefore, the ARIMA model is suitable for the travel time level forecasting.

    2.3 Constructing an ARIMA Model

    In the ARIMA model process, it is essential to determine the lag order, which can be selected on the basis of the Bayesian information criterion the (BIC). In this study, the BIC values of the optimal ARIMA models are shown in Tab.2. Based on the BIC values, the optimal ARIMA model is determined as ARIMA(0,1,1) for the two urban arterial segments.

    Tab.2 BIC values of the optimal ARIMA models

    2.4 Residual autocorrelation test

    Residual autocorrelation test is essential for checking whether the ARIMA model satisfies that the residual error series is white noise. The test results show that there is scarcely a notable autocorrelation in the residual error series, indicating that the ARIMA model is adequate for modeling the travel time series. However, the results show that autocorrelation clearly exists in its square series.

    2.5 Testing the ARCH effect

    The Lagrange multiplier (LM) test is chosen to verify the ARCH effect on the residual error series. Ann-th-order autoregression model is constructed for the squared residuals. The null hypothesis of the test is that there is no ARCH effect where autoregressive coefficients are equal to zero. Thep-value denotes the probability for accepting the null hypothesis. In this study, we construct a series of autoregression models withnfrom 1 to 5. The LM test results show that the null hypothesis is rejected when allp-values are equal to 0. Therefore, the GARCH model is adopted to forecast the conditional variances of travel time.

    2.6 Constructing a GARCH Model

    For constructing a GARCH model, the BIC is chosen to determine the lag order. The results are shown in Tab.3. The results show that the GARCH(1,1) model is optimal for modeling the travel time heteroskedasticity. Similarly, the LM test is applied to verify the effects of ARCH on the residuals generated from the ARIMA-GARCH model, and the results show that there is no ARCH effect. Therefore, an ARIMA(0,1,1)-GARCH(1,1) model can be constructed for the short-term forecasting of the mean and variance of travel time for urban arterials.

    Tab.3 BIC values of the optimal GARCH models

    3 Performance Evaluation

    In this section, the proposed ARIMA-GARCH model and a comparative ARIMA model are used to predict the confidence interval of travel time on arterials from May 10, 2011 to May 13, 2011. Furthermore, performance measures are chosen to evaluate the proposed method and the comparative method.

    3.1 Confidence interval forecasting

    wtis the space between the upper and lower bounds of CI range at timet.

    (6)

    Taking segment 1 as an example, Fig.1 shows the forecasted CI width in the next four days. By comparison, we can find that the forecasted CI width using the ARIMA model is a constant, while it fluctuates when using the ARIMA-GARCH model. Moreover, we illustrate the forecasted CI range using the ARIMA-GARCH model and the ARIMA model with observed travel time on May 10, 2011 on segment 1, as shown in Figs.2 and 3. From the two figures, we can see that the observed travel times during the peak hours are more discrete than those of the off-peak hours. Consequently, the ARIMA-GARCH model proposes a larger confidence interval during fluctuating peak hours and a smaller confidence interval during off-peak hours, while the ARIMA model proposes constant confidence interval. Therefore, the forecasted CI ranges of the proposed model can better change with the volatility of observed travel times, indicating that the proposed method can better capture the dynamics of the real travel times. It can be used to improve the travel time forecasting reliability.

    Fig.1 Forecasted CI width from May 10, 2011 to May 13, 2011

    Fig.2 Forecasted CI range using ARIMA-GARCH model on May 10, 2011

    Fig.3 Forecasted CI range using ARIMA model on May 10, 2011

    3.2 Forecasting performance

    Root-mean-square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) are used to evaluate travel time level forecasting. The average CI width and hit rate which means the proportion of observed data points falling within the CI limit are used to evaluate travel time volatility forecasting.

    Based on the evaluation data set, Tab.4 presents the forecasting performance of travel time using the ARIMA-GARCH model and the ARIMA model. The first three evaluation measures indicate that the ARIMA-GARCH model cannot significantly improve the forecasting performance of mean travel time. The reason is that the forecasts from the ARIMA-GARCH model are mainly determined by its mean equation. In other words, the heteroscedasticity has no significant influence on travel time level forecasting; however, it is reflected in the fluctuations of the forecasted confidence interval. The last two evaluation measures indicate that the confidence interval forecasted by the proposed model is more accurate in travel time volatility forecasting because it can produce a higher hit rate with a smaller average CI width than the ARIMA model. The reason of the superiority is that the forecasted CI ranges of the proposed model can better change with the volatility of observed travel times. In detail, during fluctuating peak hours, the proposed model produces a larger confidence interval to cover more actual observations while the ARIMA model produces a relatively smaller confidence interval which underestimates the actual volatility of travel time. During off-peak hours, the proposed model can produce a smaller confidence interval while the ARIMA model produces a relatively larger confidence interval which exaggerates the actual volatility of travel time.

    Tab.4 Forecasting performance of travel time

    4 Conclusion

    In this paper, the time-varying confidence interval forecasting of travel time for urban arterials which can capture travel time uncertainty is analyzed using the ARIMA-GARCH model.

    The results show that, although the improvement of forecasting accuracy of travel time levels brought by the proposed model is limited, its superiority is reflected in its travel time volatility forecasting. It can provide a series of time-varying confidence intervals of travel time, which can better change with the volatility of observed travel times and is more accurate than the fixed confidence interval provided by the ARIMA model. The time-varying confidence intervals of travel time can model both the evolution of travel time levels and the evolution of travel time volatility, so the proposed model can capture the characteristics of travel time more comprehensively and improve forecasting reliability.

    [1]Rice J, Van Zwet E. A simple and effective method for predicting travel times on freeways[J].IEEETransactionsonIntelligentTransportationSystems, 2004, 5(3): 200-207.

    [2]Du L, Peeta S, Kim Y H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks[J].TransportationResearchPartB:Methodological, 2012, 46(1): 235-252.

    [3]Liu H, Van Zuylen H, Van Lint H, et al. Predicting urban arterial travel time with state-space neural networks and Kalman filters[J].TransportationResearchRecord, 2006, 1968: 99-108.

    [4]Yang M, Liu Y, You Z. The reliability of travel time forecasting[J].IEEETransactionsonIntelligentTransportationSystems, 2010, 11(1): 162-171.

    [5]Ahmed M S, Cook A R. Analysis of freeway traffic time-series data by using box-jenkins techniques [J].TransportationResearchRecord, 1979, 722: 1-9.

    [6]Myung J, Kim D K, Kho S Y, et al. Travel time prediction usingknearest neighbor method with combined data from vehicle detector system and automatic toll collection system[J].TransportationResearchRecord, 2011, 2256: 51-59.

    [7]Khosravi A, Mazloumi E, Nahavandi S, et al. Prediction intervals to account for uncertainties in travel time prediction[J].IEEETransactionsonIntelligentTransportationSystems, 2011, 12(2): 537-547.

    [8]Van Hinsbergen C P, Van Lint J W C, Van Zuylen H J. Bayesian committee of neural networks to predict travel times with confidence intervals[J].TransportationResearchPartC:EmergingTechnologies, 2009, 17(5): 498-509.

    [9]Chen X, Gong H, Wang J. BRT vehicle travel time prediction based on SVM and Kalman filter[J].JournalofTransportationSystemsEngineeringandInformationTechnology, 2012, 12(4): 29-34. (in Chinese)

    [10]Tsekeris T, Stathopoulos A. Real-time traffic volatility forecasting in urban arterial networks[J].TransportationResearchRecord, 2006, 1964: 146-156.

    [11]Taylor S J.Modellingfinancialtimeseries[M]. Singapore:World Scientific Publishing, 2008.

    基于ARIMA-GARCH模型的城市主干道行程時間時變置信區(qū)間預(yù)測

    崔青華 夏井新

    (東南大學(xué)智能交通系統(tǒng)研究中心, 南京 210096)

    為了提高行程時間預(yù)測的可靠性,構(gòu)建了自回歸綜合移動平均與廣義自回歸條件異方差性(ARIMA-GARCH)模型進(jìn)行城市主干道行程時間動態(tài)置信區(qū)間預(yù)測,其中ARIMA模型作為GARCH模型的均值方程用于捕獲行程時間均值,GARCH模型用于捕獲行程時間條件方差.運(yùn)用昆山市交通監(jiān)測系統(tǒng)中采集的實際交通流數(shù)據(jù)進(jìn)行驗證和評估.結(jié)果表明,相較于傳統(tǒng)的ARIMA模型,提出的方法雖然不能顯著提升行程時間均值的預(yù)測性能,但是在行程時間波動性預(yù)測方面具有較大的優(yōu)勢.該方法可捕獲行程時間異方差,從而能夠預(yù)測出比ARIMA模型預(yù)測的固定置信區(qū)間更能反映行程時間觀測值波動性的動態(tài)置信區(qū)間.

    置信區(qū)間預(yù)測;行程時間;ARIMA-GARCH;條件方差;可靠性

    U121

    The National Natural Science Foundation of China (No.51108079).

    :Cui Qinghua, Xia Jingxin. Time-varying confidence interval forecasting of travel time for urban arterials using ARIMA-GARCH model[J].Journal of Southeast University (English Edition),2014,30(3):358-362.

    10.3969/j.issn.1003-7985.2014.03.019

    10.3969/j.issn.1003-7985.2014.03.019

    Received 2013-12-11.

    Biographies:Cui Qinghua (1988—), female, graduate; Xia Jingxin(corresponding author), male, doctor, associate professor, jingxinxia@yahoo.com.cn.

    猜你喜歡
    主干道波動性置信區(qū)間
    轉(zhuǎn)融通范圍擴(kuò)大對A股波動性的影響
    定數(shù)截尾場合三參數(shù)pareto分布參數(shù)的最優(yōu)置信區(qū)間
    p-范分布中參數(shù)的置信區(qū)間
    多個偏正態(tài)總體共同位置參數(shù)的Bootstrap置信區(qū)間
    河南大學(xué)生用勤工儉學(xué)的錢修村中主干道:村民感動,村委反思
    列車定位中置信區(qū)間的確定方法
    長沙望城區(qū)部分主干道樹種結(jié)構(gòu)分析評價
    基于人民幣兌歐元的馬爾科夫機(jī)制轉(zhuǎn)換的外匯匯率波動性研究
    貴陽市小河經(jīng)濟(jì)開發(fā)區(qū)主干道綠化景觀綜合分析
    綠色科技(2017年1期)2017-03-01 10:50:30
    基于SV模型的人民幣理財產(chǎn)品收益率波動性研究
    天堂av国产一区二区熟女人妻| 欧美激情国产日韩精品一区| 久久香蕉精品热| 国产av在哪里看| 在线免费观看的www视频| 我要搜黄色片| 成人av在线播放网站| 国产日本99.免费观看| 黄色欧美视频在线观看| 国产高清不卡午夜福利| 草草在线视频免费看| 深爱激情五月婷婷| 欧美xxxx性猛交bbbb| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| 波多野结衣高清无吗| 五月玫瑰六月丁香| 性色avwww在线观看| 蜜桃亚洲精品一区二区三区| 熟妇人妻久久中文字幕3abv| 无遮挡黄片免费观看| 99在线人妻在线中文字幕| 精品久久久久久久末码| 亚洲男人的天堂狠狠| 亚洲国产日韩欧美精品在线观看| 国产高潮美女av| 国产私拍福利视频在线观看| 日韩欧美精品免费久久| 高清在线国产一区| 久久午夜亚洲精品久久| 亚洲成人精品中文字幕电影| 少妇高潮的动态图| 尾随美女入室| 少妇人妻精品综合一区二区 | 看黄色毛片网站| 少妇的逼水好多| 亚洲性久久影院| 亚洲av五月六月丁香网| 久久精品91蜜桃| 91午夜精品亚洲一区二区三区 | 亚洲人成伊人成综合网2020| 婷婷丁香在线五月| 中文字幕精品亚洲无线码一区| 成人鲁丝片一二三区免费| 国产精品久久电影中文字幕| 又黄又爽又刺激的免费视频.| 真人做人爱边吃奶动态| 国产免费男女视频| 一级黄色大片毛片| 久久久久久九九精品二区国产| 最好的美女福利视频网| 少妇丰满av| 日本精品一区二区三区蜜桃| 亚洲狠狠婷婷综合久久图片| 久久久久久久精品吃奶| 嫁个100分男人电影在线观看| 人妻少妇偷人精品九色| 欧美日韩亚洲国产一区二区在线观看| 日本撒尿小便嘘嘘汇集6| 午夜免费成人在线视频| 大又大粗又爽又黄少妇毛片口| 99热这里只有精品一区| 精品一区二区三区视频在线| 久久亚洲真实| 亚洲七黄色美女视频| 精品久久久久久久久av| 99热6这里只有精品| а√天堂www在线а√下载| 男女边吃奶边做爰视频| 久久这里只有精品中国| 村上凉子中文字幕在线| 国产久久久一区二区三区| www.www免费av| 尤物成人国产欧美一区二区三区| 国产视频内射| 我要搜黄色片| 色吧在线观看| 大型黄色视频在线免费观看| 久久精品91蜜桃| 国产一级毛片七仙女欲春2| 精品不卡国产一区二区三区| 日韩欧美 国产精品| 国产一区二区三区av在线 | videossex国产| 国产 一区精品| 国产精品福利在线免费观看| 成年女人看的毛片在线观看| 亚洲中文字幕日韩| 国内精品美女久久久久久| 亚洲人成网站在线播放欧美日韩| 国产亚洲精品久久久久久毛片| 真实男女啪啪啪动态图| 久久这里只有精品中国| 午夜福利在线在线| 白带黄色成豆腐渣| 麻豆成人av在线观看| 亚洲人成网站在线播放欧美日韩| 国产一区二区三区视频了| 亚洲欧美日韩无卡精品| 免费av毛片视频| 精品一区二区免费观看| 日韩欧美一区二区三区在线观看| 亚州av有码| 亚洲七黄色美女视频| 亚洲avbb在线观看| 亚洲电影在线观看av| 88av欧美| 免费在线观看成人毛片| 亚洲,欧美,日韩| 久久国产乱子免费精品| 制服丝袜大香蕉在线| 成年免费大片在线观看| 欧美日韩综合久久久久久 | 97热精品久久久久久| 久久精品国产亚洲av天美| 欧美不卡视频在线免费观看| 婷婷精品国产亚洲av| 俄罗斯特黄特色一大片| 国产老妇女一区| 免费观看在线日韩| 久久这里只有精品中国| 露出奶头的视频| 色吧在线观看| 色综合亚洲欧美另类图片| 美女黄网站色视频| av天堂在线播放| 亚洲va日本ⅴa欧美va伊人久久| 日本在线视频免费播放| 夜夜爽天天搞| 99久久精品国产国产毛片| or卡值多少钱| 国产精品久久久久久av不卡| 18禁黄网站禁片午夜丰满| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区av网在线观看| 久久久久久九九精品二区国产| 精品久久久久久久久av| 极品教师在线视频| 在线观看免费视频日本深夜| 久久久精品欧美日韩精品| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件 | 长腿黑丝高跟| 很黄的视频免费| 亚洲中文日韩欧美视频| 国产不卡一卡二| 欧美xxxx黑人xx丫x性爽| 级片在线观看| 日韩人妻高清精品专区| 黄色女人牲交| 亚洲黑人精品在线| 久久久精品大字幕| 日日啪夜夜撸| 黄色视频,在线免费观看| 日韩高清综合在线| 日韩一区二区视频免费看| 少妇高潮的动态图| 久久久久久久久久黄片| 夜夜夜夜夜久久久久| 少妇熟女aⅴ在线视频| 久久精品久久久久久噜噜老黄 | 中文亚洲av片在线观看爽| 亚洲av免费在线观看| 久久久色成人| 国产毛片a区久久久久| 日韩精品有码人妻一区| 免费观看的影片在线观看| 国产精品电影一区二区三区| 少妇被粗大猛烈的视频| 国模一区二区三区四区视频| av专区在线播放| 亚洲精品一区av在线观看| 91久久精品国产一区二区成人| 男女那种视频在线观看| 日韩欧美精品v在线| 久久6这里有精品| 天堂影院成人在线观看| 国产男靠女视频免费网站| 久久6这里有精品| 国产大屁股一区二区在线视频| av天堂中文字幕网| 97碰自拍视频| 18禁黄网站禁片免费观看直播| 成人鲁丝片一二三区免费| 国产探花在线观看一区二区| 一个人看的www免费观看视频| 少妇丰满av| 精品免费久久久久久久清纯| 韩国av在线不卡| 人妻丰满熟妇av一区二区三区| 黄色日韩在线| 五月伊人婷婷丁香| 91在线精品国自产拍蜜月| 能在线免费观看的黄片| 成熟少妇高潮喷水视频| 午夜视频国产福利| 12—13女人毛片做爰片一| 国产精品精品国产色婷婷| 一级黄片播放器| 精品一区二区三区av网在线观看| 亚洲精品国产成人久久av| 日韩精品青青久久久久久| 精品人妻1区二区| 草草在线视频免费看| 午夜亚洲福利在线播放| 国产真实乱freesex| 最近最新中文字幕大全电影3| 成年女人看的毛片在线观看| 免费大片18禁| 最近最新中文字幕大全电影3| 欧美又色又爽又黄视频| 高清毛片免费观看视频网站| 色5月婷婷丁香| 九九久久精品国产亚洲av麻豆| 国产欧美日韩一区二区精品| 白带黄色成豆腐渣| 亚洲精品国产成人久久av| 免费黄网站久久成人精品| 三级国产精品欧美在线观看| 国内毛片毛片毛片毛片毛片| 色尼玛亚洲综合影院| 成人av一区二区三区在线看| 岛国在线免费视频观看| 日韩大尺度精品在线看网址| 久久亚洲精品不卡| 久久精品国产亚洲网站| 国产极品精品免费视频能看的| 黄色视频,在线免费观看| 精品久久久久久久久久久久久| 午夜福利高清视频| www.www免费av| 亚洲中文日韩欧美视频| 亚洲18禁久久av| 日本黄色片子视频| 国产高潮美女av| 69av精品久久久久久| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄 | 国产精品一区二区免费欧美| 无人区码免费观看不卡| 韩国av在线不卡| 中文字幕精品亚洲无线码一区| 大又大粗又爽又黄少妇毛片口| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 18禁在线播放成人免费| 可以在线观看的亚洲视频| 亚洲人成伊人成综合网2020| 免费观看精品视频网站| 天天一区二区日本电影三级| 内射极品少妇av片p| 黄色配什么色好看| 欧美区成人在线视频| 九九久久精品国产亚洲av麻豆| 日韩av在线大香蕉| 女人被狂操c到高潮| 中文字幕高清在线视频| av在线观看视频网站免费| 亚洲国产欧洲综合997久久,| 一进一出抽搐动态| 91狼人影院| 日本五十路高清| 亚洲精品国产成人久久av| 在线免费观看不下载黄p国产 | 男女啪啪激烈高潮av片| 超碰av人人做人人爽久久| 久久精品国产亚洲网站| 成年版毛片免费区| 久久久久久久久久黄片| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看| 日本 av在线| 无人区码免费观看不卡| 国产精品一区二区性色av| 嫩草影院入口| 尾随美女入室| 嫩草影院精品99| 国产在线精品亚洲第一网站| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 最好的美女福利视频网| x7x7x7水蜜桃| 成人av一区二区三区在线看| 春色校园在线视频观看| h日本视频在线播放| 久久久精品欧美日韩精品| 国产色婷婷99| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 亚洲成人免费电影在线观看| 一边摸一边抽搐一进一小说| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 日日摸夜夜添夜夜添av毛片 | 国产av麻豆久久久久久久| 在线观看一区二区三区| 色av中文字幕| 美女大奶头视频| 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 国产精品一区二区三区四区免费观看 | 丰满乱子伦码专区| 黄色欧美视频在线观看| 88av欧美| 亚洲av成人精品一区久久| 搡女人真爽免费视频火全软件 | 老女人水多毛片| www日本黄色视频网| 美女 人体艺术 gogo| 色哟哟哟哟哟哟| 亚洲精品久久国产高清桃花| 网址你懂的国产日韩在线| 在线观看美女被高潮喷水网站| 成人一区二区视频在线观看| 97超视频在线观看视频| 亚洲天堂国产精品一区在线| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 最好的美女福利视频网| 午夜激情福利司机影院| 国内少妇人妻偷人精品xxx网站| 99久久精品国产国产毛片| 国产毛片a区久久久久| 超碰av人人做人人爽久久| 少妇的逼水好多| 变态另类丝袜制服| 可以在线观看毛片的网站| 免费电影在线观看免费观看| 久久人妻av系列| 日韩精品有码人妻一区| 亚洲精品乱码久久久v下载方式| 日韩欧美精品v在线| 精品人妻熟女av久视频| 又粗又爽又猛毛片免费看| 亚洲四区av| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 夜夜看夜夜爽夜夜摸| 欧美成人一区二区免费高清观看| h日本视频在线播放| av视频在线观看入口| 搞女人的毛片| 亚洲av熟女| 欧美人与善性xxx| 国国产精品蜜臀av免费| aaaaa片日本免费| 观看免费一级毛片| 简卡轻食公司| 国产精品一区二区免费欧美| 人妻夜夜爽99麻豆av| 久久人人爽人人爽人人片va| 给我免费播放毛片高清在线观看| 淫妇啪啪啪对白视频| 最好的美女福利视频网| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 极品教师在线免费播放| 亚洲成av人片在线播放无| 91久久精品国产一区二区三区| 99精品在免费线老司机午夜| 床上黄色一级片| 免费人成在线观看视频色| 国产av不卡久久| 精品久久久久久久久久免费视频| 哪里可以看免费的av片| 99热精品在线国产| 国产一区二区激情短视频| 中文字幕久久专区| 波多野结衣高清作品| 人妻丰满熟妇av一区二区三区| 波多野结衣高清作品| 精品一区二区三区av网在线观看| 国产成人福利小说| 亚洲午夜理论影院| 国产精品女同一区二区软件 | 五月玫瑰六月丁香| 日韩一区二区视频免费看| 国产精品三级大全| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| 中国美白少妇内射xxxbb| 欧美性感艳星| av在线亚洲专区| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 女生性感内裤真人,穿戴方法视频| 精品久久久久久成人av| 国产精品av视频在线免费观看| 午夜福利成人在线免费观看| 国产一区二区三区av在线 | 一进一出抽搐动态| 人人妻人人澡欧美一区二区| 精品午夜福利视频在线观看一区| 男女做爰动态图高潮gif福利片| 国产精品久久电影中文字幕| 黄色女人牲交| 成人美女网站在线观看视频| 亚洲熟妇熟女久久| 亚洲中文日韩欧美视频| 成人高潮视频无遮挡免费网站| 国产黄a三级三级三级人| 中文在线观看免费www的网站| 精品一区二区免费观看| 成人美女网站在线观看视频| a级毛片免费高清观看在线播放| 在线国产一区二区在线| 最近视频中文字幕2019在线8| 看片在线看免费视频| 日韩强制内射视频| 久久久久久久久久成人| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 成年人黄色毛片网站| 国产高潮美女av| 51国产日韩欧美| 久久欧美精品欧美久久欧美| 国产精品久久久久久久久免| 99久久精品热视频| 国产成人a区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品永久免费网站| 亚洲熟妇中文字幕五十中出| 亚洲av中文字字幕乱码综合| 欧美性猛交黑人性爽| 色5月婷婷丁香| 一夜夜www| 久久久久国产精品人妻aⅴ院| 亚洲精品影视一区二区三区av| 久久香蕉精品热| 欧美色视频一区免费| 成人国产一区最新在线观看| 国产日本99.免费观看| 搡老岳熟女国产| 别揉我奶头 嗯啊视频| 久久久久久久久久黄片| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 网址你懂的国产日韩在线| 男插女下体视频免费在线播放| 两个人的视频大全免费| 精品无人区乱码1区二区| 少妇人妻一区二区三区视频| 亚洲不卡免费看| 亚洲精品色激情综合| 国产色婷婷99| 欧美一区二区亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久com| 22中文网久久字幕| 国产v大片淫在线免费观看| 成人国产一区最新在线观看| x7x7x7水蜜桃| 五月伊人婷婷丁香| 观看免费一级毛片| 露出奶头的视频| 欧美精品啪啪一区二区三区| 久久久久国内视频| 12—13女人毛片做爰片一| 国内精品久久久久久久电影| av国产免费在线观看| 直男gayav资源| 免费高清视频大片| 在线播放无遮挡| 69av精品久久久久久| 成人特级黄色片久久久久久久| 久久久国产成人免费| 国产精品福利在线免费观看| 在线播放国产精品三级| 精品午夜福利在线看| 波多野结衣巨乳人妻| 免费观看人在逋| 一级黄色大片毛片| 一进一出抽搐动态| 3wmmmm亚洲av在线观看| 精品一区二区三区av网在线观看| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 在现免费观看毛片| 22中文网久久字幕| 欧美极品一区二区三区四区| 十八禁网站免费在线| av在线亚洲专区| 色精品久久人妻99蜜桃| 亚洲专区中文字幕在线| 亚洲av电影不卡..在线观看| 深夜精品福利| 国产伦一二天堂av在线观看| a在线观看视频网站| 我的老师免费观看完整版| 在线看三级毛片| 国产精品av视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 一级毛片久久久久久久久女| 99视频精品全部免费 在线| 51国产日韩欧美| 男人舔女人下体高潮全视频| 99热精品在线国产| av视频在线观看入口| 午夜福利在线观看免费完整高清在 | 日本精品一区二区三区蜜桃| av在线亚洲专区| videossex国产| 男女啪啪激烈高潮av片| 九九爱精品视频在线观看| 亚洲熟妇熟女久久| 又黄又爽又免费观看的视频| 精品一区二区三区视频在线| 亚洲精品成人久久久久久| 乱码一卡2卡4卡精品| 中文字幕熟女人妻在线| 在线a可以看的网站| 午夜激情欧美在线| 国产蜜桃级精品一区二区三区| 99久久精品一区二区三区| 精品免费久久久久久久清纯| 欧美日韩黄片免| 99热这里只有是精品在线观看| 国产蜜桃级精品一区二区三区| 99久久精品一区二区三区| 欧美zozozo另类| 12—13女人毛片做爰片一| 91麻豆av在线| 变态另类丝袜制服| 国产毛片a区久久久久| 久9热在线精品视频| 日韩欧美精品v在线| 国产高清三级在线| 综合色av麻豆| 欧美日韩综合久久久久久 | 两个人的视频大全免费| 女的被弄到高潮叫床怎么办 | 中文资源天堂在线| 午夜免费激情av| 亚洲乱码一区二区免费版| 精品人妻一区二区三区麻豆 | 久久午夜福利片| 身体一侧抽搐| 18禁黄网站禁片午夜丰满| 欧美又色又爽又黄视频| 美女高潮的动态| www日本黄色视频网| 亚洲av不卡在线观看| 亚洲精品在线观看二区| aaaaa片日本免费| 久久久午夜欧美精品| 啦啦啦啦在线视频资源| 97人妻精品一区二区三区麻豆| 久久精品国产99精品国产亚洲性色| 深夜a级毛片| 亚洲人成网站在线播| 国产精品av视频在线免费观看| av黄色大香蕉| 国产男人的电影天堂91| 麻豆一二三区av精品| 舔av片在线| 欧美日韩瑟瑟在线播放| 99久久无色码亚洲精品果冻| 女同久久另类99精品国产91| 给我免费播放毛片高清在线观看| 国产高潮美女av| 免费在线观看成人毛片| 亚洲国产精品sss在线观看| 精品久久久久久成人av| 亚洲av.av天堂| 中文字幕人妻熟人妻熟丝袜美| 免费电影在线观看免费观看| 日日夜夜操网爽| 俄罗斯特黄特色一大片| 久久精品国产亚洲av涩爱 | 成人毛片a级毛片在线播放| 麻豆精品久久久久久蜜桃| 久久婷婷人人爽人人干人人爱| 在线播放无遮挡| 国产亚洲精品久久久com| 国产一区二区在线观看日韩| 成人精品一区二区免费| 久久久久九九精品影院| 亚洲成人精品中文字幕电影| 99热精品在线国产| 色精品久久人妻99蜜桃| 无遮挡黄片免费观看| 国产精品电影一区二区三区| 午夜福利在线观看吧| 久久人人精品亚洲av| 精品久久久久久久久久免费视频| 99国产精品一区二区蜜桃av| 中文字幕av成人在线电影| 中文在线观看免费www的网站| 男女之事视频高清在线观看| 亚洲专区中文字幕在线| 国产又黄又爽又无遮挡在线| а√天堂www在线а√下载| 一进一出抽搐gif免费好疼| 久久久久久久久久久丰满 | 少妇的逼水好多| 午夜福利视频1000在线观看| 搡老岳熟女国产| 成人精品一区二区免费| 免费观看的影片在线观看| 一a级毛片在线观看| 亚洲成av人片在线播放无| 男人和女人高潮做爰伦理| 男人舔女人下体高潮全视频| 亚洲成av人片在线播放无| 欧美色视频一区免费| www.色视频.com| 欧美+日韩+精品| 成人av在线播放网站| 99久久中文字幕三级久久日本| 久久久久国产精品人妻aⅴ院| 非洲黑人性xxxx精品又粗又长|