• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of different curing regimes on the microstructure and macro performance of UHPFRCC

    2014-09-06 10:49:47SalyFathySunWei
    關(guān)鍵詞:宏觀耐久性微觀

    Saly Fathy Sun Wei

    (School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)

    ?

    Influence of different curing regimes on the microstructure and macro performance of UHPFRCC

    Saly Fathy Sun Wei

    (School of Materials Science and Engineering, Southeast University, Nanjing 211189, China)

    This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether it is possible to produce qualified UHPFRCC using different curing regimes. A control mix of UHPFRCC is prepared. The mechanical performance and the short-term durability of the UHPFRCC matrix under three curing regimes are studied. In addition, the microstructures of the UHPFRCC matrix with different curing conditions are analyzed by combining scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results explore how different UHPFRCC curing regimes affect its microstructure and how the microstructure affects its macro behavior. Heat and steam curing for 3 d is succeeded to produce the UHPFRCC with nearly the same mechanical properties and durability as those of the 90 d standard curing. However, the heat cured UHPFRCC does not show great resistance to chloride-ion penetration.

    ultra-high performance fiber reinforced cementitious composite (UHPFRCC); curing regimes; durability; microstructure

    The development of material properties is the basis for the design and construction of structures made from cement-based materials[1]. Applying appropriate curing methods is essential for any concrete to gain properties, particularly for UHPFRCC. Like all other concretes, UHPFRCCs require water to hydrate, but compared to other concretes, UHPFRCCs have been engineered to require very little water. The reduced water content in the UHPFRCC mix necessitates careful attention to curing practices so as not to allow the included water to escape prior to hydration[2]. In practical engineering applications, the cases of the in-situ concrete applications and the pre-cast elements are both required. This explains the importance of studying the availability of the production of UHPFRC using both different curing regimes (rapid and standard curing). Refs.[3-4] showed the effect of curing conditions on the mechanical properties of UHPFRCC. This study presents the influence of different curing regimes not only on the macro performance but also on the micro structure of UHPFRCC produced with different curing conditions, using scanning electron microscopy (SEM) and mercury intrusion porosimetry(MIP).

    1 Experimental

    1.1 Materials

    The early strength Portland cement (PC) used in the experiments is produced by Jiangnan Cement Co., Ltd., Nanjing and it is classified as P.II 52.5R according to the Chinese standards. The physical and mechanical properties of the materials are shown in Tab.1. Grade Ⅰ fly ash (FA), similar to Class F fly ash according to ASTM, is supplied by the Zhenjiang Power Plant with a specific surface area of 454 m2/kg. The silica fume (SF) used in the experiments is produced by the Ai Ken Company with a specific surface area of 22 000 m2/kg. The oxide compositions of the FA and SF analyzed with the X-ray fluorescence spectroscopy are listed in Tab.2.

    Ordinary river sand with a maximum diameter of 2.36mm, a fineness modules of 2.44, and a packing and apparent density of 1.4 and 2.4 g/cm3, respectively, is used as fine aggregates. A visconcrete 3301 superplasticizer (SP) supplied by the Switzerland Sika (China) Building Materials Co., Ltd. with a water reducing ratio of more than 30% and a solid content of 28% is used. Dramix, a superfine steel fiber covered by a copper, is incorporated. The fibers (VF) are 13 mm long and have a circular cross-section with a diameter of 0.2 mm.

    1.2 Mix proportion

    The mix design of UHPFRC differs significantly from that of normal and high-strength concretes[5]. UHPFRCC mix compositions are characterized by: 1) The enhancement of homogeneity by elimination of coarse aggregates; 2) The enhancement of compacted density by optimization of the granular mixture, i.e. silica fume improves the compacted density of the mix, thereby reducing voids

    Tab.1 Physical and mechanical properties of cement

    Standardconsistency/%Initialsettingtime/minFinalsettingtime/minFlexuralstrength/MPaCompressivestrength/MPa3d28d3d28dSpecificsurfacearea/(m2·kg-1)26.31402457.210.634.762.8362

    Tab.2 Oxide compositions of FA and SF %

    Mineraladmixturew(SiO2)w(Al2O3)w(Fe2O3)w(CaO)w(MgO)w(SO3)w(K2O)w(Na2O)LossFA54.8826.866.494.771.311.161.050.882.5SF94.480.270.830.540.970.82.13

    and defects; 3) The reduction of the water/cement ratio and inclusion of a superplasticizer which ensures a workable mix; 4) The enhancement of ductility by incorporating small-sized steel fibers. The composition of the prepared UHPFRCC matrix is shown in Tab.3.

    Tab.3 Mixing proportion of UHPFRCC kg/m3

    CementFlyashSilicafumeRiversandSuperplasticizerWaterSteelfiber540432108129637.8172.8160

    1.3 Specimen preparation

    The main step in specimen preparation is to produce a uniform distribution of UHPFRCC components including binder materials and steel fibers. Therefore, according to the mixture proportions in Tab.3, fresh concrete mixtures are cast into steel molds to produce samples with a dimension of 40 mm×40 mm×160 mm, and then placed on a shaking table in order to achieve good compaction. After the samples are kept for 24 h at room temperature, the prism specimens are demoulded and cured with different curing regimes. For standard curing, the temperature is at (20±2) ℃, and has a relative humidity RH greater than 95%. For steam curing specimens, the specimens are put into a steam box of 85 ℃ for 3 d, and as to the heat curing specimens, they are put into an oven at 105 ℃ for 3 d.

    1.4 Test method

    1.4.1 Mechanical properties test method

    According to the Chinese standard GB/T 17671—1999, the bending specimen is a prism (40 mm×40 mm×160 mm) when applying a three-point bending test. The span is 100 mm, and the loading rate is 1 mm/min. The compressive strength specimen is a 40 mm×40 mm×40 mm cube.

    1.4.2 Durability test method

    In this study, the chloride analysis is undertaken according to the Chinese standard JTJ 270—1998 and the NT Build 443—94[6]. After taking the specimens from the curing rooms, each specimen is coated with gas-tight epoxy resin. One surface of each specimen is left uncoated for the purpose of exposing this surface to a NaCl solution[7]. The UHPFRCC specimens are placed with a 10% NaCl solution for 2, 3, 4 months, respectively. Immediately after the specified immersion period, the specimens are taken out and dried for 2 d at (60±30)°C. Powder samples are collected from depths of 0 to 5 mm, 5 to 10 mm, 10 to 15mm and 15 to 20mm. Using a drill, at least 5 g of fine powder are extracted from each depth. Subsequently, the chloride content, as a percentage of Cl-by the mass of concrete, is determined by titration.

    The freeze-thaw test is conducted according to GB/T 50082—2009. The test data are collected once after every 25 freeze-thaw cycles to determine the weight-loss rate and the relative dynamic elastic modules of the specimens.

    2 Results and Discussion

    2.1 Mechanical properties

    2.1.1 Effect of curing regimes on mechanical proper- ties of UHPFRCC

    The data in Fig.1 represent the flexural and compressive strength of the cured UHPFRCC under the three curing regimes (standard curing, heat curing and steam curing). From this data it can be concluded that fast heat curing for 3 d can make UHPFRCC exhibit close mechanical properties to those of 90 d standard curing.

    Fig.1 Mechanical properties of UHPFRCC subjected to different curing regimes

    Steam curing at 85 ℃ and heat curing at 100℃ for 3 d are used to enhance UHPFRCC properties by accelerating the hydration reaction of cement particles and the Pozzolanic reaction of the mineral admixtures including silica fume and fly ash, and then to achieve high early strength it can be used for precast elements. However, UHPFRCC cured in standard conditions ((20±2) ℃, RH>95%) without heat treatment successfully gains sufficient strength, to be able to be used in situ applications for rehabilitation and strengthening of structures[8].

    When comparing the strength results of 3 d heat and steam curing, it is found that at the same age, the strength of steam cured specimens is greater than that of heat cured specimens. This is because in dry hot conditions, water evaporates easily, which leads to the formation of a small number of large pores and results in a slight increase in materials porosity and, thus, strength slightly decreases.

    2.1.2 Effect of curing regimes on the toughness ofUHPFRCC

    Load-deflection curves of the three systems of 90 d standard curing, 3d heat curing and 3d steam curing are shown in Fig.2.

    Fig.2 Load-deflection curves of UHPFRCC under different curing conditions

    The damage produced by the expansion caused by the hot and the humid conditions of dry hot and steam curing, respectively, was decreased due to the addition of steel fibers. The incorporation of steel fibers in UHPFRCC matrix increases the resistance to hot and humid expansion stress.

    Fig.2 shows that the steam curing for UHPFRCC after 3d has the greatest toughness among the three curing regimes. That is because the Pozzolanic materials become more reactive under high temperature conditions,which makes the strength of the UHPFRCC increase quickly. On the other hand, the slurry water evaporates due to the high temperature conditions, resulting in the formation of a small number of large pores which can slightly reduces the strength. However, in the steam curing, the steam compensates for the humidity loss.

    2.2 Results for the durability tests

    2.2.1 Chloride resistance of UHPFRCC with differentcuring regimes

    Fig.3 shows the Cl-concentration distribution at different depths in UHPFRCC150 with different curing conditions after 90 d immersion. It can be concluded that the Cl-diffusion concentration value for the heat cured UHPFRCC specimens at the 5 to 10mm depth is five times more than that for the steamed and standard cured UHPFRCC at the same depth. When using heat curing, the water evaporates from the matrix, leaving some connected internal pores and leading to the easy and quick penetration of the chloride ions into UHPFRCC. Most of chloride concentrations of the standard curing with steam curing matrices concentrate only at the 0 to 5 mm depth. Compared to the standard curing, steam curing matrices have better resistance to chloride ion penetration. This means that steam curing can speed up the hydration process of UHPFRCC and lead to a dense microstructure in a shorter time which is even more efficient than the 90d standard curing.

    Fig.3 Chloride concentrations at different depths of UHPFRCC with different curing conditions after 90d immersion

    2.2.2 Effects of curing condition on the freeze-thaw performance of UHPFRCC

    Figs.4 and 5, respectively, show the effects of curing regimes on the mass loss and the relative dynamic modulus of elasticity of UHPFRCC with the increase of freeze-thaw cycles. For the three different curing regimes and after 800 cycles of freezing and thawing, the mass loss and the relative dynamic elastic modules are about 1.0% and 95%, respectively. The results of the heat and steam curing do not differ much from the standard curing results. This means that the rapid curing has no significant influence on the UHPFRCC frost resistance.

    Fig.4 Effects of curing condition on the mass loss of UHPFRCC

    2.3 Results of microstructure tests

    As MIP provides information about the connectivity of the pores and microscopy reveals information about pore geometry, researchers have been interested in combining the techniques for a more complete picture of pore systems[9].

    Fig.5 Effect of curing conditions on relative dynamic modulus of elasticity of UHPFRCC

    2.3.1 Morphology of UHPFRCC after different cur-ing regimes

    Figs.6 and 7 shows the morphology of UHPFRCC after 3 d heat curing and steam curing, respectively. No obvious Ca (OH)2exists in UHPFRCC,which indicates that the hydration process in UHPFRCC has been almost completed after a short time of the heat or steam curing. For heat curing regimes, because of the high temperature, water evaporates from the specimens and leaves small connected pores as can be seen in the figures. The chlorides can penetrate into UHPFRCC very fast through the connected pores. This is the reason why heat cured UHPFRCC has relatively lower mechanical properties and chloride resistance than the other two curing regimes. On the contrary, for steam curing, steam compensates for the loss of water from the UHPFRCC matrix’s surface, which leads to a more smooth and dense microstructure. In addition,standard cured UHPFRCC has a similar morphology to steam cured UHPFRCC.

    Fig.6 The SEM image of UHPFRCC after heat curing

    Fig.7 The SEM image of UHPFRCC after steam curing

    2.3.2 Effects of curing condition on the pore size distribution of UHPFRCC

    Fig.8 is the pore size distribution of UHPFRCC with the three different curing regimes. The figure shows that the most probable pore size in the three groups of specimens is about 4 to 5 nm, indicating that the pores in the UHPFRCC matrix are mainly small size gel pores, which are harmless for the mechanical performance and durability of UHPFRCC. It is also obvious that the heat cured UHPFRCC has higher porosity. For heat curing, there are many pores with sizes between 10 and 100 nm in UHPFRCC. This also indicates that the water evaporates out of specimens during the curing, and leaves connected pores in UHPFRCC as seen in the SEM image. These pores reduce the chloride resistance of heat cured UHPFRCC.

    Fig.8 Effects of curing condition on the pore size distribution of UHPFRCC

    3 Conclusion

    The research shows that UHPFRCC can be produced successfully with three different regimes. The rapid curing condition can serve the case of pre-cast elements, and the results indicate the possibility of producing UHPFRCC using standard curing to be able to be used in situ applications for rehabilitation and strengthening of structures. The results show the effects of the different curing regimes not only on the macro behavior of UHPFRCC but also on its micro structure. Combining the advanced methods of testing the microstructure of the UHPFRCC matrix including SEM and MIP can produce a more complete understanding of the reasons for the excellent performance of UHPFRCC.

    [1]Hong K N, Kang S T, Kim S W, et al. Material properties of air-cured ultra-high-performance steel-fiber-reinforced concrete at early ages[J].InternationalJournalofthePhysicalSciences, 2010, 5(17): 2622-2634.

    [2]Graybeal B. Ultra-high performance concrete, FHWA-HRT-11-038 [R]. Mclean, VA, USA: Federal Highway Administration, 2011.

    [3]Yang S, Millard S, Soutsos M, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC) [J].ConstructionandBuildingMaterials, 2009, 23(6): 2291-2298.

    [4]Yazici H. The effect of curing conditions on compressive strength of ultra high strength concrete with high volume mineral admixtures [J].BuildingandEnvironment, 2007, 42(5): 2083-2089.

    [5]Habel K, Viviani M, Denarié E, et al. Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC) [J].CementandConcreteResearch, 2006, 36(7): 1362-1370.

    [6]Nordtest. Concrete hardened: accelerated chloride penetration, NT Build 443 [R]. Espoo, Finland: Nordtest, 1995.

    [7]Zhang Y S, Sun W, Chen S D, et al. One and two dimensional chloride ion diffusion of fly ash concrete under flexural stress [J].JournalofZhejiangUniversity:SCIENCEA, 2011, 12(9): 692-701.

    [8]Habel K, Charron J P, Braike S, et al. Ultra-high performance fibre reinforced concrete mix design in central Canada [J].CanadianJournalofCivilEngineering, 2008, 35(2): 217-224.

    [9]Abell A B, Willis K L, Lange D A. Mercury intrusion porosimetry and image analysis of cement-based materials [J].JournalofColloidandInterfaceScience, 1999, 211(1):39-44.

    養(yǎng)護(hù)制度對(duì)超高性能纖維增強(qiáng)水泥基復(fù)合材料微觀結(jié)構(gòu)及宏觀性能的影響

    Saly Fathy 孫 偉

    (東南大學(xué)材料科學(xué)與工程學(xué)院, 南京 211189)

    研究了不同養(yǎng)護(hù)制度對(duì)超高性能纖維增強(qiáng)水泥基復(fù)合材料(UHPFRCC)微觀結(jié)構(gòu)和宏觀性能的影響,并揭示了用不同的養(yǎng)護(hù)制度制備性能符合要求的超高性能纖維增強(qiáng)水泥基復(fù)合材料的可能性.制備了一種基準(zhǔn)的UHPFRCC,研究了3種養(yǎng)護(hù)制度下UHPFRCC 的力學(xué)性能及短期耐久性能.此外,通過(guò)結(jié)合運(yùn)用電子掃描電鏡(SEM)和壓汞法(MIP),測(cè)試了3種養(yǎng)護(hù)制度下UHPFRCC的微觀結(jié)果.研究結(jié)果揭示了不同的養(yǎng)護(hù)制度對(duì)UHPFRCC微觀結(jié)構(gòu)的影響以及微觀結(jié)構(gòu)對(duì)材料宏觀性能的影響機(jī)制.熱養(yǎng)護(hù)和蒸汽養(yǎng)護(hù)3d與標(biāo)準(zhǔn)養(yǎng)護(hù)90 d的UHPFRCC具有相近的力學(xué)性能和耐久性.但是,熱養(yǎng)護(hù)的UHPFRCC具有相對(duì)較差的抗氯離子滲透性能.

    超高性能纖維增強(qiáng)水泥基復(fù)合材料;養(yǎng)護(hù)制度;耐久性;微觀結(jié)構(gòu)

    TU528

    s:The Scholarship Supported by the China Scholarship Council, the Technical Research Program from NV Bekaert SA of Belgium, the National Natural Science Foundation of China (No.50908047).

    :Saly Fathy, Sun Wei.Influence of different curing regimes on the microstructure and macro performance of UHPFRCC[J].Journal of Southeast University (English Edition),2014,30(3):348-352.

    10.3969/j.issn.1003-7985.2014.03.017

    10.3969/j.issn.1003-7985.2014.03.017

    Received 2013-12-12.

    Biographies:Saly Fathy (1985—), female, graduate; Sun Wei (corresponding author), female, professor, academician of China Engineering Academy, sunwei@seu.edu.cn.

    猜你喜歡
    宏觀耐久性微觀
    壓力容器產(chǎn)品銘牌使用耐久性的思考
    一種新的結(jié)合面微觀接觸模型
    振動(dòng)攪拌,基礎(chǔ)設(shè)施耐久性的保障
    宏觀與政策
    大雙摻混凝土耐久性研究
    宏觀
    河南電力(2016年5期)2016-02-06 02:11:23
    微觀的山水
    詩(shī)選刊(2015年6期)2015-10-26 09:47:10
    宏觀
    微觀中國(guó)
    浙江人大(2014年8期)2014-03-20 16:21:15
    微觀中國(guó)
    浙江人大(2014年6期)2014-03-20 16:20:46
    一本综合久久免费| 黑人操中国人逼视频| 久久久精品94久久精品| 国产一区二区在线观看av| 国产黄色免费在线视频| 国产免费现黄频在线看| 在线精品无人区一区二区三| 国产真人三级小视频在线观看| 18禁观看日本| 国产精品久久久久成人av| 高潮久久久久久久久久久不卡| 午夜久久久在线观看| 老司机午夜福利在线观看视频 | 国产亚洲一区二区精品| 777久久人妻少妇嫩草av网站| 一本综合久久免费| 国产成人精品久久二区二区免费| 免费在线观看视频国产中文字幕亚洲 | 大型av网站在线播放| 成年美女黄网站色视频大全免费| 色94色欧美一区二区| 另类亚洲欧美激情| 国产精品国产三级国产专区5o| 一级黄色大片毛片| 天堂俺去俺来也www色官网| 国产无遮挡羞羞视频在线观看| 亚洲精品国产区一区二| 韩国精品一区二区三区| 少妇精品久久久久久久| 精品国产一区二区三区四区第35| 久久亚洲精品不卡| 极品少妇高潮喷水抽搐| 12—13女人毛片做爰片一| 午夜两性在线视频| 女性被躁到高潮视频| 亚洲专区字幕在线| 99九九在线精品视频| 精品卡一卡二卡四卡免费| 搡老乐熟女国产| 熟女少妇亚洲综合色aaa.| 女人精品久久久久毛片| 1024视频免费在线观看| 久久人妻福利社区极品人妻图片| 日韩,欧美,国产一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产又爽黄色视频| 日韩欧美国产一区二区入口| 黄色视频在线播放观看不卡| 欧美性长视频在线观看| 国产在视频线精品| 搡老熟女国产l中国老女人| 手机成人av网站| 婷婷成人精品国产| 久久精品aⅴ一区二区三区四区| 国产欧美亚洲国产| 亚洲五月婷婷丁香| 91麻豆av在线| 在线观看舔阴道视频| 日韩中文字幕欧美一区二区| 日韩精品免费视频一区二区三区| 久久人妻福利社区极品人妻图片| 日韩制服骚丝袜av| 美女福利国产在线| 在线观看www视频免费| 亚洲精品一区蜜桃| 欧美激情极品国产一区二区三区| 汤姆久久久久久久影院中文字幕| 男女国产视频网站| 色老头精品视频在线观看| 热re99久久精品国产66热6| 国产日韩欧美亚洲二区| 日韩,欧美,国产一区二区三区| 一级片免费观看大全| 麻豆国产av国片精品| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 女人被躁到高潮嗷嗷叫费观| 黄片小视频在线播放| 欧美日本中文国产一区发布| 18在线观看网站| 777米奇影视久久| 中文字幕高清在线视频| 建设人人有责人人尽责人人享有的| 巨乳人妻的诱惑在线观看| 欧美激情 高清一区二区三区| 日韩欧美免费精品| 国产一区二区在线观看av| 国产精品一区二区免费欧美 | 国产日韩欧美亚洲二区| 国产三级黄色录像| 十八禁人妻一区二区| 成人国语在线视频| av国产精品久久久久影院| av免费在线观看网站| 日韩欧美国产一区二区入口| 欧美激情极品国产一区二区三区| 一区二区三区精品91| 首页视频小说图片口味搜索| 啦啦啦视频在线资源免费观看| 欧美日韩av久久| 999久久久国产精品视频| 久久久欧美国产精品| 国产男女超爽视频在线观看| 精品久久久久久电影网| 91精品伊人久久大香线蕉| 又紧又爽又黄一区二区| 美女午夜性视频免费| 久久中文看片网| 久久人妻熟女aⅴ| 日韩大码丰满熟妇| 国产激情久久老熟女| netflix在线观看网站| 性色av一级| 在线观看免费视频网站a站| 女性生殖器流出的白浆| 中文欧美无线码| 大片电影免费在线观看免费| 女性被躁到高潮视频| 99久久人妻综合| 精品少妇黑人巨大在线播放| 交换朋友夫妻互换小说| 成年女人毛片免费观看观看9 | 韩国高清视频一区二区三区| 久久av网站| 18禁裸乳无遮挡动漫免费视频| 丰满迷人的少妇在线观看| 日韩中文字幕欧美一区二区| 在线天堂中文资源库| 欧美人与性动交α欧美精品济南到| 久久影院123| 国产精品国产三级国产专区5o| 91精品三级在线观看| 电影成人av| 国产区一区二久久| 日本猛色少妇xxxxx猛交久久| 国产成人免费无遮挡视频| 亚洲精品一卡2卡三卡4卡5卡 | 人人妻人人爽人人添夜夜欢视频| 久久人妻熟女aⅴ| 国产av又大| 精品欧美一区二区三区在线| 黑人欧美特级aaaaaa片| 超碰成人久久| 日韩制服丝袜自拍偷拍| 一区二区日韩欧美中文字幕| 成年人免费黄色播放视频| 黄频高清免费视频| 亚洲av男天堂| 青青草视频在线视频观看| 女性被躁到高潮视频| 嫩草影视91久久| 精品乱码久久久久久99久播| 日韩欧美免费精品| 久久久久久久久久久久大奶| av片东京热男人的天堂| 黄色怎么调成土黄色| 精品福利观看| 欧美日韩亚洲高清精品| 久久久精品免费免费高清| 国产av精品麻豆| 午夜精品久久久久久毛片777| www.精华液| 欧美 亚洲 国产 日韩一| 18禁观看日本| 一本一本久久a久久精品综合妖精| 亚洲精品中文字幕一二三四区 | 777米奇影视久久| 老司机影院成人| 国产又爽黄色视频| 免费观看av网站的网址| 国产av又大| 国产成人啪精品午夜网站| 欧美乱码精品一区二区三区| 欧美 日韩 精品 国产| 人妻 亚洲 视频| 91av网站免费观看| 一进一出抽搐动态| av网站在线播放免费| 精品国内亚洲2022精品成人 | 久久中文看片网| 国产成人精品无人区| 久久久精品国产亚洲av高清涩受| 日本av手机在线免费观看| 一级黄色大片毛片| 日韩,欧美,国产一区二区三区| 黄色片一级片一级黄色片| 99国产精品99久久久久| 国产真人三级小视频在线观看| 久久天躁狠狠躁夜夜2o2o| 精品第一国产精品| 亚洲 国产 在线| 在线天堂中文资源库| 狂野欧美激情性xxxx| 国产精品免费视频内射| 最近中文字幕2019免费版| 大片电影免费在线观看免费| 伊人久久大香线蕉亚洲五| 国产福利在线免费观看视频| 久久久久久久久免费视频了| 欧美在线黄色| 最黄视频免费看| 在线 av 中文字幕| www.av在线官网国产| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三区在线| cao死你这个sao货| 国产免费视频播放在线视频| 免费少妇av软件| 青草久久国产| 热re99久久国产66热| 免费少妇av软件| 青草久久国产| 曰老女人黄片| 亚洲中文av在线| 人妻久久中文字幕网| 性色av一级| 国产亚洲精品久久久久5区| 丰满迷人的少妇在线观看| 亚洲午夜精品一区,二区,三区| 国产成人系列免费观看| 国产欧美日韩精品亚洲av| 亚洲精品日韩在线中文字幕| 亚洲精品国产一区二区精华液| 两性午夜刺激爽爽歪歪视频在线观看 | av网站在线播放免费| 99久久综合免费| 蜜桃国产av成人99| 热99久久久久精品小说推荐| 这个男人来自地球电影免费观看| 9色porny在线观看| 一二三四在线观看免费中文在| 捣出白浆h1v1| 欧美国产精品一级二级三级| 91成人精品电影| 最新的欧美精品一区二区| 男男h啪啪无遮挡| av视频免费观看在线观看| 免费观看人在逋| 国产亚洲精品久久久久5区| 国产精品偷伦视频观看了| 国产男女内射视频| 99国产精品一区二区三区| 成人国产一区最新在线观看| 一本久久精品| 亚洲伊人色综图| 国产成人精品在线电影| 两人在一起打扑克的视频| av在线播放精品| 美女视频免费永久观看网站| 欧美变态另类bdsm刘玥| av网站免费在线观看视频| 国产男女内射视频| 9热在线视频观看99| 亚洲第一av免费看| 日本a在线网址| www.精华液| 亚洲中文字幕日韩| 一二三四社区在线视频社区8| 99久久国产精品久久久| 亚洲欧美激情在线| 男女之事视频高清在线观看| 热re99久久国产66热| 亚洲国产精品999| 女人精品久久久久毛片| 天天躁夜夜躁狠狠躁躁| 美女主播在线视频| 日韩中文字幕欧美一区二区| av网站免费在线观看视频| 亚洲av成人一区二区三| 捣出白浆h1v1| 国产精品一区二区在线不卡| 久久久国产欧美日韩av| 永久免费av网站大全| 伦理电影免费视频| 日韩一区二区三区影片| 久久精品aⅴ一区二区三区四区| 国产精品 国内视频| 久久久久精品国产欧美久久久 | 国产淫语在线视频| 啪啪无遮挡十八禁网站| av天堂久久9| 激情视频va一区二区三区| www.999成人在线观看| 如日韩欧美国产精品一区二区三区| 欧美久久黑人一区二区| 999精品在线视频| 女人久久www免费人成看片| 日韩一卡2卡3卡4卡2021年| 一本久久精品| av欧美777| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 日本五十路高清| 最近最新中文字幕大全免费视频| 精品卡一卡二卡四卡免费| 欧美黑人欧美精品刺激| 亚洲精品国产色婷婷电影| 国产野战对白在线观看| 日韩制服骚丝袜av| 老熟女久久久| 久9热在线精品视频| 欧美日韩精品网址| 免费观看av网站的网址| 美女福利国产在线| 大香蕉久久网| 久久99热这里只频精品6学生| 精品视频人人做人人爽| 国产成人免费观看mmmm| 老熟女久久久| 一进一出抽搐动态| 亚洲精品国产区一区二| a在线观看视频网站| 中文字幕精品免费在线观看视频| 人人妻人人澡人人爽人人夜夜| 欧美大码av| 日本91视频免费播放| 精品熟女少妇八av免费久了| 亚洲午夜精品一区,二区,三区| 国产精品一区二区在线观看99| 两个人看的免费小视频| 青春草视频在线免费观看| 国产成人免费观看mmmm| 亚洲精品一区蜜桃| av片东京热男人的天堂| 嫩草影视91久久| 成年人黄色毛片网站| 亚洲精品一卡2卡三卡4卡5卡 | 精品国内亚洲2022精品成人 | 天堂俺去俺来也www色官网| cao死你这个sao货| 五月天丁香电影| 午夜福利在线免费观看网站| 日日摸夜夜添夜夜添小说| kizo精华| 欧美大码av| 午夜免费观看性视频| 精品久久蜜臀av无| 丝袜喷水一区| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 丝袜人妻中文字幕| 99久久99久久久精品蜜桃| 欧美97在线视频| 美女大奶头黄色视频| √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 久久狼人影院| 免费看十八禁软件| 淫妇啪啪啪对白视频 | 香蕉丝袜av| svipshipincom国产片| 亚洲精品国产区一区二| 大陆偷拍与自拍| 一级毛片电影观看| 亚洲精品国产av蜜桃| 成年美女黄网站色视频大全免费| 国产高清国产精品国产三级| 国产欧美日韩一区二区三区在线| 中文字幕人妻丝袜制服| av天堂久久9| 91字幕亚洲| 在线看a的网站| av天堂久久9| 乱人伦中国视频| 久久久久国内视频| 成年人午夜在线观看视频| 天堂中文最新版在线下载| 国产免费一区二区三区四区乱码| 国产精品一区二区在线观看99| 免费一级毛片在线播放高清视频 | 久久久久国产精品人妻一区二区| 亚洲成人国产一区在线观看| 久久九九热精品免费| 中文字幕高清在线视频| 午夜福利视频在线观看免费| 国产精品久久久久久人妻精品电影 | 亚洲av国产av综合av卡| 啦啦啦在线免费观看视频4| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 国产精品香港三级国产av潘金莲| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品国产av在线观看| 在线观看免费午夜福利视频| a 毛片基地| 成人免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 男人舔女人的私密视频| 69精品国产乱码久久久| 亚洲全国av大片| 精品国产乱码久久久久久小说| 亚洲少妇的诱惑av| 欧美黄色淫秽网站| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 91麻豆精品激情在线观看国产 | 视频区欧美日本亚洲| 美女福利国产在线| 国产一区二区三区在线臀色熟女 | 亚洲精品自拍成人| 99热全是精品| 国产av又大| 少妇粗大呻吟视频| 18禁黄网站禁片午夜丰满| 成人国产一区最新在线观看| 亚洲免费av在线视频| 免费黄频网站在线观看国产| 一级片'在线观看视频| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 人妻一区二区av| av天堂久久9| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 日韩,欧美,国产一区二区三区| 久久青草综合色| 亚洲久久久国产精品| 精品国产乱子伦一区二区三区 | 丰满少妇做爰视频| 久久精品国产亚洲av高清一级| 亚洲一区中文字幕在线| 美女大奶头黄色视频| 又紧又爽又黄一区二区| tocl精华| 99国产极品粉嫩在线观看| 99热网站在线观看| 啦啦啦免费观看视频1| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月 | e午夜精品久久久久久久| 丝袜喷水一区| 日本猛色少妇xxxxx猛交久久| 1024香蕉在线观看| 脱女人内裤的视频| 黄色视频,在线免费观看| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| 美女国产高潮福利片在线看| 中国美女看黄片| 丰满饥渴人妻一区二区三| 制服诱惑二区| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码| 午夜影院在线不卡| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 男男h啪啪无遮挡| 最近中文字幕2019免费版| 欧美人与性动交α欧美软件| a级毛片在线看网站| 午夜两性在线视频| 香蕉国产在线看| 12—13女人毛片做爰片一| 日韩有码中文字幕| 新久久久久国产一级毛片| 日韩中文字幕视频在线看片| 两个人免费观看高清视频| 青春草亚洲视频在线观看| 一二三四社区在线视频社区8| 窝窝影院91人妻| 亚洲男人天堂网一区| 亚洲精品久久午夜乱码| 国产一区二区三区在线臀色熟女 | 久久久国产一区二区| 国产成人精品久久二区二区免费| 精品人妻在线不人妻| 日本vs欧美在线观看视频| 亚洲国产精品成人久久小说| 男女床上黄色一级片免费看| 亚洲综合色网址| 国产深夜福利视频在线观看| 日韩大码丰满熟妇| 热99国产精品久久久久久7| 久久女婷五月综合色啪小说| 黄片播放在线免费| 在线永久观看黄色视频| 大码成人一级视频| 精品人妻1区二区| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 久久人妻熟女aⅴ| 色播在线永久视频| 十八禁网站网址无遮挡| 成人影院久久| 一区二区日韩欧美中文字幕| 老司机午夜福利在线观看视频 | 9热在线视频观看99| 日本a在线网址| av电影中文网址| 亚洲性夜色夜夜综合| 精品少妇内射三级| www.av在线官网国产| 中文字幕av电影在线播放| 美女脱内裤让男人舔精品视频| www日本在线高清视频| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 视频区图区小说| 国产精品久久久av美女十八| 欧美中文综合在线视频| 日本精品一区二区三区蜜桃| 大片免费播放器 马上看| 少妇裸体淫交视频免费看高清 | 日韩熟女老妇一区二区性免费视频| 夜夜骑夜夜射夜夜干| 中亚洲国语对白在线视频| 999精品在线视频| 99热网站在线观看| 久久精品国产亚洲av香蕉五月 | 久久久久精品国产欧美久久久 | 国产高清国产精品国产三级| 五月开心婷婷网| 一本综合久久免费| 久久久久国内视频| 自线自在国产av| 自拍欧美九色日韩亚洲蝌蚪91| 18禁国产床啪视频网站| 精品少妇内射三级| av网站免费在线观看视频| 亚洲国产成人一精品久久久| 亚洲avbb在线观看| av视频免费观看在线观看| 操出白浆在线播放| 建设人人有责人人尽责人人享有的| 视频在线观看一区二区三区| 欧美激情久久久久久爽电影 | 亚洲欧美精品综合一区二区三区| 天天操日日干夜夜撸| 曰老女人黄片| 人成视频在线观看免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品熟女久久久久浪| 女人久久www免费人成看片| 亚洲色图综合在线观看| 亚洲男人天堂网一区| 夫妻午夜视频| 欧美变态另类bdsm刘玥| 高清av免费在线| 国产成人系列免费观看| 欧美一级毛片孕妇| 丝袜喷水一区| 大码成人一级视频| 男女无遮挡免费网站观看| 国产亚洲欧美精品永久| 青春草视频在线免费观看| 亚洲综合色网址| 久久精品熟女亚洲av麻豆精品| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 大片电影免费在线观看免费| 精品一品国产午夜福利视频| 欧美中文综合在线视频| 久久久精品免费免费高清| 中文字幕最新亚洲高清| 一区福利在线观看| 国产精品免费大片| 新久久久久国产一级毛片| 波多野结衣一区麻豆| 在线亚洲精品国产二区图片欧美| 麻豆国产av国片精品| 每晚都被弄得嗷嗷叫到高潮| 精品熟女少妇八av免费久了| www.自偷自拍.com| 国产国语露脸激情在线看| 人人妻,人人澡人人爽秒播| 在线观看免费午夜福利视频| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网| 亚洲少妇的诱惑av| 久久久久国产一级毛片高清牌| 天天影视国产精品| 久久ye,这里只有精品| 久久av网站| 在线观看免费高清a一片| 欧美激情高清一区二区三区| 亚洲一区中文字幕在线| 亚洲五月婷婷丁香| 日韩欧美国产一区二区入口| 老司机福利观看| 人妻一区二区av| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频| 一级黄色大片毛片| 别揉我奶头~嗯~啊~动态视频 | 久久久久国内视频| 成人av一区二区三区在线看 | 91成人精品电影| 亚洲欧洲日产国产| 十八禁网站免费在线| 91九色精品人成在线观看| 国产精品久久久久久人妻精品电影 | 中文字幕高清在线视频| 日本a在线网址| 一区二区三区激情视频| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 欧美久久黑人一区二区| 天天添夜夜摸| 在线 av 中文字幕| 欧美成狂野欧美在线观看| 欧美+亚洲+日韩+国产| 中文精品一卡2卡3卡4更新| 免费在线观看完整版高清| 久久国产亚洲av麻豆专区| 男女之事视频高清在线观看| 日韩中文字幕欧美一区二区| 极品人妻少妇av视频| 国产真人三级小视频在线观看| 久久国产精品人妻蜜桃| 91成年电影在线观看| 曰老女人黄片| 99香蕉大伊视频| 精品国产一区二区三区四区第35|