• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of the Delaunay triangulation interpolationin distortion XRII image

    2014-09-06 10:49:44LiYuanjinShuHuazhongLuoLiminChenYangWangTaoYueZuogang
    關(guān)鍵詞:交叉點(diǎn)三角網(wǎng)坐標(biāo)值

    Li Yuanjin Shu Huazhong Luo Limin Chen Yang Wang Tao Yue Zuogang

    (1Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China)(2School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China)

    ?

    Application of the Delaunay triangulation interpolationin distortion XRII image

    Li Yuanjin1, 2Shu Huazhong1Luo Limin1Chen Yang1Wang Tao2Yue Zuogang2

    (1Laboratory of Image Science and Technology, Southeast University, Nanjing 210096, China)(2School of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China)

    To alleviate the distortion of XRII (X-ray image intensifier) images in the C-arm CT (computer tomography) imaging system, an algorithm based on the Delaunay triangulation interpolation is proposed. First, the causes of the phenomenon, the classical correction algorithms and the Delaunay triangulation interpolation are analyzed. Then, the algorithm procedure is explained using flow charts and illustrations. Finally, experiments are described to demonstrate its effectiveness and feasibility. Experimental results demonstrate that the Delaunay triangulation interpolation can have the following effects. In the case of the same center, the root mean square distances (RMSD) and standard deviation (STD) between the corrected image with Delaunay triangulation interpolation and the ideal image are 5.760 4×10-14and 5.354 2×10-14, respectively. They increase to 1.790 3, 2.388 8, 2.338 8 and 1.262 0, 1.268 1, 1.202 6 after applying the quartic polynomial, model L1 and model L2 to the distorted images, respectively. The RMSDs and STDs between the corrected image with the Delaunay triangulation interpolation and the ideal image are 2.489×10-13and 2.449 8×10-13when their centers do not coincide. When the quartic polynomial, model L1 and model L2 are applied to the distorted images, they are 1.770 3, 2.388 8, 2.338 8 and 1.269 9, 1.268 1, 1.202 6, respectively.

    XRII image; Delaunay triangulation interpolation; distortion correction

    Owing to the advantages of low cost, little volume and easy operation, the C-arm CT is widely applied in reality. For instance, it can be used by surgeons to assist complete disease diagnosis[1], operation evaluations[2]and equipment localization[3]. However, these applications are based on high-quality CT images reconstructed with the acquired projection data. Practically, two devices can be used to acquire the projection data, namely the flat panel detector and the X-ray image intensifier. To obtain high quality images, the flat panel detector is widely used in high-end or large C-arm CT. However, the price of the application is very high. Therefore, in the middle and low-end C-arm CT, X-ray image intensifier (XRII) still occupies an important, if not dominant, position, particularly in developing countries or areas.

    However due to imaging environments, as well as magnetic fields, gravity and other factors[4], the acquired data deviates from the original position, which leads to XRII image distortion. This distortion phenomenon seriously affects the machines’ application and even brings about misdiagnosis. Consequently, the acquired projection data (XRII image) must be corrected.

    To solve the problem of XRII image distortion, researchers have proposed different correction algorithms, namely the global correction algorithm[4-7]and the local correction algorithm[8]. In the classical global correction algorithm[5], a high-order polynomial is used to correct the distorted XRII image. The polynomial represents the relationship between the ideal image and the distorted image, whose coefficients can be solved via the least square method. The correction precision is related to the accuracy, distribution and quantity of extracted control points. The local correction algorithm[8]first divides the target distorted image into several sub-images, such as triangles, quadrilaterals or other shapes. Then every sub-image is corrected independently. The final corrected image is obtained by fusing the corrected sub-images. The main advantage of the local correction algorithm is its simplicity. Moreover, it can obtain high correction precision and good correction in local distortions[8]. However, low efficiency, discontinuous phenomena in adjacent regions, and sensitivity to S-distortion and pillow distortion are its shortcomings[8].

    On the basis of analyzing the global correction algorithm[4-7]and the Delaunay triangulation[9-14]interpolation (DTI), this paper proposes a DTI XRII image distortion correction algorithm. First, the DTI and its implementation are introduced. Then, data are acquired and the proposed algorithm is tested to demonstrate its validity. Finally, some conclusions are drawn.

    1 The Delaunay Triangulation and its Implementation

    The correction algorithm based on the DTI belongs to the global correction algorithm. Yet, the algorithm is different from other global correction algorithms. The main reason is that the DTI is based on the Delaunay triangulation grid that possesses the following characteristics, such as an empty circumcircle and the largest least angle[12], being well-formed, having a simple data structure, minimization of data redundancy, and the like.

    1.1 The Delaunay triangulation grid conception and character

    The Delaunay triangulation is a set that expresses a series of connected but non-overlapping triangulations. It is a form of an irregular triangulation grid and the main representative of DTM. The grid has two features:

    1) Each Delaunay triangulation circumcircle does not contain any other point in this area. The character is called the Delaunay triangulation grid empty circumcircle. The character has also been known as a judge criterion of building the Delaunay triangulation gird.

    2) Among the triangulation grids of points set, the least angle of the Delaunay triangulation grid is the largest.

    1.2 Delaunay triangulation mesh construction algorithm

    Since the late 1970s, the research on constructing a triangulation mesh based on Delaunay triangulation subdivision has been developed. Some valuable algorithms have been proposed. In general, according to the process of constructing a Delaunay triangulation grid, the algorithm is divided into three types, namely the insertion point by point, the triangulation construction growth, and the divide-and-conquer algorithm[13].

    1.2.1 Insertion point by point

    Its basic thought is that the data points are inserted into the existing Delaunay triangulation mesh point by point. The following are its specific steps:

    1) Define a super triangle that contains all points and set it as the initial Delaunay triangle.

    2) Insert the untreated pointPin the points set into the existing Delaunay triangulation grid.

    3) A triangular includingPis found. ThePis connected with the three points in the triangle. As a result, three new triangles come into being.

    4) The local optimization algorithm is applied to update all generated triangles.

    5) Repeat steps 2) to 4), until all points are inserted.

    6) Finally, delete the super triangle.

    1.2.2 Triangulation grid growth

    The basic idea of triangulation grid growth is that the two points with the shortest distance are first connected into a Delaunay side. Then, according to the Delaunay boundary criterion, the other points of the Delaunay triangle are identified and the new produced sides are dealt with successively, until all the sides are completed.

    1.2.3 Divide-and-conquer algorithm

    Fig.1 shows the flow chart of this algorithm[13].

    Fig.1 Flow chart of the divide-and-conquer algorithm

    1.3 Algorithm implementation based on DTI

    DTI technology can interpolate 2D scattered points onto a surface. The scattered points are named control points, and the other points are named no-control points. According to the known figures of control points, DTI technology produces reference maps of no-control points to correct distorted XRII images.

    Fig.2 shows the flow chart of the algorithm. Wherex1,y1,x2andy2are four vectors from Refs.[7,14].x1andy1store the control pointsx-coordinates andy-coordinates in the distorted XRII image, respectively. Correspondingly, thex-coordinates andy-coordinates in the ideal XRII image are introduced intox2andy2.X2andY2represent all thex-coordinates andy-coordinates in the ideal image, respectively. Correspondingly,X1andY1represent all thex-coordinates andy-coordinates in the distorted image. The following section is a brief textual description of the algorithm.

    First, the four vectorsx1,y1,x2andy2are interpolated into two Delaunay triangulation surfaces,x1=f(x2,y2) andy1=f(x2,y2). Then, according tox1=f(x2,y2),y1=f(x2,y2) andX2andY2, all thex-coordinates andy-coordinates in the distorted image are computed and stored intoX1andY1. Finally, bilinear interpolation is used to correct the distorted image. Here, the correspondingx-coordinates andy-coordinates are extracted fromX1andY1, respectively.

    Fig.2 Flow chart of the DTI algorithm

    2 Data Acquisition and Experimental Comparison

    2.1 Data acquisition

    During the experiment, we used a C-arm CT to acquire the data. The machine is manufactured by the Nanjing Pu Love Ray Imaging Equipment Limited Company and its parameters are shown in Tab.1. In the process of data acquisition, the machine was rotated 190° with constant speed, acquiring 200 images with resolution 1 024×1 024 pixel. Windows XP and Matlab R7.01 constituted the main software environment. The hardware includes Intel(R) Core(TM) 2 Duo 1.50 GHz CPU and 1 GB memory.

    Tab.1 C-arm parameters for the experiments[7,14]

    2.2 Qualitative comparison

    In order to reduce the computation cost, the length and width of the image are, respectively, reduced to 1/2 of its original acquired image in calculation. Fig.3 is one zoomed acquired distorted image.

    Fig.3 Distorted XRII image

    During the implementation of experiments, the proposed algorithm was compared to the classical correction algorithms, such as the global polynomial correction model,local linear model L1 and nonlinear model L2. The classical global polynomial correction model[15]is shown as

    The formulae of local linear model L1 and nonlinear model L2[15]are shown as

    Model L1

    (2)

    Model L2

    (3)

    When models L1 and L2 are used to correct the distorted image, the distorted image is first divided into four sub-images along horizontal and vertical directions from its middle point. Then, every sub-image is corrected. The final image is obtained by fusing all the corrected sub-images. In the case of the same center, Fig.4 shows the corrected images using different correction algorithms. Correspondingly, Fig.5 illustrates the corrected images using all the correction algorithms when their centers do not coincide.

    From Fig.3, the S-distortion and pillow distortion can be clearly found in the acquired XRII images. After the images were corrected using DTI, the S-distortion and pillow distortion no longer existed in the corrected images (see Fig.4(a) and Fig.5(a)). From Fig.4(a) and Fig.5(a), we can see that the corrected images are not very exact. The cause for the phenomenon is that the extracted control points mainly concentrate on the center position. Naturally, the phenomenon does not affect forming the relationship between the distorted image and the ideal image. Fig.4(b) and Fig.5(b) are the corrected images using the quartic polynomial. As can be seen from Fig.4(b) and Fig.5(b), the S-distortion does not exist and pillow distortion exists in part. As for Fig.4(c), Fig.4(d), Fig.5(c) and Fig.5(d), using local linear

    (a)

    (b)

    (c)

    (d)

    (a)

    (b)

    (c)

    (d)

    model L1 and nonlinear model L2, there is S-distortion and pillow distortion to some extent. Moreover, the corrected image is broken into two images in Fig.4(c) with the corrected model L1. These phenomena further illustrate that the correction effect of the global correction algorithm is better than that of the local correction algorithm.

    2.3 Quantitative comparison

    In experiments, the correction accuracies of all correction algorithms are compared. Here, the correction algorithms include the global quartic polynomial correction algorithm, the local linear correction algorithm (model L1) and the nonlinear correction algorithm (model L2) and the DTI correction algorithm. Image distortion correction accuracy is judged using two indices, root mean square distances (RMSD) and standard deviation (STD). Their corresponding formulae are as follows:

    (4)

    (5)

    wheredi=((x(i)-corrx(i))2+(y(i)-corry(i))2)1/2ordi=((xcenter(i)-corrx(i))2+(ycenter(i)-corry(i))2)1/2. RMSD is the root mean square error between computed control point’s coordination values in the ideal image and the corrected control point’s coordination values in the corrected image. The smaller RMSD implies a better correction effect. When RMSD equals zero, the interpolated surface passes though the control points in the ideal image. In this case, the correction effect is the best.

    Tab.2 gives the correction accuracies of various correction algorithms when centers between the corrected image and the ideal image coincide. Correspondingly, when the centers between the distorted image and the ideal image do not coincide, the correction accuracies are listed in Tab.3. The RMSE and STDE of model L1 and model 2 are computed as follows. First, the RMSE and STDE of every sub-image are computed. Then, the RMSE and STDE summation of all the sub-images are computed. Finally, the final RMSE and STDE are calculated by averaging the summation.

    Tab.2 Correction accuracy with the same center

    Tab.3 Correction accuracy with different centers

    The RMSE and STDE between the corrected image using model L1 and the ideal image are 2.388 8 and 1.268 1 whether they have the same center or not. The two values become 2.338 8 and 1.202 6 whether they have the same center or not, after the model L2 is used to correct the distorted images. After global quartic polynomial correction, RMSE and STDE become 1.790 3 and 1.262 0 (The two images have the same center) and 1.770 3 and 1.269 9 (The two images have different centers), respectively. After using the correction algorithm proposed in this paper, RMSE and STDE become 5.760 4×10-14and 5.354 2×10-14(The two images have the same center) and 2.489×10-13and 2.449 8×10-13(The two images have different centers), respectively. These results prove that the proposed algorithm outperforms the classical global polynomial correction algorithm and the local linear correction algorithm (model L1) and the nonlinear correction algorithm (model L2).

    3 Conclusion

    The distorted XRII image can bring about adverse effects for subsequent courses. In this paper, a DTI algorithm based on the classical algorithms is proposed to correct the distorted images. Experimental results show that the proposed algorithm can not only effectively correct the distorted XRII images, but also bring about better results than the classical correction algorithms. To demonstrate its reliability and validity, in the future, we will apply the algorithm to clinical data and compare it with the classical algorithms.

    [1]Lee K, Lee K M, Park M S, et al. Measurements of surgeons’ exposure to ionizing radiation dose during intraoperative use of C-arm fluoroscopy [J].Spine, 2012, 37(14): 1240-1244.

    [2]Kothary N, Abdelmaksoud M H, Tognolini A, et al. Imaging guidance with C-arm CT: prospective evaluation of its impact on patient radiation exposure during transhepatic arterial chemoembolization[J].JournalofVascularandInterventionalRadiology, 2011, 22(11): 1535-1543.

    [3]Yaniv Z. Evaluation of spherical fiducial localization in C-arm cone-beam CT using patient data [J].MedicalPhysics, 2010, 37(11): 5298-5305.

    [4]Yan Shiju, Wang Chengtao, Ye Ming. A method based on moving least squares for XRII image distortion correction [J].MedicalPhysics, 2007, 34(11): 4194-4206.

    [5]Holdsworth D W, Pollmann S I, Nikolov H N, et al. Correction of XRII geometric distortion using a liquid-filled grid and image subtraction[J].MedicalPhysics, 2005, 32(1): 55-64.

    [6]Yan Shiju, Qian Liwei. XRII image distortion correction

    for C-arm-based surgical navigation system [J].JournalofBiomedicalEngineering, 2010, 27(3): 548-551. (in Chinese)

    [7]Li Yuanjin, Luo Limin, Zhang Pengcheng, et al. Distortion correction of XRII image based on calibration grid characteristic and Biharmonic interpolation[J].JournalofSoutheastUniversity:NaturalScienceEdition, 2011, 41(6): 1213-1218. (in Chinese)

    [8]Cerveria P, Forlani C, Borghese N A, et al. Distortion correction for X-ray image intensifier: local unwarping polynomials and RBF neural networks [J].MedicalPhysics, 2002, 29(8): 1759-1771.

    [9]Fink M, Haunert J H, Spoerhase J, et al. Selecting the aspect ratio of a scatter plot based on its Delaunay triangulation [J].IEEETransactionsonVisualizationandComputerGraphics, 2013, 19(12): 2326-2335.

    [10]Gao Z, Yu Z, Holst M. Feature-preserving surface mesh smoothing via suboptimal Delaunay triangulation [J].GraphModels, 2013, 75(1): 23-38.

    [11]Gao Z, Yu Z, Holst M. Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation [J].ComputerAidedGeometricDesign, 2012, 29(9): 707-721.

    [12]Wang Jiayao.Thetheoryofspatialinformationsystem[M]. Beijing: Science Press, 2001: 172-186. (in Chinese)

    [13]Wu Xiaobo, Wang Shixin, Xiao Cunsheng. A new study of Delaunay triangulation creation [J].ActaGeodaeticaEtAcrtographicaSinica, 1999, 28(1): 28-35.

    [14]Li Yuanjin, Luo Limin, Zhang Quan, et al. The algorithm of calibration grid marker projection identification and coordinates data extraction [J].ComputerApplicationandSoftware, 2012, 29(5): 50-52, 63. (in Chinese)

    [15]Gronenschild E. Correction for geometric image distortion in the X-ray imaging chain:local technique versus global technique [J].MedicalPhysics, 1999, 26(12): 2602-2616.

    Delaunay三角網(wǎng)插值在XRII圖像扭曲校正中的應(yīng)用

    李元金1, 2舒華忠1羅立民1陳 陽1王 濤2岳座剛2

    (1東南大學(xué)影像與科學(xué)技術(shù)實(shí)驗(yàn)室, 南京 210096)(2滁州學(xué)院計(jì)算機(jī)與信息工程學(xué)院, 滁州 239000)

    針對(duì)扭曲的影像加強(qiáng)器(X-ray image intensifier, XRII)圖像對(duì)后繼工作產(chǎn)生不利影響的問題,提出使用Delaunay三角網(wǎng)插值對(duì)扭曲的XRII圖像進(jìn)行校正.首先分析了XRII圖像扭曲的原因、經(jīng)典的校正方法和Delaunay三角網(wǎng)插值;然后,使用程序流程圖對(duì)算法過程進(jìn)行了解釋.最后,通過實(shí)驗(yàn)來證明所提算法的有效性和可行性.實(shí)驗(yàn)結(jié)果表明:在中心對(duì)齊時(shí),使用Delaunay三角插值方法校正后的XRII圖像網(wǎng)格線交叉點(diǎn)坐標(biāo)值與理想校正靶網(wǎng)格線交叉點(diǎn)坐標(biāo)值的殘留誤差和標(biāo)準(zhǔn)誤差分別為5.760 4×10-14和 5.354 2×10-14,使用經(jīng)典的全局四次多項(xiàng)式、模型L1和模型L2校正之后殘留誤差和標(biāo)準(zhǔn)誤差分別為 1.790 3, 2.388 8, 2.338 8和1.262 0, 1.268 1, 1.202 6;在中心不對(duì)齊時(shí),使用Delaunay三角插值方法校正后的XRII圖像網(wǎng)格線交叉點(diǎn)坐標(biāo)值與理想校正靶網(wǎng)格線交叉點(diǎn)坐標(biāo)值的殘留誤差和標(biāo)準(zhǔn)誤差分別為2.489×10-13和 2.449 8×10-13,使用經(jīng)典的全局四次多項(xiàng)式、模型L1和模型L2校正后殘留誤差和標(biāo)準(zhǔn)誤差分別為1.770 3,2.388 8,2.338 8和1.269 9,1.268 1,1.202 6.

    XRII圖像; Delaunay三角插值; 扭曲校正; C臂X機(jī)

    TP391.41

    s:The Natural Science Foundation of Anhui Province (No.1308085MF96), the Project of Chuzhou University (No.2012qd06, 2011kj010B), the Scientific Research Foundation of Education Department of Anhui Province (No.KJ2014A186), the National Basic Research Program of China (973 Program) (No.2010CB732503).

    :Li Yuanjin, Shu Huazhong, Luo Limin, et al. Application of the Delaunay triangulation interpolation in distortion XRII image[J].Journal of Southeast University (English Edition),2014,30(3):306-310.

    10.3969/j.issn.1003-7985.2014.03.009

    10.3969/j.issn.1003-7985.2014.03.009

    Received 2014-02-09.

    Biographies:Li Yuanjin(1976—), male, doctor, associate professor; Shu Huazhong (corresponding author), male, doctor, professor, shu.list@seu.edu.cn.

    猜你喜歡
    交叉點(diǎn)三角網(wǎng)坐標(biāo)值
    麥弗遜懸架主銷軸線對(duì)半軸滑移的影響
    北京汽車(2023年1期)2023-03-03 00:50:38
    圍棋棋盤的交叉點(diǎn)
    基于二分法迭代的凸模數(shù)控銑削加工編程*
    針對(duì)路面建模的Delaunay三角網(wǎng)格分治算法
    基于高中生命科學(xué)知識(shí)交叉點(diǎn)的教學(xué)方法研究
    清華山維在地形圖等高線自動(dòng)生成中的應(yīng)用
    區(qū)域重力異常值的交叉點(diǎn)平差實(shí)例分析
    紐結(jié)的(m,n)-變換
    在AutoCAD環(huán)境下不規(guī)則三角網(wǎng)構(gòu)建及等高線生成
    基于合成算法的Delaunay三角網(wǎng)生成改進(jìn)算法
    国产爱豆传媒在线观看| 欧美日韩中文字幕国产精品一区二区三区| h日本视频在线播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 窝窝影院91人妻| 欧美成人免费av一区二区三区| 欧美成人一区二区免费高清观看| 国产精品av视频在线免费观看| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区不卡视频| 欧美丝袜亚洲另类 | 日韩大尺度精品在线看网址| 禁无遮挡网站| 母亲3免费完整高清在线观看| 成人特级av手机在线观看| 国产爱豆传媒在线观看| 亚洲欧美日韩东京热| 国产单亲对白刺激| 久9热在线精品视频| 免费观看的影片在线观看| 一二三四社区在线视频社区8| 欧美bdsm另类| 夜夜看夜夜爽夜夜摸| 欧美最新免费一区二区三区 | 99久国产av精品| 国产中年淑女户外野战色| 99精品久久久久人妻精品| 精品一区二区三区视频在线 | av福利片在线观看| 黑人欧美特级aaaaaa片| 精品久久久久久久久久久久久| 亚洲人成伊人成综合网2020| 女警被强在线播放| 狂野欧美白嫩少妇大欣赏| 一个人观看的视频www高清免费观看| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| 有码 亚洲区| 精品久久久久久,| 欧美bdsm另类| 免费看a级黄色片| 国产乱人视频| 在线a可以看的网站| 天天一区二区日本电影三级| 国产伦精品一区二区三区四那| 制服人妻中文乱码| 人妻久久中文字幕网| 亚洲第一欧美日韩一区二区三区| 黄色片一级片一级黄色片| 国产美女午夜福利| 欧美xxxx黑人xx丫x性爽| 欧美zozozo另类| 90打野战视频偷拍视频| 热99re8久久精品国产| 18禁在线播放成人免费| 中文字幕人妻丝袜一区二区| 精品乱码久久久久久99久播| 色吧在线观看| 亚洲精品成人久久久久久| 97碰自拍视频| 国产精品影院久久| 欧美日本亚洲视频在线播放| 国产真实伦视频高清在线观看 | 精品日产1卡2卡| 法律面前人人平等表现在哪些方面| 国产av一区在线观看免费| 欧美国产日韩亚洲一区| 国产综合懂色| 在线看三级毛片| 国产亚洲av嫩草精品影院| 亚洲精华国产精华精| 免费观看人在逋| 噜噜噜噜噜久久久久久91| 日韩精品青青久久久久久| 日本黄色视频三级网站网址| 免费观看人在逋| 国产不卡一卡二| 国产一区在线观看成人免费| 搡老岳熟女国产| 热99在线观看视频| 国产99白浆流出| 人妻夜夜爽99麻豆av| 网址你懂的国产日韩在线| 麻豆一二三区av精品| 国产激情欧美一区二区| 高潮久久久久久久久久久不卡| 成人欧美大片| 日韩欧美一区视频在线观看 | 成人鲁丝片一二三区免费| 午夜免费激情av| 精品一区二区三区视频在线| 久久久色成人| 国语对白做爰xxxⅹ性视频网站| 菩萨蛮人人尽说江南好唐韦庄| 午夜爱爱视频在线播放| 欧美成人一区二区免费高清观看| 成人无遮挡网站| 一二三四中文在线观看免费高清| 97在线视频观看| 夫妻午夜视频| 亚洲欧洲日产国产| 亚洲一级一片aⅴ在线观看| 国产一区二区在线观看日韩| 最新中文字幕久久久久| 国产黄频视频在线观看| 亚洲成色77777| 久久久久久久久中文| av线在线观看网站| 一本一本综合久久| 狂野欧美白嫩少妇大欣赏| 欧美xxxx性猛交bbbb| 中文乱码字字幕精品一区二区三区 | 男女视频在线观看网站免费| 卡戴珊不雅视频在线播放| 久久久国产一区二区| 97超视频在线观看视频| 91久久精品国产一区二区三区| 欧美日韩视频高清一区二区三区二| 又粗又硬又长又爽又黄的视频| 又大又黄又爽视频免费| 日韩不卡一区二区三区视频在线| 街头女战士在线观看网站| 男人舔奶头视频| eeuss影院久久| av免费在线看不卡| 亚洲熟女精品中文字幕| 男女边摸边吃奶| 大话2 男鬼变身卡| 天天躁夜夜躁狠狠久久av| 中文天堂在线官网| 国内少妇人妻偷人精品xxx网站| 亚洲成人中文字幕在线播放| 日韩大片免费观看网站| 欧美精品国产亚洲| 777米奇影视久久| 深爱激情五月婷婷| 欧美一区二区亚洲| 亚洲最大成人av| 日日摸夜夜添夜夜爱| 欧美性感艳星| 午夜福利在线观看吧| 久99久视频精品免费| 国产精品一区www在线观看| 亚洲国产精品专区欧美| 亚洲国产精品sss在线观看| 男女下面进入的视频免费午夜| 高清日韩中文字幕在线| 国产男人的电影天堂91| 中国国产av一级| 精品一区二区免费观看| 日日撸夜夜添| 久久久精品94久久精品| 亚州av有码| 丰满乱子伦码专区| 国产高清国产精品国产三级 | 秋霞伦理黄片| 在线观看人妻少妇| 99久久人妻综合| 蜜桃久久精品国产亚洲av| 直男gayav资源| 午夜久久久久精精品| 中文字幕久久专区| 欧美日本视频| 亚洲精品一二三| 高清视频免费观看一区二区 | 国产成年人精品一区二区| 久久久久久伊人网av| 亚洲怡红院男人天堂| 亚洲色图av天堂| 最近中文字幕2019免费版| 国产白丝娇喘喷水9色精品| 免费无遮挡裸体视频| 久久久久久久久久久免费av| 伊人久久精品亚洲午夜| 人妻一区二区av| 可以在线观看毛片的网站| 91精品一卡2卡3卡4卡| 熟妇人妻不卡中文字幕| 三级毛片av免费| 男人狂女人下面高潮的视频| 熟妇人妻不卡中文字幕| 中文字幕免费在线视频6| 99热这里只有是精品50| 欧美高清成人免费视频www| 国产精品99久久久久久久久| 欧美+日韩+精品| 亚洲av二区三区四区| av网站免费在线观看视频 | 国内揄拍国产精品人妻在线| 亚洲精品成人久久久久久| 一级毛片 在线播放| 日韩伦理黄色片| 国产精品无大码| 亚洲欧美成人综合另类久久久| 热99在线观看视频| 丰满人妻一区二区三区视频av| 18禁在线播放成人免费| 美女cb高潮喷水在线观看| 国产亚洲一区二区精品| 免费看av在线观看网站| 高清在线视频一区二区三区| 一级爰片在线观看| 亚洲在线自拍视频| 特级一级黄色大片| 肉色欧美久久久久久久蜜桃 | 日韩av在线免费看完整版不卡| 亚洲国产精品sss在线观看| 国产一区亚洲一区在线观看| 国产精品日韩av在线免费观看| 少妇猛男粗大的猛烈进出视频 | 简卡轻食公司| 国产91av在线免费观看| 国产大屁股一区二区在线视频| 国产伦理片在线播放av一区| 久久久久国产网址| 免费观看av网站的网址| 久久精品人妻少妇| 免费播放大片免费观看视频在线观看| 九色成人免费人妻av| 久久韩国三级中文字幕| 亚洲av免费高清在线观看| 久热久热在线精品观看| 久久久久久久亚洲中文字幕| 成人高潮视频无遮挡免费网站| 午夜福利在线观看免费完整高清在| 亚洲成人精品中文字幕电影| 午夜激情久久久久久久| 欧美日韩视频高清一区二区三区二| 久久午夜福利片| 国产精品伦人一区二区| 秋霞伦理黄片| 国产探花极品一区二区| 国产一区二区三区av在线| 国产精品一及| 日日干狠狠操夜夜爽| 非洲黑人性xxxx精品又粗又长| 亚洲图色成人| 久久精品国产亚洲av涩爱| 日韩电影二区| 中国美白少妇内射xxxbb| 亚洲欧美一区二区三区黑人 | 免费播放大片免费观看视频在线观看| 久久99精品国语久久久| 日本wwww免费看| 日韩av免费高清视频| 成人无遮挡网站| 欧美成人精品欧美一级黄| 亚洲成人一二三区av| av线在线观看网站| 久久久精品免费免费高清| 日本熟妇午夜| 神马国产精品三级电影在线观看| 国产 亚洲一区二区三区 | 中国国产av一级| 日日摸夜夜添夜夜爱| 国产精品久久久久久av不卡| av国产久精品久网站免费入址| 女人十人毛片免费观看3o分钟| 精品久久久久久久末码| 简卡轻食公司| av黄色大香蕉| 少妇高潮的动态图| 日本色播在线视频| 乱人视频在线观看| 午夜激情福利司机影院| 成人综合一区亚洲| 亚洲欧美精品自产自拍| 蜜臀久久99精品久久宅男| 美女国产视频在线观看| 午夜激情久久久久久久| 两个人视频免费观看高清| 国产精品熟女久久久久浪| 亚洲人与动物交配视频| 国产一区有黄有色的免费视频 | 欧美日韩在线观看h| 久久久久精品久久久久真实原创| 亚洲精品乱久久久久久| 天美传媒精品一区二区| 三级国产精品片| 免费人成在线观看视频色| 欧美日韩一区二区视频在线观看视频在线 | 欧美xxxx性猛交bbbb| 国产成人a区在线观看| .国产精品久久| 免费播放大片免费观看视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 日韩制服骚丝袜av| 国产成人freesex在线| 一级av片app| 亚洲一级一片aⅴ在线观看| 午夜福利在线观看免费完整高清在| 美女被艹到高潮喷水动态| 国产69精品久久久久777片| 十八禁国产超污无遮挡网站| 美女脱内裤让男人舔精品视频| 久久99蜜桃精品久久| 国产成年人精品一区二区| 丰满少妇做爰视频| 成人二区视频| 看免费成人av毛片| 国产真实伦视频高清在线观看| 丰满乱子伦码专区| 成年人午夜在线观看视频 | 老司机影院毛片| 日本午夜av视频| 欧美一区二区亚洲| 干丝袜人妻中文字幕| 久久久久免费精品人妻一区二区| 91久久精品电影网| 国产精品人妻久久久影院| 美女cb高潮喷水在线观看| 成人美女网站在线观看视频| 一区二区三区高清视频在线| 七月丁香在线播放| 国产黄片视频在线免费观看| 国产人妻一区二区三区在| av专区在线播放| 亚洲精品乱码久久久久久按摩| 我的女老师完整版在线观看| 婷婷色综合www| 中文字幕制服av| 看黄色毛片网站| 91久久精品电影网| 高清av免费在线| 18禁裸乳无遮挡免费网站照片| 精品亚洲乱码少妇综合久久| 欧美人与善性xxx| 亚洲自拍偷在线| 69av精品久久久久久| 亚洲成人一二三区av| 99久久精品一区二区三区| 国产精品综合久久久久久久免费| 国产一区二区亚洲精品在线观看| 视频中文字幕在线观看| 18禁在线无遮挡免费观看视频| 欧美日韩亚洲高清精品| 麻豆成人av视频| 午夜福利网站1000一区二区三区| 97超视频在线观看视频| 午夜精品在线福利| 亚洲丝袜综合中文字幕| 亚洲电影在线观看av| 亚洲av成人av| 亚洲人与动物交配视频| 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| 精品一区在线观看国产| 亚洲精品影视一区二区三区av| 99久国产av精品| 成年版毛片免费区| 97人妻精品一区二区三区麻豆| 99热全是精品| 亚洲av不卡在线观看| 熟妇人妻久久中文字幕3abv| 国产午夜精品久久久久久一区二区三区| 午夜激情久久久久久久| 大片免费播放器 马上看| 成人鲁丝片一二三区免费| 日韩国内少妇激情av| 3wmmmm亚洲av在线观看| 91久久精品国产一区二区成人| 伊人久久国产一区二区| 亚洲国产日韩欧美精品在线观看| 黄片无遮挡物在线观看| 成人毛片a级毛片在线播放| 亚洲国产精品专区欧美| 久久久久久久久久黄片| 日韩成人av中文字幕在线观看| 一级黄片播放器| 搞女人的毛片| 亚洲怡红院男人天堂| 综合色丁香网| av国产久精品久网站免费入址| 中文字幕亚洲精品专区| 国产黄片美女视频| 亚洲av福利一区| 能在线免费看毛片的网站| 亚洲精品一区蜜桃| 国产黄片美女视频| 在线免费观看的www视频| 简卡轻食公司| 人妻一区二区av| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 成年免费大片在线观看| 三级经典国产精品| 搡女人真爽免费视频火全软件| 观看美女的网站| 午夜久久久久精精品| 日韩av在线免费看完整版不卡| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| 欧美日韩一区二区视频在线观看视频在线 | 欧美3d第一页| 国产一区二区三区综合在线观看 | 亚洲av一区综合| 午夜福利成人在线免费观看| 最近中文字幕2019免费版| 男人舔女人下体高潮全视频| 亚洲国产最新在线播放| 午夜福利成人在线免费观看| 三级经典国产精品| 日韩精品有码人妻一区| 18禁裸乳无遮挡免费网站照片| 国产色婷婷99| 国产午夜福利久久久久久| 精品久久久久久久久av| 精品一区二区三区视频在线| 91狼人影院| 草草在线视频免费看| 亚洲最大成人手机在线| 小蜜桃在线观看免费完整版高清| 深夜a级毛片| 亚洲高清免费不卡视频| 蜜桃亚洲精品一区二区三区| 国产黄片美女视频| 久久久国产一区二区| 麻豆成人午夜福利视频| 中文字幕av在线有码专区| 只有这里有精品99| 淫秽高清视频在线观看| 国产精品一二三区在线看| 免费大片黄手机在线观看| 街头女战士在线观看网站| 国产成人a∨麻豆精品| 亚洲在线观看片| 国产黄频视频在线观看| 亚洲av一区综合| 日本三级黄在线观看| 国产免费一级a男人的天堂| 超碰av人人做人人爽久久| 久久久久久久久久久丰满| 色综合色国产| 天堂√8在线中文| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| 在线免费观看不下载黄p国产| 亚洲av成人精品一区久久| 国产精品福利在线免费观看| 美女内射精品一级片tv| av黄色大香蕉| 两个人的视频大全免费| 免费无遮挡裸体视频| 永久网站在线| 亚洲精品国产成人久久av| 美女高潮的动态| 日本免费在线观看一区| 亚洲综合色惰| 日韩 亚洲 欧美在线| 久久久久久久久久成人| 七月丁香在线播放| 大片免费播放器 马上看| 亚洲美女搞黄在线观看| 亚洲国产日韩欧美精品在线观看| 看非洲黑人一级黄片| 日韩强制内射视频| videos熟女内射| 最近中文字幕2019免费版| 3wmmmm亚洲av在线观看| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 国产精品久久久久久久电影| 免费大片18禁| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区黑人 | 别揉我奶头 嗯啊视频| 日本黄大片高清| 日日摸夜夜添夜夜爱| 久久久久久久大尺度免费视频| 精品酒店卫生间| 久久久久久久久大av| 在线免费观看不下载黄p国产| 91精品一卡2卡3卡4卡| av国产免费在线观看| 精品人妻熟女av久视频| 一个人看视频在线观看www免费| 国产精品av视频在线免费观看| 成人性生交大片免费视频hd| 久久久久久久久久久免费av| 午夜福利高清视频| 卡戴珊不雅视频在线播放| 老女人水多毛片| 亚洲熟女精品中文字幕| 日本免费a在线| 黄色欧美视频在线观看| 久久久久精品久久久久真实原创| 毛片女人毛片| 看免费成人av毛片| 欧美另类一区| 久久精品国产鲁丝片午夜精品| 日本-黄色视频高清免费观看| 激情 狠狠 欧美| 亚洲国产成人一精品久久久| 免费观看在线日韩| 久久6这里有精品| 成人欧美大片| 搡女人真爽免费视频火全软件| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 国产精品无大码| 久久久久精品性色| 久久鲁丝午夜福利片| av又黄又爽大尺度在线免费看| 日韩一区二区三区影片| 久久久久久久久久久免费av| 久久精品综合一区二区三区| 极品少妇高潮喷水抽搐| 国产爱豆传媒在线观看| 18禁裸乳无遮挡免费网站照片| 国产成人精品福利久久| 在线免费观看的www视频| 18禁动态无遮挡网站| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄| 性色avwww在线观看| 亚洲精品一二三| 久久久久久伊人网av| 久久99热6这里只有精品| 亚洲欧美精品自产自拍| 亚洲av一区综合| 国产淫语在线视频| 哪个播放器可以免费观看大片| 嫩草影院入口| 免费看光身美女| 听说在线观看完整版免费高清| 免费观看精品视频网站| 色综合亚洲欧美另类图片| 久久草成人影院| 亚洲真实伦在线观看| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 一本久久精品| 啦啦啦韩国在线观看视频| 久久这里只有精品中国| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 建设人人有责人人尽责人人享有的 | 欧美日韩综合久久久久久| 久久久久久国产a免费观看| av在线老鸭窝| 亚洲国产精品专区欧美| 色视频www国产| 在线观看av片永久免费下载| 午夜免费激情av| 精品国产一区二区三区久久久樱花 | 97在线视频观看| 最近的中文字幕免费完整| 欧美不卡视频在线免费观看| 18禁在线播放成人免费| 中文字幕av在线有码专区| 免费不卡的大黄色大毛片视频在线观看 | 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情欧美在线| 天堂中文最新版在线下载 | 国产一区二区在线观看日韩| 三级国产精品片| 九草在线视频观看| 床上黄色一级片| 黄色欧美视频在线观看| 久久久久久久久大av| 国产久久久一区二区三区| 最新中文字幕久久久久| 在线免费观看不下载黄p国产| 网址你懂的国产日韩在线| 欧美激情在线99| 色综合色国产| 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 日韩制服骚丝袜av| 99热这里只有是精品在线观看| 男的添女的下面高潮视频| 丰满少妇做爰视频| 亚洲精品一二三| 国产精品人妻久久久影院| 国产在线一区二区三区精| 国产免费一级a男人的天堂| 好男人在线观看高清免费视频| 久久久亚洲精品成人影院| 日韩亚洲欧美综合| 日韩一本色道免费dvd| 免费在线观看成人毛片| 日本与韩国留学比较| 99热6这里只有精品| 国产av在哪里看| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 免费看a级黄色片| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人 | 国产 亚洲一区二区三区 | 日日啪夜夜爽| 亚洲精品日韩在线中文字幕| 97热精品久久久久久| 美女脱内裤让男人舔精品视频| 日日摸夜夜添夜夜爱| 日韩成人伦理影院| 日韩av免费高清视频| 中文字幕久久专区| 国产亚洲午夜精品一区二区久久 | 久久精品熟女亚洲av麻豆精品 | 99久国产av精品国产电影| 女人久久www免费人成看片| 欧美日韩视频高清一区二区三区二| 91狼人影院| 国产黄片视频在线免费观看| 色5月婷婷丁香| 亚洲aⅴ乱码一区二区在线播放| 亚洲av二区三区四区| 禁无遮挡网站| 22中文网久久字幕|