• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      因子分析法在質(zhì)譜成像數(shù)據(jù)分析中的應(yīng)用

      2014-09-02 09:30:29陳一唐等
      分析化學(xué) 2014年8期
      關(guān)鍵詞:因子分析

      陳一唐等

      摘要對(duì)因子分析法在質(zhì)譜成像數(shù)據(jù)分析中的應(yīng)用進(jìn)行了研究。本方法分析的質(zhì)譜成像數(shù)據(jù)來(lái)源于空氣動(dòng)力輔助離子源質(zhì)譜成像技術(shù),所用樣品為含有3種不同顏料(紅色、藍(lán)色、黑色)的筆跡樣品。對(duì)該樣品的成像數(shù)據(jù)進(jìn)行因子分析后,將成像數(shù)據(jù)分為了背景、黑色、藍(lán)色和紅色因子。分析結(jié)果顯示, m/z 4432, 4784, 3222(3442)分別在紅色、藍(lán)色、黑色因子中的貢獻(xiàn)值遠(yuǎn)大于其它質(zhì)荷比,因此是3種顏料的特征質(zhì)荷比。此結(jié)果與實(shí)際情況相符,證明使用因子分析方法對(duì)質(zhì)譜成像數(shù)據(jù)進(jìn)行分析和特征提取是可行的。對(duì)因子分析與主成分分析的成像數(shù)據(jù)處理結(jié)果進(jìn)行了比較,結(jié)果顯示,因子分析可以更簡(jiǎn)單和定量地對(duì)特征質(zhì)荷比進(jìn)行取舍,在生物標(biāo)志物提取、疾病診斷、藥理分析等方面有較大的應(yīng)用潛力。

      關(guān)鍵詞因子分析; 質(zhì)譜成像; 空氣動(dòng)力輔助離子源; 多元統(tǒng)計(jì)

      1引言

      近年來(lái),質(zhì)譜成像技術(shù)(Imaging mass spectrometry, IMS)作為質(zhì)譜研究中的熱點(diǎn)領(lǐng)域迅速發(fā)展,在了解組織病理特征、疾病診斷、藥物療效及發(fā)現(xiàn)生物標(biāo)志物等臨床應(yīng)用中發(fā)揮越來(lái)越重要的作用\[1~5\]。

      隨著質(zhì)譜成像技術(shù)的不斷發(fā)展\[6~8\],其質(zhì)量分辨率和空間分辨率都不斷提高,這導(dǎo)致原始成像的數(shù)據(jù)量變得非常龐大,通過(guò)人工篩選的方式對(duì)其進(jìn)行處理已經(jīng)越來(lái)越難。近年來(lái),研究人員開(kāi)始使用多元統(tǒng)計(jì)的方法\[9~12\],對(duì)質(zhì)譜成像數(shù)據(jù)進(jìn)行降維和特征提取。多元統(tǒng)計(jì)是一類數(shù)學(xué)方法的統(tǒng)稱,如何從中找出一個(gè)適合質(zhì)譜成像數(shù)據(jù)分析應(yīng)用的具體模型,成為質(zhì)譜成像領(lǐng)域的研究?jī)?nèi)容之一\[13,14\]。

      目前,常用的應(yīng)用于質(zhì)譜成像數(shù)據(jù)處理的多元統(tǒng)計(jì)方法包括主成分分析(Principal component analysis,PCA)\[15,16\]、聚類分析(Hierarchical cluster analysis, HCA)\[17\],偏最小二乘判別分析(Partial least square discriminate analysis,PLSDA)\[18\]等,這些方法成功地對(duì)大量質(zhì)譜數(shù)據(jù)進(jìn)行了降維和特征提取,推進(jìn)了質(zhì)譜成像技術(shù)在各領(lǐng)域的應(yīng)用。但是作為統(tǒng)計(jì)學(xué)的方法,這些常用方法所得到的結(jié)果數(shù)學(xué)意義偏多,往往較難對(duì)其給出符合實(shí)際意義的解釋。另外,相比使用其它技術(shù)確立的生物標(biāo)志物,這些方法提取的標(biāo)志物(質(zhì)荷比)通常較少,有可能遺漏掉有重要意義的特殊質(zhì)荷比。

      本研究基于空氣動(dòng)力輔助離子源質(zhì)譜成像技術(shù)(Air flowassisted ionization imaging mass spectrometry,AFAIIMS)\[19\],對(duì)因子分析(Factor analysis,F(xiàn)A)在質(zhì)譜成像數(shù)據(jù)分析中應(yīng)用的方法進(jìn)行了研究。選取一組混合筆跡樣品進(jìn)行了質(zhì)譜成像分析,獲得了原始質(zhì)譜成像數(shù)據(jù),使用因子分析法對(duì)該數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,將成像數(shù)據(jù)分為了背景、黑色、藍(lán)色和紅色因子。分析結(jié)果顯示, m/z 4432, 4784, 3222(3442)分別在紅色、藍(lán)色、黑色因子中的貢獻(xiàn)值遠(yuǎn)大于其它質(zhì)荷比,因此是3種顏料的特征質(zhì)荷比。此結(jié)果與實(shí)際情況相符,證明使用因子分析方法對(duì)質(zhì)譜成像數(shù)據(jù)進(jìn)行分析和特征提取是可行的。

      本研究還對(duì)因子分析與主成分分析的成像數(shù)據(jù)處理結(jié)果進(jìn)行了對(duì)比,結(jié)果表明,因子分析可以更簡(jiǎn)單和定量地對(duì)質(zhì)荷比進(jìn)行正確和全面的取舍,判斷和提取出多個(gè)質(zhì)荷比作為目標(biāo)樣品成分的綜合標(biāo)志物。相比目前常用的多元統(tǒng)計(jì)方法,因子分析法可以有效地對(duì)特殊因子進(jìn)行提取和反應(yīng),在生物標(biāo)志物提取、疾病診斷、藥理分析等方面有較大的應(yīng)用潛力。

      3結(jié)果與討論

      31對(duì)樣品進(jìn)行因子分析

      對(duì)樣品進(jìn)行AFAIIMS質(zhì)譜成像數(shù)據(jù)采集,并對(duì)采集到數(shù)據(jù)進(jìn)行因子分析。根據(jù)上文所述,由于需要預(yù)先設(shè)定將原始數(shù)據(jù)分類為多少個(gè)因子,因此,對(duì)不同數(shù)量因子的分析結(jié)果進(jìn)行了初步計(jì)算。結(jié)果顯示,將原始數(shù)據(jù)分類為4個(gè)因子將保留996%的信息,而設(shè)置更多的因子,保留信息增加的幅度較小,因此,將成像數(shù)據(jù)分類為4個(gè)因子。

      應(yīng)用因子分析方法,原始質(zhì)譜成像數(shù)據(jù)經(jīng)過(guò)處理后可以獲得4個(gè)因子,為了探索不同因子所代表的含義,以達(dá)到使用這4個(gè)因子解釋原始質(zhì)譜數(shù)據(jù)基本結(jié)構(gòu)的目的,計(jì)算了不同因子在樣品所有采樣點(diǎn)上的得分值。根據(jù)因子分析的數(shù)學(xué)特性,該得分值越大,說(shuō)明該因子對(duì)該樣品點(diǎn)的影響越大。

      類似于質(zhì)譜成像以某個(gè)質(zhì)荷比在樣品點(diǎn)上獲得的離子信號(hào)強(qiáng)度作為質(zhì)譜成像圖的顏色值,本研究以對(duì)應(yīng)樣品點(diǎn)的因子得分值作為顏色值,完成不同因子在不同樣品點(diǎn)上的因子得分圖,如圖1(E~H)所示。

      對(duì)比圖1A和圖1E可以發(fā)現(xiàn),因子1得分值大的樣品點(diǎn)的分布同有筆跡的樣品點(diǎn)的分布恰好相反,即同背景的分布一致。根據(jù)因子得分的數(shù)學(xué)意義,因子1對(duì)背景樣品點(diǎn)的影響大,對(duì)有筆跡的樣品點(diǎn)影響小,這說(shuō)明因子1主要影響了背景成分,因此,可以命名因子1為“背景因子”。

      使用因子分析得到的每個(gè)因子在數(shù)學(xué)上是一個(gè)1×n的矩陣,n與質(zhì)譜掃描范圍內(nèi)的質(zhì)荷比的個(gè)數(shù)相同。此因子矩陣中的每個(gè)值與不同的質(zhì)荷比一一對(duì)應(yīng),代表了該質(zhì)荷比在該因子中的影響大小。

      32因子分析與主成分分析的對(duì)比

      主成分分析是目前最常用的對(duì)質(zhì)譜成像數(shù)據(jù)進(jìn)行多元數(shù)據(jù)統(tǒng)計(jì)方法。本研究對(duì)樣品的原始質(zhì)譜成像數(shù)據(jù)進(jìn)行了主成分分析,并與因子分析結(jié)果對(duì)比,所得結(jié)果如圖2所示。在主成分分析中,選擇在主成分上得分值大的點(diǎn)作為特征點(diǎn),該點(diǎn)對(duì)應(yīng)的質(zhì)荷比為特征質(zhì)荷比。如4結(jié)論

      對(duì)因子分析方法在質(zhì)譜成像數(shù)據(jù)分析中的應(yīng)用進(jìn)行了研究,證明因子分析可以對(duì)質(zhì)譜成像數(shù)據(jù)進(jìn)行降維和特征提取。所用原始質(zhì)譜成像數(shù)據(jù)由AFAIIMS技術(shù)獲得,使用因子分析對(duì)該數(shù)據(jù)進(jìn)行分析后,質(zhì)譜成像數(shù)據(jù)可以使用4個(gè)因子進(jìn)行分類。每個(gè)樣品成分,即每種顏料樣品依賴一種因子的影響,能清晰地觀察各個(gè)因子在整個(gè)樣品上的作用。確定不同因子的意義后,通過(guò)觀察不同質(zhì)荷比在因子中的貢獻(xiàn)值大小,成功提取出了樣品成分的特征質(zhì)荷比。

      與目前常用的主成分分析等多元統(tǒng)計(jì)方法相比,因子分析能得到符合實(shí)際背景和意義的結(jié)果。因子分析法可以對(duì)不同質(zhì)荷比在因子數(shù)組中的比重進(jìn)行定量分析,并據(jù)此對(duì)特征質(zhì)荷比進(jìn)行正確和全面的取舍,有利于提取影響較低, 但不可忽略的特征質(zhì)荷比。使用因子分析的方法,可以提取多種質(zhì)荷比作為樣品成分的綜合標(biāo)志物,在癌癥標(biāo)志物提取等樣品成分復(fù)雜的領(lǐng)域中有較大的應(yīng)用潛力。

      2Pevsner P H, Melamed J, Remsen T, Kogos A, Francois F, Kessler P, Stern A, Anand S Biomakers Med, 2009, 3(1): 55-69

      3Seeley E H, Caprioli R M Trends Biotechnol, 2011, 29(3): 136-143

      4YANG ShuiPing, CHEN HuanWen, YANG YuLing, HU Bin, ZHANG Xie, ZHOU YuFang, ZHANG LiLi, GU HaiWei Chinese J Anal Chem, 2009, 37(3): 315-318

      楊水平, 陳煥文, 楊宇玲, 胡 斌, 張 燮, 周瑜芬, 張麗麗, 顧海威 分析化學(xué), 2009, 37(3): 315-318

      5WEI KaiHua, ZHANG XueMin,YANG SongCheng Journal of Instrumental Analysis, 2007, 26(S1): 12-14

      魏開(kāi)華, 張學(xué)敏, 楊松成 分析測(cè)試學(xué)報(bào), 2007, 26(S1): 12-14

      6Ifa D R, Wiseman J M, Song Q, Cooks R G Int J Mass Spectrom, 2007, 259(1): 8-15

      7Harris G A, Nyadong L, Fernandez F M Analyst, 2008, 133(10): 1297-1301

      8YANG ShuiPing, HU Bin, LI JianQiang, HAN Jing, ZHANG Xie, CHEN HuanWen Chinese J Anal Chem, 2009, 37(5): 691-694

      楊水平, 胡 斌, 李建強(qiáng), 韓 京, 張 燮, 陳煥文 分析化學(xué), 2009, 37(5): 691-694

      9Jones E A, Remoortere A, Zeijl R J M, Hogendoorn P C W, Bovée J V M G, Deelder A M, McDonnell L A PloS one, 2011, 6(1): 1-14

      10Bonnel D, Longuespee R, Franck J, Roudbaraki M, Gosset P, Day R, Salzet M, Fournier I Anal Bioanal Chem, 2011, 401(1): 149-165

      11Reindl W, Bowen B P, Balamotis M A, Greenc J E, Northen T R Integr Biol, 2011, 3(4): 460-467

      12Dill A L, Eberlin L S, Zheng C, Costa A B, Ifa D R, Cheng L, Masterson T A, Koch M O, Vitek O, Cooks R G Anal Bioanal Chem, 2010, 398(7): 2969-2978

      13Fonville J M, Carter C, Cloarec O, Nicholson J K, Lindon J C, Bunch J, Holmes E Anal Chem, 2012, 84(3): 1310-1319

      14Trede D, Kobarg J H, Oetjen J, Thiele H, Maass P, Alexandrov T J Integrative Bioinformatics, 2012, 9(1): 189

      15Pan Z Z, Gu H W, Talaty N, Chen H W, Shanaiah N, Hainline B E, Cooks R G, Raftery D Anal Bioanal Chem, 2007, 387(2): 539-549

      16Gu H W, Pan Z Z, Xi B W, Asiago V, Musselman B, Raftery D Anal Chim Acta, 2011, 686(1): 57-63

      17Bonnel D, Longuespee R, Franck J, Roudbaraki M, Gosset P, Day R, Salzet M, Fournier I Anal Bioanal Chem, 2011, 401(1): 149-165

      18Pirro V, Eberlin L S, Oliveri P, Cooks R G Analyst, 2012, 137(10): 2374-2380

      19Luo Z, He J, Chen Y, He J, Gong T, Tang F, Wang X, Zhang R, Huang L, Zhang L, Lv H, Ma S, Fu Z, Chen X, Yu S, Abliz Z Anal Chem, 2013, 85(5): 2977-2982

      20He J, Tang F, Luo Z, Chen Y, Xu J, Zhang R, Wang X, Abliz Z Rapid Commun Mass Spectrom, 2011, 25(7): 843-850AbstractThe factor analysis method applied in imaging mass spectrometry data analysis was studied The imaging mass spectrometric data were obtained by air flowassisted ionization imaging mass spectrometry method The sample contained some symbols which were drawn on slides using three different inks (red, blue, black) The imaging data analyzed by factor analysis method were divided into the background, black, blue and red factor The results showed that the scores of m/z=4432, 4784, 3222(3442) in red, blue, black factor respectively were much larger than others Therefore, they were markers of three inks The results accorded with actual condition well and proved that the application of factor analysis in imaging mass spectrometric data analysis was feasible The data analysis results of factor analysis and principal component analysis were compared The results showed that the target sample markers could be extracted by factor analysis simply and quantitatively It was of great potential in biomarker extraction, diseases diagnose and pharmacological analysis

      KeywordsFactor analysis; Imaging mass spectrometry; Air flowassisted ionization; Multiple statistical analysis

      20He J, Tang F, Luo Z, Chen Y, Xu J, Zhang R, Wang X, Abliz Z Rapid Commun Mass Spectrom, 2011, 25(7): 843-850AbstractThe factor analysis method applied in imaging mass spectrometry data analysis was studied The imaging mass spectrometric data were obtained by air flowassisted ionization imaging mass spectrometry method The sample contained some symbols which were drawn on slides using three different inks (red, blue, black) The imaging data analyzed by factor analysis method were divided into the background, black, blue and red factor The results showed that the scores of m/z=4432, 4784, 3222(3442) in red, blue, black factor respectively were much larger than others Therefore, they were markers of three inks The results accorded with actual condition well and proved that the application of factor analysis in imaging mass spectrometric data analysis was feasible The data analysis results of factor analysis and principal component analysis were compared The results showed that the target sample markers could be extracted by factor analysis simply and quantitatively It was of great potential in biomarker extraction, diseases diagnose and pharmacological analysis

      KeywordsFactor analysis; Imaging mass spectrometry; Air flowassisted ionization; Multiple statistical analysis

      20He J, Tang F, Luo Z, Chen Y, Xu J, Zhang R, Wang X, Abliz Z Rapid Commun Mass Spectrom, 2011, 25(7): 843-850AbstractThe factor analysis method applied in imaging mass spectrometry data analysis was studied The imaging mass spectrometric data were obtained by air flowassisted ionization imaging mass spectrometry method The sample contained some symbols which were drawn on slides using three different inks (red, blue, black) The imaging data analyzed by factor analysis method were divided into the background, black, blue and red factor The results showed that the scores of m/z=4432, 4784, 3222(3442) in red, blue, black factor respectively were much larger than others Therefore, they were markers of three inks The results accorded with actual condition well and proved that the application of factor analysis in imaging mass spectrometric data analysis was feasible The data analysis results of factor analysis and principal component analysis were compared The results showed that the target sample markers could be extracted by factor analysis simply and quantitatively It was of great potential in biomarker extraction, diseases diagnose and pharmacological analysis

      KeywordsFactor analysis; Imaging mass spectrometry; Air flowassisted ionization; Multiple statistical analysis

      猜你喜歡
      因子分析
      基于GPS數(shù)據(jù)的旅游時(shí)空行為評(píng)價(jià)研究
      中國(guó)創(chuàng)業(yè)板生物制藥類上市公司成長(zhǎng)性評(píng)價(jià)體系實(shí)證研究
      中國(guó)各地區(qū)主要空氣污染物結(jié)構(gòu)的因子分析
      我國(guó)31省城鎮(zhèn)居民消費(fèi)水平(2007)
      基于因子分析法的二胎概念股投資價(jià)值分析
      基于主導(dǎo)產(chǎn)業(yè)視角的戰(zhàn)略性新興產(chǎn)業(yè)識(shí)別以及實(shí)證研究
      基于省會(huì)城市經(jīng)濟(jì)發(fā)展程度的實(shí)證分析
      山東省縣域經(jīng)濟(jì)發(fā)展評(píng)價(jià)研究
      商(2016年27期)2016-10-17 07:17:42
      實(shí)證分析會(huì)計(jì)信息對(duì)股價(jià)的影響
      商(2016年27期)2016-10-17 05:39:59
      京津冀一體化下物流網(wǎng)絡(luò)節(jié)點(diǎn)城市選址規(guī)劃
      庆阳市| 甘洛县| 灵川县| 新兴县| 象州县| 龙井市| 蒙山县| 区。| 夹江县| 大荔县| 邵武市| 民权县| 凤阳县| 商都县| 隆子县| 光泽县| 红安县| 桃源县| 吴忠市| 佛坪县| 察隅县| 齐齐哈尔市| 镇坪县| 当雄县| 许昌县| 尖扎县| 宁城县| 溧水县| 正定县| 周口市| 射阳县| 洪江市| 思南县| 阳城县| 延川县| 阜宁县| 金堂县| 双峰县| 聂拉木县| 都昌县| 社旗县|