• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Strong Rates of Convergence for Arrays of Rowwise Extended NegativelyDependent Random Variables

    2014-07-19 11:47:55ZHENGLuluXUChenHUANGXufengWANGXuejun

    ZHENG Lu-lu,XU Chen,HUANG Xu-feng,WANG Xue-jun

    (School of Mathematical Science,Anhui University,Hefei 230601,China)

    On the Strong Rates of Convergence for Arrays of Rowwise Extended Negatively
    Dependent Random Variables

    ZHENG Lu-lu,XU Chen,HUANG Xu-feng,WANG Xue-jun

    (School of Mathematical Science,Anhui University,Hefei 230601,China)

    A general result on the strong convergence rate and complete convergence for arrays of rowwise extended negatively dependent random variables is established.As applications,some well-known results on negatively dependent random variables can be easily extended to the case of arrays of rowwise extended negatively dependent random variables.

    extended negatively dependent random variables;negatively dependent;complete convergence

    §1.Introduction

    The concept of complete convergence for a sequence of random variables was introduced by Hsu and Robbins[1]as follows.A sequence{Un,n≥1}of random variables converges completely to the constant θ,if

    In view of the Borel-Cantelli lemma,this implies that Xn→θ almost surely.Therefore, the complete convergence is a very important tool in establishing almost sure convergenceof summation of random variables as well as weighted sums of random variables.Moreover, Hsu and Robbins[1]proved that the sequence of arithmetic means of independent identically distribution(i.i.d)random variables converges completely to the expected value if the variance of the summands is f i nite.Erd¨os[2]proved the converse.The result of Hsu-Robbins-Erd¨os is a fundamental theorem in probability theory and this result has been generalized and extended in several directions,see Gut[3],Hu et al[45],Chen et al[6],Sung[78],Wang et al[9],Zhou et al[10],Wu[1113],Shen[1415]and so forth.The main purpose of this investigation is to provide the complete convergence results for weighted sums of arrays of rowwise extended negatively dependent(END,in short)random variables.The material in this note is closely related to what proposed by Chen et al[6]and Qiu et al[16].

    To proved the main results,we need some notions and some important lemmas.

    The following dependence structure was introduced by Liu[17].

    Def i nition 1.1We call random variables{Xn,n≥1}END if there exists a constant M>0 such that both

    and

    hold for each n≥1 and all real numbers x1,x2,···,xn.

    In the case M=1,the notion of END random variables reduces to the well-know notion of so-called negatively dependent(ND)random variables,which was introduced by Lehmann[18](cf. also Joag-Dev and Proschan[19]).As it mentioned in Liu[17],the END structure is substantially more general than ND structure,it can ref l ect not only a negative dependence structure but also a positive one,to some extent.Liu[17]pointed out that the END random variables can be taken as negatively or positively dependent and provide some interesting examples to support this idea.Joag-Dev and Proschan[19]also pointed out that negatively associated(NA)random variables must be ND and ND is not necessarily NA,thus NA random variables are END. For more details about END random variables,one can refer to Liu[20],Shen[21],Wang and Wang[22],and so forth.

    Throughout this article,let{Xni,1≤i≤kn,n≥1}be a sequence of END random variables def i ned on a f i xed probability space(?,F,P)with the same M in each row,where{kn,n≥1} be a sequence of positive integers such that limn→∞kn=∞.Denote X+=max{0,X}, logx=max{1,lnx},where lnx denotes the natural logarithm.C and M will represent positive constants which values may change from one place to another.For t>0,letn≥1.

    §2.Preliminary Lemmas

    The following there lemmas provide us some useful properties for END random variables. The f i rst one is a basic property for END random variables,which was obtained by Liu[20].

    Lemma 2.1[20]Let random variables X1,X2,···,Xnbe END.

    (i)If f1,f2,···,fnare all nondecreasing(or nonincreasing)functions,then random variables f1(X1),f2(X2),···,fn(Xn)are END.

    (ii)For each n≥1,there exists a constant M>0 such that

    The next one is a simple corollary of the previous one.For the proof,one can refer to Shen[21].

    Lemma 2.2[21]Let{Xn,n≥1}be a sequence of END random variables and{tn,n≥1} be a sequence of nonnegative numbers(or nonpositive numbers),then for each n≥1,there exists a constant M>0 such that

    As a byproduct,for any t∈?,

    The last one is a very important probability inequality for END random variables,which was obtained by Shen[21].

    Lemma 2.3[21]Let{Xn,n≥1}be a sequence of END random variables with EXi=0 for each i≥1.Then for any h,x,y>0,there exists a positive constant M such that

    §3.Main Results and Their Proofs

    In this section,we will study the complete convergence of weighted sums for arrays of rowwise END random variables,which generalize the corresponding ones for ND random variables.

    Theorem 3.1Let{Xni,1≤i≤kn,n≥1}be an array of rowwise END random variables. Assume that{ani,1≤i≤kn,n≥1}is an array of real numbers and{an,n≥1}is a sequence of positive constants.If for any ε>0 and some δ>0,

    and there exists q≥1 such that

    Then

    ProofNote that for any f i xed ε>0 and n≥1,

    By condition(3.1),it suffices to show that

    Denote for 1≤i≤knand n≥1,

    We have

    For I,by Markov’s inequality and condition(3.1),we have

    For any y>0,let d=min{1,y/6δ},

    Note that

    Hence,it is sufficient to prove that when n∈N2,it’s also true.By Lemma 2.1,we know that {Yni?EYni,1≤i≤kn,n≥1}is an array of rowwise END random variables.By Lemma 2.3 we have that

    Note that for n∈N2,

    It is easy to check that for n∈N2,

    which implies that for n∈N2,

    Therefore,by(3.1)we obtain

    Now we prove J2<∞.When n∈N2,we have that≤1.Let y=ε/2q,by conditions(3.1)and(3.2),we obtain

    This completes the proof of the theorem.

    By Theorem 3.1,we can get the following corollary immediately.The details are omitted.

    Corollary 3.1Let{Xni,1≤i≤kn,n≥1}be an array of rowwise END random variables.Assume that{ani,1≤i≤kn,n≥1}is an array of real numbers and{an,n≥1}is a sequence of positive constants.If conditions(3.1)and(3.2)of Theorem 3.1 satisfy and

    Then

    The following corollary is an application of Corollary 3.1.

    Corollary 3.2Let{Xni,1≤i≤kn,n≥1}be an array of rowwise END random variables with EXni=0,for all 1≤i≤kn,n≥1.Assume that{ani,1≤i≤kn,n≥1}is an array of real numbers and{an,n≥1}be a sequence of positive constants.Let Φ(x)be a real function such that for some δ>0,

    Suppose that for all ε>0,(3.1)satisf i es and there exists some q≥1,such that

    and

    Then

    ProofWe will check the conditions of Corollary 3.1 are satisf i ed.It is easily seen that

    Since EXni=0,it follows that

    which implies that

    The desired result follows from Corollary 3.1 immediately.The proof is complete.

    With the Theorem 3.1 accounted for,we can get the following result for arrays of rowwise END random variables with mean zero.

    Theorem 3.2Let{Xni,1≤i≤kn,n≥1}be an array of rowwise END random variables with EXni=0.Assume that{ani,1≤i≤kn,n≥1}is an array of real numbers and {an,n≥1}be a sequence of positive constants.Assume that for any ε>0 and some δ>0,

    and there exist q≥1 and 0<t≤2 such that

    Then

    ProofIt suffices to prove that condition(3.2)of Theorem 3.1 is satisf i ed.Let 0<t≤2, we have

    Then

    By condition(3.5),for any f i xed ε>0 and n large enough,

    Therefore,by EXni=0,we have for n large enough that

    By the same argument as in the proof of Theorem 3.1,the proof of the Theorem 3.2 is completed.

    AcknowledgementThe authors are most grateful to the editor and anonymous referees for careful reading of the manuscript and valuable suggestions which helped in signif i cantly improving an earlier version of this paper.

    [1]HSU P,ROBBINS H.Complete convergence and the law of large numbers[J].Proceeding of the National Academy of Science of the United States of America,1947,33(2):25-31.

    [2]ERD¨OS P.On a theorem of Hsu and Robbins[J].The Annals of Mathematical Statistics,1949,20:286-291.

    [3]GUT A.On complete convergence in the law of large numbers for subsequences[J].Annals of Probability, 1985,13(4):1286-1291.

    [4]HU T C,SZYNAL D,VOLODIN A.A note on complete convergence for arrays[J].Statistics and Probability Letters,1998,38(1):27-31.

    [5]HU T C,VOLODIN A.A note on complete convergence for arrays[J].Statistics and Probability Letters, 2000,47(2):209-211.

    [6]CHEN Ping-yan,HU T C,LIU Xiang-dong,et al.On complete convergence for arrays of rowwise negatively associated random variables[J].Theory of Probability and Its Applications,2008,52:323-328.

    [7]SUNG S H.Complete convergence for weighted sums of random variables[J].Statistics and Probability Letters,2007,77(3):303-311.

    [8]SUNG S H.A note on the complete convergence for arrays of rowwise independent random elements[J]. Statistics and Probability Letters,2008,78(11):1283-1289.

    [9]WANG Xue-jun,HU Shu-he,YANG Wen-zhi.Complete convergence for arrays of rowwise negatively orthant dependent random variables[J].RACSAM,2012,106:235-245.

    [10]ZHOU Xin-cai,TAN Chang-chun,LIN Jin-guan.On the strong laws for weighted sums of ρ?-mixing random variables[J].Journal of Inequalities and Applications,2011,2011(1):1-8.

    [11]WU Qun-ying.A strong limit theorem for weighted sums of sequences of negatively dependent random variables[J].Journal of Inequalities and Applications,2010,2010(1):1-8.

    [12]WU Qun-ying.Sufficient and necessary conditions of complete convergence for weighted sums of PNQD random variables[J].Journal of Applied Mathematics,2012,2012(1):1-10.

    [13]WU Qun-ying.A complete convergence theorem for weighted sums of arrays of rowwise negatively dependent random variables[J].Journal of Inequalities and Applications,2012,2012(1):1-10.

    [14]SHEN Ai-ting.On strong convergence for weighted sums of a class of random variables[J].Abstract and Applied Analysis,2013,Volume 2013,2013(1):1-7.

    [15]SHEN Ai-ting,WU Ran-chao.Strong convergence for sequences of asymptotically almost negatively associated random variables[J].Stochastics:An International Journal of Probability and Stochastic Processes, 2014,86(2):291-303.

    [16]QIU De-hua,CHANG K C,ANTONINI R G,et al.On the strong rates of convergence for arrays of rowwise negatively dependent random variables[J].Stochastic Analysis and Application,2011,29:375-385.

    [17]LIU Li.Precise large deviations for dependent random variables with heavy tails[J].Statistics and Probability Letters,2009,79(9):1290-1298.

    [18]LEHMANN E.Some concepts of dependence[J].The Annals of Mathematical Statistic,1966,37:1137-1153.

    [19]JOAV-DEV K.,PROSCHAN F.Negative association of random variables with applications[J].The Annals of Statistic,1983,11:286-295.

    [20]LIU Li.Necessary and sufficient conditions for moderate deviations of dependent random variables with heavyitails[J].Science in China Series A:Mathematics,2010,53(6):1421-1434.

    [21]SHEN Ai-ting.Probability inequalities for END sequence and their applications[J].Journal of Inequalities and Applications,2011,2011(1):1-12.

    [22]WANG Shi-jie,WANG Wen-sheng.Extended precise large deviations of random sums in the presence of END structure and consistent variation[J].Journal of Applied Mathematics,2012,2012(1):1-12.

    tion:60F15

    1002–0462(2014)04–0592–10

    date:2013-04-21

    Supported by the National Natural Science Foundation of China(11201001);Supported by the Natural Science Foundation of Anhui Province(1208085QA03,1308085QA03);Supported by the Research Teaching Model Curriculum of Anhui University(xjyjkc1407);Supported by the Students Science Research Training Program of Anhui University(KYXL2014017)

    Biographies:ZHENG Lu-lu(1989-),female,native of Hefei,Anhui,M.S.D.,engages in probability limit theorem;WANG Xue-jun(1981-),male,native of Hefei,Anhui,an associate professor of Anhui Universiry, Ph.D.,engages in probability limit theorem.

    CLC number:O211.4Document code:A

    淫妇啪啪啪对白视频| 国产精品久久久人人做人人爽| 人人妻人人澡欧美一区二区| 日韩免费av在线播放| 老熟妇仑乱视频hdxx| 一区二区三区高清视频在线| 女同久久另类99精品国产91| 精品一区二区三区视频在线观看免费| 婷婷精品国产亚洲av| 国产精品1区2区在线观看.| 国产99白浆流出| 两个人的视频大全免费| 不卡一级毛片| 亚洲专区中文字幕在线| 成人三级黄色视频| 国产精品久久久人人做人人爽| 久久中文看片网| 国产私拍福利视频在线观看| 免费电影在线观看免费观看| 亚洲精品色激情综合| 日韩欧美三级三区| 波多野结衣高清作品| 九色成人免费人妻av| 我要搜黄色片| 性色av乱码一区二区三区2| 少妇裸体淫交视频免费看高清 | 亚洲熟妇中文字幕五十中出| 99精品久久久久人妻精品| 这个男人来自地球电影免费观看| 一边摸一边抽搐一进一小说| 99在线视频只有这里精品首页| 久久久国产成人免费| 国产麻豆成人av免费视频| 又爽又黄无遮挡网站| √禁漫天堂资源中文www| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美日韩高清在线视频| 欧美日本视频| 日韩国内少妇激情av| 变态另类成人亚洲欧美熟女| 成年版毛片免费区| 成人特级黄色片久久久久久久| 伊人久久大香线蕉亚洲五| 国产又色又爽无遮挡免费看| 久久中文看片网| 国产黄a三级三级三级人| or卡值多少钱| 亚洲国产精品成人综合色| 色精品久久人妻99蜜桃| 国产成人影院久久av| 国产欧美日韩一区二区精品| x7x7x7水蜜桃| 老司机福利观看| 久久久久精品国产欧美久久久| 啦啦啦观看免费观看视频高清| 啦啦啦观看免费观看视频高清| 91九色精品人成在线观看| 国产免费男女视频| 亚洲最大成人中文| 久久国产精品影院| 亚洲成人久久性| av中文乱码字幕在线| www日本黄色视频网| 黄色女人牲交| 久久精品影院6| 听说在线观看完整版免费高清| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 欧美性猛交╳xxx乱大交人| 午夜福利免费观看在线| 一个人免费在线观看电影 | 精品国产乱码久久久久久男人| 欧美日韩亚洲综合一区二区三区_| 在线观看美女被高潮喷水网站 | 亚洲性夜色夜夜综合| 俄罗斯特黄特色一大片| 久久亚洲真实| 在线观看免费午夜福利视频| 少妇的丰满在线观看| 亚洲av成人精品一区久久| 91九色精品人成在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日本免费一区二区三区高清不卡| 最好的美女福利视频网| 欧美在线黄色| 久久天堂一区二区三区四区| 国产精品爽爽va在线观看网站| 久久中文字幕一级| 亚洲欧美一区二区三区黑人| www.www免费av| 国产真实乱freesex| 可以免费在线观看a视频的电影网站| 色尼玛亚洲综合影院| 日日摸夜夜添夜夜添小说| 国产午夜精品论理片| 国产精品亚洲一级av第二区| 午夜福利在线在线| 午夜a级毛片| 久久精品aⅴ一区二区三区四区| 香蕉av资源在线| 色综合站精品国产| 69av精品久久久久久| 又大又爽又粗| 操出白浆在线播放| 亚洲av电影不卡..在线观看| 天堂影院成人在线观看| 一级毛片高清免费大全| 国产精品一区二区精品视频观看| 老汉色∧v一级毛片| 村上凉子中文字幕在线| 在线观看一区二区三区| 免费av毛片视频| 免费高清视频大片| 欧美性猛交╳xxx乱大交人| 久久天躁狠狠躁夜夜2o2o| 亚洲色图 男人天堂 中文字幕| 在线看三级毛片| 久久伊人香网站| 一级毛片精品| 国内精品一区二区在线观看| 欧美成人午夜精品| 午夜福利高清视频| 国产野战对白在线观看| 国产91精品成人一区二区三区| 国产欧美日韩精品亚洲av| 一个人免费在线观看电影 | 大型av网站在线播放| 日日干狠狠操夜夜爽| 真人一进一出gif抽搐免费| 久久亚洲真实| 视频区欧美日本亚洲| videosex国产| 一个人观看的视频www高清免费观看 | 91麻豆av在线| 免费观看精品视频网站| 国产成+人综合+亚洲专区| 欧美日韩黄片免| av中文乱码字幕在线| 91麻豆精品激情在线观看国产| 90打野战视频偷拍视频| 亚洲国产欧美一区二区综合| 在线观看日韩欧美| 国产精品亚洲av一区麻豆| 中文在线观看免费www的网站 | 国产午夜精品久久久久久| 色播亚洲综合网| 久99久视频精品免费| 狂野欧美激情性xxxx| 男女那种视频在线观看| 国产1区2区3区精品| 亚洲va日本ⅴa欧美va伊人久久| 欧美三级亚洲精品| 国产又色又爽无遮挡免费看| 黄片小视频在线播放| 女生性感内裤真人,穿戴方法视频| 天天添夜夜摸| 色精品久久人妻99蜜桃| 黄色片一级片一级黄色片| 国产久久久一区二区三区| 麻豆一二三区av精品| 亚洲欧美精品综合一区二区三区| 久久久久久九九精品二区国产 | 欧美黄色淫秽网站| 啦啦啦观看免费观看视频高清| 一本大道久久a久久精品| 色哟哟哟哟哟哟| 国产三级在线视频| 岛国视频午夜一区免费看| 欧美日韩中文字幕国产精品一区二区三区| 免费人成视频x8x8入口观看| 毛片女人毛片| 欧美中文综合在线视频| 久久 成人 亚洲| 精品不卡国产一区二区三区| 国产三级在线视频| 亚洲精品粉嫩美女一区| 午夜福利在线观看吧| aaaaa片日本免费| 日韩欧美在线二视频| 一级毛片高清免费大全| 又紧又爽又黄一区二区| 成人av一区二区三区在线看| 日韩精品免费视频一区二区三区| 国产精品一区二区三区四区久久| 欧美性猛交╳xxx乱大交人| av有码第一页| 啪啪无遮挡十八禁网站| bbb黄色大片| 精品久久久久久久久久免费视频| 久久久久免费精品人妻一区二区| 人妻夜夜爽99麻豆av| 国内揄拍国产精品人妻在线| 日韩欧美免费精品| 亚洲五月婷婷丁香| 欧美另类亚洲清纯唯美| 真人做人爱边吃奶动态| 搞女人的毛片| 此物有八面人人有两片| 美女黄网站色视频| 欧美在线一区亚洲| 国产亚洲欧美98| 久久 成人 亚洲| 日本黄色视频三级网站网址| 日韩成人在线观看一区二区三区| 丰满人妻一区二区三区视频av | 久久婷婷人人爽人人干人人爱| 丰满的人妻完整版| 中文字幕熟女人妻在线| 麻豆国产av国片精品| 最新在线观看一区二区三区| 欧美一级a爱片免费观看看 | 亚洲狠狠婷婷综合久久图片| 一边摸一边抽搐一进一小说| 欧美成人免费av一区二区三区| 成人永久免费在线观看视频| 国产99白浆流出| 精品国产美女av久久久久小说| а√天堂www在线а√下载| 好男人在线观看高清免费视频| 男女那种视频在线观看| 亚洲中文字幕日韩| 美女黄网站色视频| 老鸭窝网址在线观看| 97超级碰碰碰精品色视频在线观看| 人妻丰满熟妇av一区二区三区| 在线观看www视频免费| 草草在线视频免费看| cao死你这个sao货| 91麻豆av在线| 国产精品乱码一区二三区的特点| 男人舔奶头视频| 一个人免费在线观看的高清视频| 国产一区二区激情短视频| 成人高潮视频无遮挡免费网站| 久久久精品大字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲国产看品久久| 亚洲性夜色夜夜综合| 亚洲人与动物交配视频| 亚洲人成网站高清观看| 在线观看66精品国产| 亚洲美女视频黄频| cao死你这个sao货| 校园春色视频在线观看| 国产精品乱码一区二三区的特点| 男女午夜视频在线观看| 舔av片在线| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩高清在线视频| 小说图片视频综合网站| 美女黄网站色视频| 亚洲欧美日韩高清专用| 国产又黄又爽又无遮挡在线| 手机成人av网站| 亚洲国产精品999在线| 午夜亚洲福利在线播放| 久久草成人影院| 久久久久免费精品人妻一区二区| 午夜福利18| 叶爱在线成人免费视频播放| 免费在线观看成人毛片| 天堂av国产一区二区熟女人妻 | 国产精品乱码一区二三区的特点| 欧美日本亚洲视频在线播放| 舔av片在线| 国产日本99.免费观看| 黄色a级毛片大全视频| 日本黄大片高清| 欧美黑人欧美精品刺激| 真人一进一出gif抽搐免费| 正在播放国产对白刺激| 变态另类成人亚洲欧美熟女| 欧美黑人精品巨大| 在线观看午夜福利视频| 国产又黄又爽又无遮挡在线| 国产黄片美女视频| 在线视频色国产色| а√天堂www在线а√下载| 久久久国产成人精品二区| 在线观看舔阴道视频| 免费看a级黄色片| 午夜亚洲福利在线播放| 99久久综合精品五月天人人| 欧美性长视频在线观看| 久久人人精品亚洲av| 亚洲欧美一区二区三区黑人| 亚洲av电影不卡..在线观看| 一本综合久久免费| 日韩欧美国产一区二区入口| 精品久久久久久久毛片微露脸| 久久这里只有精品19| 在线国产一区二区在线| 日韩欧美国产一区二区入口| 国产一区二区在线av高清观看| 欧美日韩一级在线毛片| 看黄色毛片网站| 午夜福利18| 精品免费久久久久久久清纯| 午夜福利成人在线免费观看| 777久久人妻少妇嫩草av网站| 99久久精品热视频| 99久久无色码亚洲精品果冻| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频日本深夜| 1024香蕉在线观看| 麻豆国产av国片精品| 麻豆一二三区av精品| 人人妻人人澡欧美一区二区| 日韩欧美免费精品| 校园春色视频在线观看| 国语自产精品视频在线第100页| 久久婷婷人人爽人人干人人爱| 男人的好看免费观看在线视频 | 国产高清激情床上av| a在线观看视频网站| 欧美一级a爱片免费观看看 | 一个人观看的视频www高清免费观看 | 此物有八面人人有两片| 国产精品精品国产色婷婷| 性欧美人与动物交配| 国产精品98久久久久久宅男小说| 欧美黑人精品巨大| 亚洲国产精品成人综合色| 欧美日韩福利视频一区二区| 一区二区三区国产精品乱码| 国产精品亚洲美女久久久| 精品人妻1区二区| 黄频高清免费视频| 久久热在线av| 久久久国产欧美日韩av| 嫁个100分男人电影在线观看| 国产1区2区3区精品| 精品电影一区二区在线| 色综合站精品国产| 美女 人体艺术 gogo| 男男h啪啪无遮挡| 999久久久国产精品视频| 亚洲九九香蕉| 精品日产1卡2卡| 久久香蕉精品热| 国产精品日韩av在线免费观看| 亚洲一区高清亚洲精品| 国产精品1区2区在线观看.| 天堂动漫精品| 久久这里只有精品19| 日本熟妇午夜| 草草在线视频免费看| 制服诱惑二区| 亚洲av片天天在线观看| 国产又色又爽无遮挡免费看| 午夜免费激情av| 久久久久久久久中文| 村上凉子中文字幕在线| 国产精品 国内视频| 成人18禁高潮啪啪吃奶动态图| 两个人的视频大全免费| 最近视频中文字幕2019在线8| 美女扒开内裤让男人捅视频| 精品少妇一区二区三区视频日本电影| 成人国产一区最新在线观看| 视频区欧美日本亚洲| 久久九九热精品免费| 午夜久久久久精精品| 亚洲精品中文字幕在线视频| 黄色视频,在线免费观看| 欧美中文综合在线视频| 动漫黄色视频在线观看| 亚洲无线在线观看| 人妻久久中文字幕网| 久久婷婷成人综合色麻豆| 国内毛片毛片毛片毛片毛片| 正在播放国产对白刺激| 国产高清视频在线播放一区| av视频在线观看入口| 国内精品久久久久精免费| 国产亚洲精品第一综合不卡| 日韩欧美免费精品| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| 69av精品久久久久久| 精品国内亚洲2022精品成人| av天堂在线播放| 国内毛片毛片毛片毛片毛片| 久久久久精品国产欧美久久久| 三级国产精品欧美在线观看 | 香蕉av资源在线| 一本一本综合久久| 国产熟女xx| 亚洲av美国av| 又爽又黄无遮挡网站| 国产99白浆流出| av视频在线观看入口| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 色播亚洲综合网| 人妻丰满熟妇av一区二区三区| 精品久久久久久,| 香蕉国产在线看| 国产成+人综合+亚洲专区| 精品乱码久久久久久99久播| 欧美色欧美亚洲另类二区| 小说图片视频综合网站| a级毛片a级免费在线| 久久伊人香网站| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久末码| 久久 成人 亚洲| 久久婷婷人人爽人人干人人爱| 久久久精品国产亚洲av高清涩受| 国语自产精品视频在线第100页| 女生性感内裤真人,穿戴方法视频| 老司机午夜福利在线观看视频| 国产精品亚洲一级av第二区| 亚洲人成77777在线视频| 国内久久婷婷六月综合欲色啪| 又粗又爽又猛毛片免费看| 亚洲国产欧美一区二区综合| 亚洲av片天天在线观看| 日本 av在线| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 色在线成人网| 给我免费播放毛片高清在线观看| 无限看片的www在线观看| 欧美黄色片欧美黄色片| 两人在一起打扑克的视频| 999久久久精品免费观看国产| 搡老妇女老女人老熟妇| xxx96com| 欧美在线黄色| 一级作爱视频免费观看| 特级一级黄色大片| 国产欧美日韩精品亚洲av| 精品久久蜜臀av无| 一进一出抽搐gif免费好疼| 中文字幕熟女人妻在线| 99久久国产精品久久久| 曰老女人黄片| 亚洲成人精品中文字幕电影| 亚洲一码二码三码区别大吗| 天堂av国产一区二区熟女人妻 | 亚洲性夜色夜夜综合| 淫妇啪啪啪对白视频| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 国产成人啪精品午夜网站| 欧美日本视频| 99热只有精品国产| 女人被狂操c到高潮| 此物有八面人人有两片| 两性夫妻黄色片| 欧美精品亚洲一区二区| 亚洲无线在线观看| 亚洲在线自拍视频| 亚洲片人在线观看| x7x7x7水蜜桃| 美女黄网站色视频| 少妇的丰满在线观看| 亚洲 欧美 日韩 在线 免费| www.999成人在线观看| 亚洲成人久久爱视频| 欧美久久黑人一区二区| 国语自产精品视频在线第100页| 一进一出抽搐gif免费好疼| 欧美在线黄色| 88av欧美| 麻豆国产av国片精品| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷成人综合色麻豆| 国产高清有码在线观看视频 | 熟女电影av网| 一夜夜www| 国产成人精品久久二区二区免费| 美女黄网站色视频| 亚洲avbb在线观看| 国产av在哪里看| 午夜精品在线福利| av福利片在线观看| 少妇裸体淫交视频免费看高清 | 欧美一区二区精品小视频在线| 麻豆av在线久日| 国产伦一二天堂av在线观看| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 精华霜和精华液先用哪个| xxxwww97欧美| 天天躁夜夜躁狠狠躁躁| 午夜免费激情av| 国产黄片美女视频| 国产伦人伦偷精品视频| 国产精品电影一区二区三区| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 亚洲国产看品久久| xxxwww97欧美| 伊人久久大香线蕉亚洲五| 亚洲一卡2卡3卡4卡5卡精品中文| 久热爱精品视频在线9| 久久精品国产亚洲av高清一级| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| 中文字幕最新亚洲高清| 亚洲片人在线观看| 欧美黄色淫秽网站| 亚洲全国av大片| 午夜精品在线福利| 精品不卡国产一区二区三区| 欧美在线一区亚洲| 欧美日韩瑟瑟在线播放| 欧美日韩乱码在线| 波多野结衣巨乳人妻| 亚洲18禁久久av| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 久久天堂一区二区三区四区| 国产片内射在线| 美女黄网站色视频| 99热这里只有是精品50| 久久久久久久久久黄片| 黄色a级毛片大全视频| 国产成年人精品一区二区| 一本精品99久久精品77| 丰满的人妻完整版| 亚洲国产中文字幕在线视频| www日本黄色视频网| 午夜福利成人在线免费观看| 国内揄拍国产精品人妻在线| 亚洲国产精品久久男人天堂| 午夜福利欧美成人| 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| 免费在线观看亚洲国产| 午夜福利高清视频| 日本一区二区免费在线视频| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 久久久久久免费高清国产稀缺| 日韩高清综合在线| 一级黄色大片毛片| a在线观看视频网站| 日本成人三级电影网站| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区三区四区免费观看 | 宅男免费午夜| xxx96com| 岛国视频午夜一区免费看| 99热这里只有是精品50| 亚洲av美国av| 国内精品久久久久精免费| 亚洲av成人av| 国产成人av激情在线播放| 久久久久久久久久黄片| 久久久久久久久免费视频了| 男女床上黄色一级片免费看| 国产成人av激情在线播放| 免费高清视频大片| 99精品在免费线老司机午夜| 黄色视频不卡| 亚洲中文日韩欧美视频| 久久精品影院6| 成人欧美大片| 久久久国产精品麻豆| 色综合婷婷激情| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 午夜激情av网站| 中国美女看黄片| 国产一区二区三区视频了| 久99久视频精品免费| 久久欧美精品欧美久久欧美| 久久久久性生活片| 男女午夜视频在线观看| 少妇的丰满在线观看| 国产一区二区在线观看日韩 | 老汉色∧v一级毛片| 成年人黄色毛片网站| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 婷婷精品国产亚洲av在线| 97超级碰碰碰精品色视频在线观看| 日韩欧美精品v在线| 最新在线观看一区二区三区| av国产免费在线观看| 欧美另类亚洲清纯唯美| 国产蜜桃级精品一区二区三区| 天堂影院成人在线观看| 91麻豆精品激情在线观看国产| 精品国产乱子伦一区二区三区| 久久香蕉国产精品| 一本综合久久免费| 日本a在线网址| 国产精品国产高清国产av| 99久久无色码亚洲精品果冻| 亚洲欧美精品综合一区二区三区| 在线观看免费日韩欧美大片| 三级男女做爰猛烈吃奶摸视频| 国模一区二区三区四区视频 | 又紧又爽又黄一区二区| 久久九九热精品免费| 国产一区二区三区视频了| 无人区码免费观看不卡| 一级a爱片免费观看的视频| 午夜成年电影在线免费观看| 久久天堂一区二区三区四区| 淫妇啪啪啪对白视频| 淫秽高清视频在线观看| 一本综合久久免费| 久久久久久久精品吃奶| 三级男女做爰猛烈吃奶摸视频| 亚洲成av人片免费观看| 日韩欧美国产一区二区入口|