• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    n-strongly Gorenstein Projective and Injective and Flat Modules

    2014-07-19 11:47:53YANGXiaoyan

    YANG Xiao-yan

    (Department of Mathematics,Northwest Normal University,Lanzhou 730070,China)

    n-strongly Gorenstein Projective and Injective and Flat Modules

    YANG Xiao-yan

    (Department of Mathematics,Northwest Normal University,Lanzhou 730070,China)

    In this paper,we study some properties of n-strongly Gorenstein projective, injective and f l at modules,and discuss some connections between n-strongly Gorenstein injective,projective and f l at modules.Some applications are given.

    n-strongly Gorenstein projective module;n-strongly Gorenstein injective module;n-strongly Gorenstein f l at module

    §1.Introduction

    Unless stated otherwise,throughout this paper all rings are associative with identity and all modules are unitary modules.Let R be a ring.We denote by R-Mod(resp.,Mod-R)the category of left(resp.,right)R-modules.For any R-module M,pdRM(resp.,idRM,fdRM) denotes the projective(resp.,injective,f l at)dimension.The character module HomZ(M,Q/Z) is denoted by M+.

    We assume that the reader is familiar with the Gorenstein homological dimension theory. Some references are[1-2].Nevertheless,it is convenient to give a brief history of the Gorenstein homological dimension theory.

    In the sixties,Auslander and Bridger introduced the G-dimension,for f i nitely generated modules over noetherian rings[3].Several decades later,this homological dimension was extended,by Enochs et al[45],to Gorenstein projective dimension of modules that are not necessarily f i nitely generated and over not necessarily noetherian rings.And dually,they def i ned the Gorenstein injective dimension.Then,to complete the analogy with the classical homologicaldimensions,Enochs et al[6]introduced the Gorenstein f l at dimension.In the last years,the Gorenstein homological dimensions have become a vigorously active area of research(see[1] for more details).In 2004,Holm[2]generalized several results which are already obtained over noetherian rings to associative rings.Recently,Bennis and Mahdou[7]introduced a particular case of Gorenstein projective,injective and f l at modules,which are def i ned as follows.

    An R-module M is called strongly Gorenstein projective(SG-projective for short)if there exists an exact sequence of projective R-modules

    such that M~=Kerf and such that HomR(?,?)is exact whenever Q is a projective R-module.

    The strongly Gorenstein injective(SG-injective for short)modules are def i ned dually.

    An(left)R-module M is called strongly Gorenstein f l at(SG-f l at for short)if there exists an exact sequence of f l at(left)R-modules

    such that M~=Kerf and such that I?RF is exact whenever I is an injective right R-module.

    It is proved that the class of strongly Gorenstein projective modules is an intermediate class between the ones of projective modules and Gorenstein projective modules by[7,Proposition 2.3],which are strict by[7,Examples 2.5 and 2.13].The principal role of the strongly Gorenstein projective,injective and f l at modules is to give a simple characterization of Gorenstein projective,injective and f l at modules respectively(see[7,Theorems 2.7 and 3.5]).In 2009,Bennis and Mahdou[8]generalized the notion of strongly Gorenstein projective modules to n-strongly Gorenstein projective modules,and generalized some results of[7].Shang[9]investigated another generalization of strongly Gorenstein projective,injective and f l at modules.In current paper,we continue the study of n-strongly Gorenstein projective,injective and f l at modules, and give a detailed treatment of n-strongly Gorenstein projective,injective and f l at modules. Some applications are given.

    §2.n-strongly Gorenstein Projective and Flat Modules

    Def i nition 2.1[8]Let n be a positive integer.An R-module M is said to be n-strongly Gorenstein projective(n-SG-projective for short)if there exists an exact sequence

    such that HomR(?,Q)leaves the sequence exact whenever Q is a projective R-module.The class of n-strongly Gorenstein projective R-modules is denoted by SGPn.An R-module M is said to be n-strongly Gorenstein injective(n-SG-injective for short)if there is an exact sequence

    such that HomR(E,?)leaves the sequence exact whenever E is an injective R-module.The class of n-strongly Gorenstein injective R-modules is denoted by SGIn.Clearly,the 1-strongly Gorenstein projective modules are just the strongly Gorenstein projective modules by[7,Proposition 2.9].The 1-strongly Gorenstein injective modules are just the strongly Gorenstein injective modules.An(left)R-module M is said to be n-strongly Gorenstein f l at(n-SG-f l at for short)if there exists an exact sequence such that E?R-leaves the sequence exact whenever E is an injective right R-module.The class of n-strongly Gorenstein fl at(left)R-modules is denoted by SGFn.

    Proof?Let N∈SGPn.Then there is an exact sequence

    Note that 0→P1P→P→0 is exact,it follows that

    is exact.Thus M~=N⊕P is n-SG-projective by[8,Proposition 2.5]and[8,Theorem 2.8].?Let M∈SGPn.Then there exists an exact sequence

    Set M1=Ker(P1→M)and Mn?1=Coker(M→Pn).Then M1,Mn?1are Gorenstein projective.Consider the pushout of N⊕P→N and N⊕P→PnSince N and Mn?1are Gorenstein projective,Qnis Gorenstein projective,and so Ext1R(Qn,P)= 0.Hence Qnis projective.Consider the pullback of N→N⊕P and P1→N⊕P

    Then Q1is projective.Thusexact,which implies that N is n-SG-projective by[8,Proposition 2.5]and[8,Theorem 2.8].

    Corollary 2.3[10,Theorem2.1]Letbe exact with P a projective R-module.If M is SG-projective,then N is SG-projective.

    ProofIf M∈SGPn,then there exists an exact sequence

    Set M1=Ker(P1→M).Then we have the following exact sequences

    By the middle vertical sequence and Theorem 2.2,X is n-SG-projective.Thus by the middle horizontal sequence and Theorem 2.2,N is n-SG-projective.

    Corollary 2.5M is n-SG-projective if and only if there exists a short exact sequence of R-modules,where P is projective and G is n-SG-projective.

    Proof?If M∈SGPn,then there exists an exact sequence

    Set G=Coker(M→Pn).Then G∈SGPnandis the desired short exact sequence.?Since P,G∈SGPn,we have(M,Q)=0 for all i≥1 and any projective R-module Q.On the other hand,since G∈SGPn,there exists an exact sequencewith each Piprojective.Set G1=Ker(P1→G). Consider the exact sequencesThen G1⊕P~=M⊕P1.Since

    is exact,it follows from the proof of Theorem 2.2 that

    Let X be a class of R-modules.We call X projectively resolving[2]if(1)it contains all projective R-modules;(2)for every short exact sequence 0→X′→X→X′′→0 with X′∈X the conditions X′∈X and X∈X are equivalent.An injectively resolving class is def i ned dually.

    Theorem 2.6The following are equivalent

    (1)The class SGPnis closed under extensions;

    (2)The class SGPnis projectively resolving;

    (3)All Gorenstein projective R-modules are n-SG-projective;

    (4)For every short exact sequencewith G0,G1∈SGPn.If Ext1R(M,Q)=0 for any projective R-module Q,then M is n-SG-projective.

    Proof(1)?(2)To claim that the class SGPnis projectively resolving,it suffices to prove that it is closed under kernels of epimorphisms.Letbe exact with B,C∈SGPn.We prove that A is n-SG-projective.Since C is n-SG-projective,there exists an exact sequencewith each Piprojective. Set C1=Ker(P1→C).Consider the pullback of B→C and P1→C

    By Corollary 2.4,C1is n-SG-projective and so D is n-SG-projective by(1).Thus A is n-SG-projective by Theorem 2.2.

    (2)?(3)Let M be a Gorenstein projective R-module.Then there is a Gorenstein projective R-module N such that M⊕N is SG-projective by[7,Theorem 2.7].Set L=M⊕N⊕M⊕N⊕···. Then L is SG-projective and so L is n-SG-projective by[8,Proposition 2.5].Consider the following exact sequence

    (3)?(4)It follows from[2,Corollary 2.11].

    By analogy with the proofs of theorems 2.2 and 2.6,we have the following dual results.

    Theorem 2.8The following are equivalent

    (1)The class SGInis closed under extensions;

    (2)The class SGInis injectively resolving;

    (3)All Gorenstein injective R-modules are n-SG-injective;

    (4)For every short exact sequencewith G0,G1∈SGIn.If Ext1R(E,M)=0 for any injective R-module E,then M is n-SG-injective.

    Proposition 2.9If M is an n-SG- fl at left R-module,then M+is an n-SG-injective right R-module.

    ProofLet M∈SGFn.Then there exists an exact sequence

    Proposition 2.10Let R be two-sided coherent with FP-id(RR)<∞.If M is an n-SG-injective right R-module,then M+is n-SG-f l at.

    ProofLet M∈SGIn.Then there exists an exact sequence

    A ring R is said to be n-FC if R is two-sided coherent with FP-id(RR)≤n,FP-id(RR)≤n. A ring R is said to be n-Gorenstein if R is two-sided noetherian with id(RR)≤n,id(RR)≤n.

    Corollary 2.11Let R be an n-FC ring.If M is an n-SG-injective right R-module,then M+is an n-SG- fl at left R-module.

    Corollary 2.12Let R be an n-Gorenstein ring.Then M is an n-SG-injective right R-module,then M+is an n-SG- fl at left R-module.

    Proposition 2.13Let R be left coherent with FP-id(RR)<∞.Then every n-SG-projective left R-module is n-SG- fl at.

    ProofLet M∈SGPn.Then there is an exact sequence of left R-modules

    such that HomR(?,Q)leaves the sequence exact whenever Q is a projective left R-module.Let I be an injective right R-module.Then fdRI<∞by assumption.We use induction can to show that

    is exact,which implies that M is n-SG-f l at.

    A ring R is said to be left(resp.,right)m-perfect if every f l at left(resp.,right)R-module has projective dimension less than or equal to m.

    Proposition 2.14Let R be right coherent left m-perfect.Then every n-SG-projective left R-module is n-SG-f l at.The converse holds when m=0.

    ProofLet M∈SGPn.Then there is an exact sequence of left R-modules

    such that HomR(?,Q)leaves the sequence exact whenever Q is a projective left R-module.Let I be an injective right R-module.Then pdRI+≤m by assumption.So we have the following commutative diagram

    Conversely,let M∈SGFn.Then there is an exact sequence of left R-modules

    such that I?R?leaves the sequence(?)exact whenever I is an injective right R-module.Let P be a projective left R-module.Thenis split by assumption.But HomR(?,P++)~=(P+?R?)+and P+is injective,so P+?R?leaves the sequence (?)exact,and hence HomR(?,P++)leaves the sequence(?)exact.This implies that HomR(?,P) leaves the sequence(?)exact since P is isomorphic to a summand of P++.Therefore M is n-SG-projective.

    §3.Excellent Extension

    In this section,we give some applications of n-strongly Gorenstein injective,projective and fl at modules.We begin with the following de fi nition.

    (1)The ring S is called right R-projective in case for any right S-module MSwith an S-submodule NS,NR|MRimplies NS|MS.For example,every n×n matrix ring Mn(R)is right R-projective.

    (2)The ring extension S≥R is called a fi nite normalizing extension in case there is a fi nite subset{s1,···,sn}of S such that

    (3)A f i nite normalizing extension S≥R is called an excellent extension in case condition (1)is satisf i ed andRS,SRare free modules with a common basis{s1,···,sn}.Excellent extensions were introduced by Passman[11].Example include n×n matrix rings,and crossed products R?G where G is a f i nite group with|G|?1∈R.

    Proposition 3.1Assume that S≥R is an excellent extension.Then

    (a)RM∈SGPn(R)if and only if S?RM∈SGPn(S)for all M∈R-Mod;

    (b)RM∈SGIn(R)if and only if HomR(S,M)∈SGIn(S)for all M∈R-Mod;

    (c)MR∈SGFn(R)if and only if M?RS∈SGFn(S)for all M∈Mod-R.

    Proof(a)?Let M∈SGPn(R).Then there exists an exact sequence

    in R-Mod with every Piprojective.So

    is exact in S-Mod with each S?RPiprojective.LetQˉ be any projective left S-module.Then Qˉ is a projective left R-module,and so ExtiS(S?RM,Qˉ)~=ExtiR(M,Qˉ)=0 for all i≥1.It follows that S?RM∈SGPn(S).

    ?By assumption,there exists an exact sequence

    in S-Mod with eachˉPiprojective.For a projective left S-moduleˉP,there is a projective left S-moduleˉP′such thatˉP⊕ˉP′=S?RˉP.By analogy with the proof of[10,Proposition 3.10], we obtain an exact sequence

    in S-Mod with eachˉQiandˉQ projective.Thenis exact in R-Mod with eachQˉiandQˉ projective.Let Q be any projective left R-module.Then S?RQ is a projective left S-module.Thus 0=(S?RM,S?RQ)~=(M,S?RQ), and so(M,Q)=0 for all i≥1 since Q is isomorphic to a summand of S?RQ.It follows that M∈SGPn(R).

    (b)?Let M∈SGIn(R).Then there exists an exact sequence

    in R-Mod with every Eiinjective.Then

    is exact in S-Mod with every HomR(S,Ei)injective.LetIˉbe any injective left S-module.Then Iˉis an injective left R-module and so ExtiS(Iˉ,HomR(S,M))~=ExtiR(Iˉ,M)=0 for all i≥1. Hence HomR(S,M)∈SGIn(S).

    and so ExtiR(I,M)=0 for all i≥1 since I is isomorphic to a summand of HomR(S,I).Hence M∈SGI(R).

    (c)?Let M∈SGFn(R).Then there exists an exact sequence

    in Mod-R with every Fif l at.So

    is exact in Mod-S with each Fi?RS fl at.LetIˉbe any injective left S-module.LetIˉbe any injective left S-module and let F be a fl at resolution ofIˉ.Then TorSi(M?RS,Iˉ)= Hi((M?RS)?SF)~=Hi(M?RF)=TorRi(M,Iˉ)=0 for all i≥1 and so M?RS∈SGFn(S).

    ?By assumption,there extsts an exact sequence

    in Mod-S with eachˉFif l at.For a f l at right S-moduleˉF,there is a f l at right S-moduleˉF′such thatˉF⊕ˉF′=ˉF?RS.By analogy with the proof of[10,Proposition 3.10],we obtain the following exact sequence

    in Mod-S with eachˉFiandˉF f l at.Then is exact in Mod-R with eachFˉiandFˉ fl at.Let I be any injective left R-module.Then HomR(S,I)is an injective left S-module.Let F be a fl at resolution of M over R.Then 0=TorSi(M?RS,HomR(S,I))=Hi((F?RS)?SHomR(S,I))~=Hi(F?RHomR(S,I))= TorRi(M,HomR(S,I))for all i≥1 and so TorRi(M,I)=0.Hence M∈SGFn(R).

    Corollary 3.2Let R?G be a crossed product,where G is a f i nite group with|G|?1∈R.

    (a)For any M∈(R?G)-Mod,RM is n-SG-projective if and only if(R?G)?RM is n-SG-projective;

    (b)For any M∈(R?G)-Mod,RM is n-SG-injective if and only if HomR(R?G,M)is n-SG-injective;

    (c)For any M∈Mod-(R?G),MRis n-SG-f l at if and only if M?R(R?G)is n-SG-f l at.

    Corollary 3.3Let R be a ring m any positive integer.Then

    (a)For any M∈Mm(R)-Mod,RM is n-SG-projective if and only if Mm(R)?RM is n-SG-projective;

    (b)For any M∈Mm(R)-Mod,RM is n-SG-injective if and only if HonR(Mm(R),M)is n-SG-injective;

    (c)For any M∈Mod-Mm(R),MRis n-SG-f l at if and only if M?RMm(R)is n-SG-f l at.

    Corollary 3.4Assume that S≥R is an excellent extension.Then

    (a)RM∈SGP(R)if and only if S?RM∈SGP(S)for all M∈R-Mod;

    (b)RM∈SGI(R)if and only if HomR(S,M)∈SGI(S)for all M∈R-Mod;

    (c)MR∈SGF(R)if and only if M?RS∈SGF(S)for all M∈Mod-R.

    Corollary 3.5Assume that S≥R is an excellent extension.Then

    (a)RM∈GP(R)if and only if S?RM∈GP(S)for all M∈S-Mod;

    (b)RM∈GI(R)if and only if HomR(S,M)∈GI(S)for all M∈S-Mod;

    (c)MR∈GF(R)if and only if M?RS∈GF(S)for all M∈Mod-S.

    Proof(a)?Let M∈GP(R).There is an N∈SGP(R)such that M is a direct summand of N.By Corollary 3.4,S?RN∈SGP(S).So S?RM∈GP(S).

    ?Since S?RM∈GP(S)andSM is isomorphic to a summand ofS(S?RM),we see thatSM∈GP(S).Then there exists a projective resolution of left S-modules

    with M~=Im(ˉP0→ˉP0),such that HomS(ˉ?,ˉ?)is exact for any projective left S-modulesˉQ. Let Q be any projective left R-module.Then HomR(S,Q)|Qtfor some t∈?.Thus HomR(S,Q) is a projective left R-module and HomR(S,Q)is a projective left S-module,which implies that

    is exact.SinceˉPi,ˉPiare projective left R-modules for every i,we haveRM∈GP(R).

    (b)and(c)It is by analogy with the proof of(a).

    [1]ENOCHS E E,JENDA O M G.Relative Homological Algebra[M].Berlin:de Gruyter Exp Math Vol 30, Walter de Gruyter and Co,2000.

    [2]HOLM H.Gorenstein homological dimensions[J].J Pure Appl Algebra,2004,189(1-3):167-193.

    [3]AUSLANDER M,BRIDGER M.Stable Module Theory[M].Mem Amer Math Soc:Providence R I,1969.

    [4]ENOCHS E E,JENDA O M G.On Gorenstein injective modules[J].Comm Algebra,1993,21(10):3489-3501.

    [5]ENOCHS E E,JENDA O M G.Gorenstein injective and projective modules[J].Math Z,1995,220(1): 611-633.

    [6]ENOCHS E E,JENDA O M G,TORRECILLAS B.Gorenstein f l at modules[J].Nanjing Daxue Xuebao(Shuxueban Niankan),1993,10(1):1-9.

    [7]BENNIS D,MAHDOU N.Strongly Gorenstein projective,injective and f l at modules[J].J Pure Appl Algebra, 2007,210(2):437-445.

    [8]BENNIS D,MAHDOU N.A generalization of strongly Gorenstein projective modules[J].J Algebra and Its Applications,2009,8(2):219-227.

    [9]SHANG Wen-liang.Notes on strongly n-Gorenstein projective,injective and f l at modules[J].Chin Quart J Math,2012,27(3):2012 389-396.

    [10]YANG Xiao-yan,LIU Zhong-kui.Strongly Gorenstein projective,injective and f l at modules[J].J Algebra, 2008,320(7):2659-2674.

    [11]PASSMAN D S.The Algebraic Structure of Group Rings[M].New York:Wiley-Interscience,1977.

    tion:18G25,16E30

    1002–0462(2014)04–0553–12

    date:2013-02-25

    Supported by the National Natural Science Foundation of China(11361051);Supported by the Program for New Century Excellent the Talents in University(NCET-13-0957)

    Biography:YANG Xiao-yan(1980-),female,native of Zhangye,Gansu,an associate professor of Northwest Normal University,Ph.D.,engages in homological algebra.

    CLC number:O153.3Document code:A

    人人妻人人澡人人看| 涩涩av久久男人的天堂| 爱豆传媒免费全集在线观看| 性高湖久久久久久久久免费观看| 另类精品久久| 日本av手机在线免费观看| 丰满迷人的少妇在线观看| 亚洲av电影在线观看一区二区三区| 一级毛片 在线播放| 亚洲成人国产一区在线观看 | 日韩一区二区三区影片| 午夜激情久久久久久久| 男的添女的下面高潮视频| 国产av一区二区精品久久| 婷婷色综合www| xxx大片免费视频| 99国产精品一区二区蜜桃av | 午夜精品国产一区二区电影| 91精品国产国语对白视频| 视频区图区小说| 亚洲九九香蕉| 天天影视国产精品| 老司机深夜福利视频在线观看 | 在线观看免费午夜福利视频| 亚洲,欧美,日韩| 成年av动漫网址| 精品高清国产在线一区| 国产成人免费观看mmmm| 狠狠婷婷综合久久久久久88av| 搡老岳熟女国产| 777久久人妻少妇嫩草av网站| 国产高清videossex| 日本av免费视频播放| 欧美激情极品国产一区二区三区| 成人国产一区最新在线观看 | 日韩,欧美,国产一区二区三区| 午夜视频精品福利| 王馨瑶露胸无遮挡在线观看| 国产97色在线日韩免费| 亚洲一码二码三码区别大吗| 久久毛片免费看一区二区三区| 悠悠久久av| 中国国产av一级| 别揉我奶头~嗯~啊~动态视频 | 国产91精品成人一区二区三区 | 免费看十八禁软件| 在线精品无人区一区二区三| 久久久久久久国产电影| 9191精品国产免费久久| 高清av免费在线| 久久精品亚洲av国产电影网| 国产精品九九99| 午夜福利视频在线观看免费| 777久久人妻少妇嫩草av网站| 我的亚洲天堂| 老司机午夜十八禁免费视频| 精品免费久久久久久久清纯 | 国产日韩欧美在线精品| 亚洲欧美精品综合一区二区三区| 人人澡人人妻人| 少妇人妻久久综合中文| 99国产精品一区二区蜜桃av | 美女中出高潮动态图| 韩国高清视频一区二区三区| 亚洲色图综合在线观看| 亚洲免费av在线视频| 宅男免费午夜| 纯流量卡能插随身wifi吗| 2021少妇久久久久久久久久久| 亚洲欧洲日产国产| 亚洲人成电影免费在线| 亚洲国产精品一区二区三区在线| 另类亚洲欧美激情| 在线亚洲精品国产二区图片欧美| 高清欧美精品videossex| 午夜福利视频精品| e午夜精品久久久久久久| a级毛片在线看网站| 国产三级黄色录像| 亚洲国产看品久久| 悠悠久久av| a级毛片黄视频| 亚洲精品av麻豆狂野| 久久久国产一区二区| 波多野结衣一区麻豆| 51午夜福利影视在线观看| 深夜精品福利| tube8黄色片| 热re99久久精品国产66热6| 一本久久精品| 久久国产精品人妻蜜桃| 亚洲免费av在线视频| 成人手机av| 精品国产乱码久久久久久男人| 午夜福利,免费看| av在线老鸭窝| 国产精品久久久久久精品古装| 中文字幕精品免费在线观看视频| 成人18禁高潮啪啪吃奶动态图| 操美女的视频在线观看| 只有这里有精品99| 你懂的网址亚洲精品在线观看| 午夜福利,免费看| 国产xxxxx性猛交| 纯流量卡能插随身wifi吗| 水蜜桃什么品种好| 久久精品国产综合久久久| 久久国产精品人妻蜜桃| 91麻豆av在线| 欧美日韩一级在线毛片| 久久精品成人免费网站| 成人亚洲精品一区在线观看| 久久天堂一区二区三区四区| 男女午夜视频在线观看| 亚洲成人国产一区在线观看 | 黄色a级毛片大全视频| 中文字幕精品免费在线观看视频| 夫妻午夜视频| 欧美黄色淫秽网站| 成人黄色视频免费在线看| 国产成人精品无人区| 成人亚洲精品一区在线观看| 免费在线观看完整版高清| 国产免费又黄又爽又色| www.自偷自拍.com| 亚洲五月色婷婷综合| 一本大道久久a久久精品| av在线播放精品| 久久久久精品国产欧美久久久 | 国产精品.久久久| 亚洲成人国产一区在线观看 | 日本wwww免费看| 久久性视频一级片| 国产精品久久久久久人妻精品电影 | 精品亚洲成国产av| 自线自在国产av| 久热爱精品视频在线9| 2021少妇久久久久久久久久久| 精品高清国产在线一区| 91老司机精品| 欧美少妇被猛烈插入视频| 中文字幕色久视频| 久久这里只有精品19| 波多野结衣一区麻豆| 18在线观看网站| 电影成人av| 满18在线观看网站| 丝袜美腿诱惑在线| 欧美激情极品国产一区二区三区| 亚洲男人天堂网一区| 亚洲中文av在线| 丝瓜视频免费看黄片| 日韩 亚洲 欧美在线| 亚洲国产欧美在线一区| 少妇人妻 视频| 日本色播在线视频| 国产精品国产三级专区第一集| 国产精品 国内视频| 亚洲欧美精品自产自拍| 夫妻性生交免费视频一级片| 啦啦啦 在线观看视频| 高清视频免费观看一区二区| av视频免费观看在线观看| 男人添女人高潮全过程视频| 国产日韩欧美在线精品| 国产亚洲av片在线观看秒播厂| 黑人巨大精品欧美一区二区蜜桃| 每晚都被弄得嗷嗷叫到高潮| 亚洲专区国产一区二区| 国产精品99久久99久久久不卡| 2021少妇久久久久久久久久久| 99九九在线精品视频| 国产成人精品久久二区二区免费| 一级毛片女人18水好多 | av在线app专区| 久久精品国产a三级三级三级| 久久人人97超碰香蕉20202| 国产精品久久久久久精品古装| 一区二区三区激情视频| 久久久久国产精品人妻一区二区| 精品福利观看| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区国产| 97人妻天天添夜夜摸| 亚洲午夜精品一区,二区,三区| 国产精品熟女久久久久浪| 中文字幕精品免费在线观看视频| 一本久久精品| 亚洲自偷自拍图片 自拍| 一区二区三区乱码不卡18| 国精品久久久久久国模美| 欧美国产精品va在线观看不卡| 看免费av毛片| 亚洲,一卡二卡三卡| 脱女人内裤的视频| 国产av国产精品国产| 免费一级毛片在线播放高清视频 | 国产高清videossex| 搡老乐熟女国产| 国产高清国产精品国产三级| 国产人伦9x9x在线观看| 制服人妻中文乱码| 制服人妻中文乱码| 青青草视频在线视频观看| 黄色怎么调成土黄色| 亚洲精品av麻豆狂野| 91精品伊人久久大香线蕉| 国产免费一区二区三区四区乱码| 亚洲成人手机| 咕卡用的链子| 欧美国产精品va在线观看不卡| a级毛片黄视频| 亚洲五月色婷婷综合| 热re99久久精品国产66热6| 国产成人欧美| 欧美日韩亚洲高清精品| 999久久久国产精品视频| 欧美+亚洲+日韩+国产| 久久精品国产a三级三级三级| 在线观看人妻少妇| 国产精品香港三级国产av潘金莲 | 桃花免费在线播放| 777米奇影视久久| 国产高清videossex| 高潮久久久久久久久久久不卡| 国产1区2区3区精品| 欧美日韩国产mv在线观看视频| 99国产精品一区二区三区| 一边摸一边抽搐一进一出视频| 国产精品99久久99久久久不卡| 国产精品国产三级国产专区5o| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 一区二区日韩欧美中文字幕| a级片在线免费高清观看视频| 亚洲av美国av| 日本黄色日本黄色录像| 99精国产麻豆久久婷婷| 男女免费视频国产| 天天躁夜夜躁狠狠久久av| 国产色视频综合| 国产国语露脸激情在线看| e午夜精品久久久久久久| 国产男女内射视频| 国产一区二区 视频在线| 久久国产亚洲av麻豆专区| 天天躁日日躁夜夜躁夜夜| 欧美国产精品va在线观看不卡| 精品少妇一区二区三区视频日本电影| 亚洲欧美激情在线| 国产一级毛片在线| 国产精品一区二区精品视频观看| 欧美国产精品va在线观看不卡| 又紧又爽又黄一区二区| 纯流量卡能插随身wifi吗| 国产成人系列免费观看| 国产欧美日韩一区二区三 | 久久久久国产精品人妻一区二区| 欧美成人精品欧美一级黄| av在线app专区| 国产精品国产av在线观看| 亚洲精品国产av成人精品| 国产精品一区二区精品视频观看| 飞空精品影院首页| 少妇精品久久久久久久| 亚洲成人国产一区在线观看 | 91老司机精品| 日韩免费高清中文字幕av| 一级黄片播放器| 亚洲国产成人一精品久久久| 亚洲第一av免费看| 欧美激情 高清一区二区三区| 十八禁网站网址无遮挡| 免费观看av网站的网址| 国产黄频视频在线观看| 两人在一起打扑克的视频| 欧美国产精品一级二级三级| 精品久久久精品久久久| av电影中文网址| 国产视频一区二区在线看| 久久精品国产a三级三级三级| 精品人妻在线不人妻| 亚洲成色77777| 电影成人av| 少妇人妻 视频| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| a 毛片基地| 嫩草影视91久久| 赤兔流量卡办理| 天天添夜夜摸| 欧美日韩成人在线一区二区| 亚洲免费av在线视频| 黄片播放在线免费| 色婷婷久久久亚洲欧美| 999精品在线视频| 国产精品香港三级国产av潘金莲 | 国产高清国产精品国产三级| 亚洲欧美一区二区三区久久| 一边摸一边做爽爽视频免费| 国产亚洲av片在线观看秒播厂| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人| 99精品久久久久人妻精品| 大片电影免费在线观看免费| 91精品国产国语对白视频| 侵犯人妻中文字幕一二三四区| 十八禁高潮呻吟视频| 国产伦理片在线播放av一区| 亚洲欧美一区二区三区黑人| 在线观看免费午夜福利视频| 免费av中文字幕在线| av国产久精品久网站免费入址| 韩国高清视频一区二区三区| 日本欧美视频一区| 女性生殖器流出的白浆| 日韩大码丰满熟妇| 日韩中文字幕视频在线看片| 国精品久久久久久国模美| 久久国产精品影院| 国产精品久久久av美女十八| 黄色一级大片看看| 国产成人影院久久av| 欧美另类一区| 中文字幕精品免费在线观看视频| 少妇粗大呻吟视频| 18禁国产床啪视频网站| 交换朋友夫妻互换小说| 国产国语露脸激情在线看| 青春草亚洲视频在线观看| 色婷婷久久久亚洲欧美| 亚洲伊人色综图| 一二三四社区在线视频社区8| 久久久亚洲精品成人影院| 少妇的丰满在线观看| 中文字幕高清在线视频| 啦啦啦啦在线视频资源| 日韩欧美一区视频在线观看| 欧美激情高清一区二区三区| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 一边摸一边抽搐一进一出视频| 国产日韩欧美亚洲二区| 欧美日本中文国产一区发布| 久久精品成人免费网站| 777米奇影视久久| 美国免费a级毛片| 欧美+亚洲+日韩+国产| 一二三四社区在线视频社区8| 免费看十八禁软件| av网站在线播放免费| 精品久久久精品久久久| 欧美+亚洲+日韩+国产| 久久鲁丝午夜福利片| 十八禁人妻一区二区| 亚洲欧洲日产国产| 成年人午夜在线观看视频| 99久久人妻综合| 国产一区二区激情短视频 | 欧美在线一区亚洲| 精品久久蜜臀av无| 婷婷色综合www| 亚洲av成人不卡在线观看播放网 | 国产精品久久久人人做人人爽| 久久中文字幕一级| 永久免费av网站大全| 性少妇av在线| 欧美日韩av久久| 搡老岳熟女国产| 精品国产乱码久久久久久男人| 久久久精品国产亚洲av高清涩受| 黄色毛片三级朝国网站| 久久久精品区二区三区| 宅男免费午夜| 欧美日韩成人在线一区二区| 男女国产视频网站| 亚洲精品第二区| 国产av一区二区精品久久| 国产一区二区在线观看av| www.熟女人妻精品国产| 狂野欧美激情性bbbbbb| 精品人妻在线不人妻| 日韩人妻精品一区2区三区| 亚洲精品国产一区二区精华液| 国产老妇伦熟女老妇高清| 在线观看一区二区三区激情| 久久人妻福利社区极品人妻图片 | 晚上一个人看的免费电影| 久久久久精品人妻al黑| 日本午夜av视频| 日日爽夜夜爽网站| 亚洲 国产 在线| 国产成人精品在线电影| 色婷婷av一区二区三区视频| 女人爽到高潮嗷嗷叫在线视频| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 大码成人一级视频| 美女国产高潮福利片在线看| 精品一区二区三卡| 国产女主播在线喷水免费视频网站| av网站在线播放免费| 欧美日韩精品网址| 欧美变态另类bdsm刘玥| 日韩大码丰满熟妇| 精品一区二区三区av网在线观看 | 91精品三级在线观看| 一区在线观看完整版| 亚洲欧美日韩高清在线视频 | 91国产中文字幕| 黄片播放在线免费| 欧美成人精品欧美一级黄| 国产精品.久久久| 99久久精品国产亚洲精品| 高清欧美精品videossex| 日韩 欧美 亚洲 中文字幕| a级毛片在线看网站| 亚洲国产精品一区三区| 性色av一级| 国产亚洲欧美在线一区二区| 亚洲伊人久久精品综合| 一本大道久久a久久精品| 精品一区二区三卡| 中国美女看黄片| 校园人妻丝袜中文字幕| 亚洲专区中文字幕在线| 黄频高清免费视频| av天堂久久9| 亚洲国产成人一精品久久久| 成人亚洲欧美一区二区av| 婷婷丁香在线五月| 国产成人欧美| 亚洲av美国av| 亚洲熟女精品中文字幕| 99久久综合免费| 国产一区有黄有色的免费视频| 99国产精品一区二区蜜桃av | 亚洲国产av新网站| 又黄又粗又硬又大视频| 成人午夜精彩视频在线观看| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲| 香蕉丝袜av| 国产精品欧美亚洲77777| 丰满饥渴人妻一区二区三| 美女高潮到喷水免费观看| 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 久久亚洲国产成人精品v| 久9热在线精品视频| 91九色精品人成在线观看| 久久亚洲精品不卡| 超色免费av| 亚洲成人手机| 精品视频人人做人人爽| 久久精品亚洲av国产电影网| 亚洲中文日韩欧美视频| 国产日韩欧美在线精品| 欧美日韩成人在线一区二区| 少妇猛男粗大的猛烈进出视频| 国产免费又黄又爽又色| 大香蕉久久成人网| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 波多野结衣一区麻豆| 一本大道久久a久久精品| kizo精华| 亚洲欧洲国产日韩| 下体分泌物呈黄色| 成年人免费黄色播放视频| 久久久久视频综合| 亚洲中文字幕日韩| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久| 亚洲精品国产av蜜桃| 一级,二级,三级黄色视频| 久久久久网色| 亚洲,欧美,日韩| 一级毛片 在线播放| 欧美成人午夜精品| 精品少妇黑人巨大在线播放| 在线av久久热| 在线观看www视频免费| 久久中文字幕一级| 丰满迷人的少妇在线观看| 97在线人人人人妻| 欧美亚洲 丝袜 人妻 在线| 国产免费一区二区三区四区乱码| av视频免费观看在线观看| 免费在线观看黄色视频的| 丝袜脚勾引网站| 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频| 欧美成人精品欧美一级黄| 99国产精品一区二区蜜桃av | 国产成人av激情在线播放| 在线观看一区二区三区激情| 欧美日韩视频精品一区| 日本五十路高清| 最新的欧美精品一区二区| 天天躁日日躁夜夜躁夜夜| 亚洲国产精品999| 各种免费的搞黄视频| 美女视频免费永久观看网站| 高清黄色对白视频在线免费看| 亚洲,一卡二卡三卡| 一区二区日韩欧美中文字幕| 亚洲国产av新网站| 建设人人有责人人尽责人人享有的| 色网站视频免费| 精品一区二区三区av网在线观看 | 亚洲九九香蕉| 久久人人爽av亚洲精品天堂| 国产在线观看jvid| 国产极品粉嫩免费观看在线| 亚洲精品第二区| 黄频高清免费视频| 丁香六月欧美| 熟女av电影| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 精品少妇久久久久久888优播| 精品一品国产午夜福利视频| 日本wwww免费看| 啦啦啦啦在线视频资源| 大型av网站在线播放| 国产成人精品久久二区二区免费| 黄片小视频在线播放| av网站在线播放免费| 亚洲国产精品国产精品| 欧美日韩视频精品一区| 丝袜脚勾引网站| 精品国产乱码久久久久久男人| 国产av国产精品国产| 在线精品无人区一区二区三| 大片电影免费在线观看免费| 亚洲av在线观看美女高潮| 这个男人来自地球电影免费观看| 中文字幕精品免费在线观看视频| 美女高潮到喷水免费观看| 国产一区二区 视频在线| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 老司机靠b影院| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 满18在线观看网站| 一本久久精品| 视频区欧美日本亚洲| 色视频在线一区二区三区| 国产精品国产av在线观看| 色综合欧美亚洲国产小说| 亚洲图色成人| 亚洲人成电影免费在线| 欧美日韩黄片免| 久久99精品国语久久久| 亚洲欧美精品综合一区二区三区| 成年美女黄网站色视频大全免费| 亚洲av片天天在线观看| www.av在线官网国产| 欧美久久黑人一区二区| 国产精品国产av在线观看| 国产精品免费大片| 国产又爽黄色视频| 女人精品久久久久毛片| 老熟女久久久| 国产欧美日韩综合在线一区二区| 欧美亚洲日本最大视频资源| 18在线观看网站| 亚洲精品成人av观看孕妇| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 人体艺术视频欧美日本| 91精品伊人久久大香线蕉| 亚洲精品美女久久av网站| 国产成人av激情在线播放| 亚洲第一青青草原| 制服人妻中文乱码| 91麻豆精品激情在线观看国产 | 国产精品久久久av美女十八| e午夜精品久久久久久久| 亚洲伊人色综图| 精品久久久久久电影网| 99久久人妻综合| 国产麻豆69| 久久精品国产a三级三级三级| 精品熟女少妇八av免费久了| 老司机靠b影院| 99精品久久久久人妻精品| 欧美 日韩 精品 国产| 一区在线观看完整版| 黄色 视频免费看| 波多野结衣一区麻豆| 欧美亚洲日本最大视频资源| 欧美成狂野欧美在线观看| 久久久精品区二区三区| 成人手机av| 免费在线观看影片大全网站 | 国产人伦9x9x在线观看| 免费看不卡的av| 中国国产av一级| 午夜福利,免费看| 国产成人av激情在线播放| 91精品三级在线观看| av国产精品久久久久影院| 成年人免费黄色播放视频| 国精品久久久久久国模美| 国产精品九九99| 欧美人与性动交α欧美软件| 婷婷色麻豆天堂久久| 晚上一个人看的免费电影| 99热国产这里只有精品6| www.自偷自拍.com| 免费不卡黄色视频|