• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rectangular Ring Congruences on an E-inversive Semiring

    2014-07-19 11:47:55CHENGZiqiangZHOUYuanlanPANShiju

    CHENG Zi-qiang,ZHOU Yuan-lan,PAN Shi-ju

    (Department of Mathematics,Jiangxi Normal University,Nanchang 330022,China)

    Rectangular Ring Congruences on an E-inversive Semiring

    CHENG Zi-qiang,ZHOU Yuan-lan,PAN Shi-ju

    (Department of Mathematics,Jiangxi Normal University,Nanchang 330022,China)

    In this paper,we discussed the property of rectangular band semiring congruence and ring congruence on a semiring and gave some characterizations and structure of rectangular ring congruence on an E-inversive semiring.

    congruence;band semiring;E-inversive semiring

    §1.Introduction and Preliminaries

    A semiring S is def i ned as an algebra system(S,+,·)consisting of a nonempty set S together with two binary operations+and·such that(S,+)and(S,·)are semigroups connected by a·(b+c)=a·b+a·c,(a+b)·c=a·c+b·c,for any a,b,c∈S.Usually,we write(S,+,·) simply as S and for any a,b∈S,we write a·b simply as ab.

    A subsemiring A of a semiring S is called an ideal of S if sa,as∈A for all a∈A,s∈S. We denote E+(S)the set of all additive idempotents of S.It is easy to see that(E+(S),·)is an ideal of(S,·).

    A semiring S is a skew-ring if its additive reduct(S,+)is a group.A semiring S is an idempotent semiring if it satisf i es a+a=a·a=a for all a∈S(that is,both the reducts(S,+) and(S,·)are bands).A band semiring is an idempotent semiring S satisfying the following conditions

    530CHINESE QUARTERLY JOURNAL OF MATHEMATICSVol.29 for any a,b∈S[4].A T band semiring S is a band semiring such that the additive reduct (S,+)of S is a T band[4].In[10],the authors proved that band semirings are always regular band semirings.

    Semirings and band semirings with special reduct are studied in[1,9-10,12-13].In[5-8], some properties of E-inversive semigroup are studied.GIGON R S discussed the property of group congruence[2]and give some characterizations and structure of rectangular group congruence[3]on an E-inversive semigroup.

    In this paper,we will obtain some results about rectangular band semiring congruences and ring congruences on a semiring,and give some characterizations and structure of rectangular ring congruences on an E-inversive semiring.

    Throughout this paper we shall use the terminology and notations of[1,5].Firstly,we list some results we shall use in the following.

    Theorem 1.1[9]A rectangular band semiring is isomorphic to the direct product of a left zero band semiring and a right zero band semiring.

    Lemma 1.2[5]The following statements about a semigroup S are equivalent

    (1)S is a rectangular band;

    (2)(?a,b∈S)ab=ba=?a=b;

    (3)(?a,b∈S)aba=a;

    (4)(?a,b,c∈S)a·a=a,abc=ac.

    A semiring S is called an E-inversive semiring if there exists x∈S such that a+x∈E+(S) for any a∈S.Let S be a semiring and a∈S.An element x is called a weak inverse of a if x=x+a+x.Denote the set of all weak inverses of a in S by W(a)={x∈S:x=x+a+x}.

    Proposition 1.3A semiring S is an E-inversive semiring if and only if W(a)is nonempty for all a∈S.

    ProofLet S be an E-inversive semiring.For any a∈S,there exists x∈S such that a+x∈E+(S).Let y=x+a+x.Then

    therefore,y∈W(a).Hence W(a)is nonempty.

    Conversely,if W(a)is nonempty for all a∈S,then x=x+a+x for some x∈S,therefore, a+x=a+x+a+x.So a+x∈E+(S)for all a∈S,we deduce that S is an E-inversive semiring.

    By the above proposition,easily,if S is an E-inversive semiring,then there is x∈S such that a+x,x+a∈E+(S)for any a∈S.

    Let C be a class of semiring.We say that a congruence ρ on a semiring S is a C-congruence if S/ρ∈C.For example,if C is the class of rings,then ρ is called a ring congruence on S ifS/ρ is a ring.In this way,we can def i ne rectangular band semiring congruence and rectangular ring congruence on a semiring S similarly.

    Let ρ be a congruence on a semiring S.The kernel kerρ of ρ is the set{x∈S:(?e∈E+(S))xρe}.The trace trρ is the restriction of ρ on E+(S).

    Easily,based on the above def i nitions and results,we can get the following characterizations about rectangular ring congruences and ring congruences.

    Proposition 1.4Let S be an E-inversive semiring and ρ a rectangular band semiring congruence.Then every ρ-class of S contains an idempotent of S and kerρ=S.Also,each rectangular band semiring congruence on S is uniquely determined by its trace.

    Proposition 1.5Let ρ be a ring congruence on a semiring S.Then trρ is the trivial relation on E+(S).Also,each ring congruence on S is uniquely determined by its kernel.

    §2.Rectangular Ring Congruence

    Def i nition 2.1[13]A semiring S is called a rectangular ring if and only if S is isomorphic to the direct product M×R of a rectangular band semiring M and a ring R.

    Every rectangular band semiring and every ring is a rectangular ring,so every rectangular band semiring congruence and every ring congruence on a semiring S is a rectangular ring congruence on S.Clearly,the intersection of a rectangular band semiring congruence and ring congruence on S is a rectangular ring congruence on S.Conversely,the following theorem implies that each rectangular ring congruence on an E-inversive semiring can be expressed in this way,and this expression is unique.

    Let A be a nonempty subset of a semiring S.Then A is called quasi dense,if it satisf i es the following two conditions that for any a,b∈S

    (1)a∈A??a+a∈A;

    (2)a+b∈A??a+S+b?A.

    Let S be a semigroup.Then S is called an inversive semigroup,if it satisf i es the following two conditions

    (1)S has an idempotent,and the set of idempotents E(S)is a subband of S;

    (2)For any element x of S,there exists an element x?such that xx?=x?x and xx?x=x[11].

    Let ρ be a rectangular ring congruence on a semiring S,ρ be the canonical epimorphism from S onto S/ρ.That is,S/ρ=M×R,where M is a rectangular band semiring and R is a ring. For any m∈M,we denote Qm={a∈S:aρ∈{m}×R}and N={a∈S:aρ∈E+(M×R)}.

    Proposition 2.2Let ρ be a rectangular ring congruence on a semiring S,Qmbe def i ned as above.Then Qmis a quasi dense and E-inversive semiring,S=∪{Qm:m∈M}.

    ProofLet ρ be a rectangular ring congruence on a semiring S.Then S/ρ=M×R,where M is a rectangular band semiring,R is a ring.

    Clearly,Qmis a nonempty subset of S.For any a,b∈Qm,there is r1,r2∈R such that aρ=(m,r1),bρ=(m,r2),therefore

    It follows that a+b,ab∈Qm.Now,we deduce that Qmis a subsemiring of S.Let a∈Qm. There is r∈R such that aρ=(m,r),therefore

    It follows that a+a∈Qm.Let a∈S and a+a∈Qm.There is r∈R such that(a+a)ρ=(m,r). If aρ=(n,r1),where n∈M,r1∈R,then

    so that m=n.It follows that aρ=(m,r1)∈{m}×R.Hence a∈Qm.Let a,b∈S be such that a+b∈Qm.Then(a+b)ρ=(m,r)for some r∈R.If aρ=(m1,r1),bρ=(m2,r2)where m1,m2∈M,r1,r2∈R,then

    so that m1+m2=m.For any c∈S,then cρ=(m3,r3)for some m3∈M,r3∈R,

    since M is a rectangular band semiring,so a+c+b∈Qm.Similarly,if a+c+b∈Qm,we can prove that a+b∈Qm.Hence Qmis a quasi dense subsemiring of S.Since Qmis an inversive semigroup,we have Qmis an E-inversive semiring clearly.

    Finally,we show that S=∪{Qm:m∈M}.It is easy to see that the union is disjoint and for all m∈M,Qm?S,so∪{Qm:m∈M}?S.Conversely,let a∈S.There is m∈M,r∈R such that aρ=(m,r)since ρ is an epimorphism,so a∈Qm?∪{Qm:m∈M}.Consequently, S=∪{Qm:m∈M}.

    Let A be a nonempty subset of a semiring S.If A contains all the additive idempotents of S,then A is called full.If a+b∈A implies b+a∈A for any a,b∈S,then A is called ref l exive.If for any s∈S,there exist x,y∈S such that s+x,y+s∈A,then A is called dense.Again,we denote the closure operator w on S by Aw={s∈S:(?a∈A)a+s∈A}.If Aw=A,then A is called closed.A subsemiring N of a semiring S is normal if and only if N is full,dense,ref l exive,closed and an ideal of S.

    Note that if S is an E-inversive semiring,then E+(S)is dense.Hence,every full subsemiring of E-inversive semiring S is dense.Further,a subsemiring A of an E-inversive semiring S is normal if and only if A is full,ref l exive,closed and an ideal of S.

    Proposition 2.3Let ρ be a rectangular ring congruence on a semiring S.N,Qmbe def i ned as above.Then for all m∈M,N∩Qmis a normal subsemiring of Qm.

    ProofLet m∈M.Put Nm=N∩Qm.For any a,b∈Nm,then aρ=bρ=(m,0). Easily,we can prove that a+b,ab∈Nm,so Nmis a subsemiring of Qm.For any e∈E+(Qm), then eρ=(m,0)∈M×{0R}which imples e∈Nm.That is,Nmis full.Let a,b∈Qmbe such that a+b∈Nm.Suppose that aρ=(m,r1),bρ=(m,r2)where m∈M,r1,r2∈R.Then

    It follows that r1+r2=0.Because R is a ring,we obtain that

    Now,we have b+a∈Nmand so Nmis ref l exive.If a∈Qm,there is r∈R such that aρ=(m,r). Let a′∈Qmand a′ρ=(m,?r),where?r is an additive inverse of r.Then

    Hence a+a′,a′+a∈Nm,which implies Nmis dense.Let a∈Nmw.There exists b∈Nmsuch that b+a∈Nm.Moreover(a+b)ρ=(b+a)ρ=(m,0),so

    It follows that a∈Nm.It is easy to see that Nm?Nmw.Hence Nmis closed.Let a∈Nmand b∈Qmbe such that aρ=(m,0)and bρ=(m,r),where m∈M,r∈R.Then

    It follows that ab,ba∈Nm.Now,we have Nmis an ideal of Qm.Consequently,N∩Qmis a normal subsemiring of Qm.

    Proposition 2.4Let ρ be a rectangular ring congruence on a semiring S.Then the relation v={(a,b)∈S×S:(?m∈M)a,b∈Qm}is a rectangular band semiring congruence on S.

    ProofBy Proposition 2.2,we have S=∪{Qm:m∈M}and Qmis a quasi dense subsemiring of S.Firstly,we shall show that v is a congruence on S.Clearly,v is an equivalence relation on S.Let(a,b)∈v.There exists m∈M such that a,b∈Qm,so aρ=(m,r1),bρ= (m,r2)for some r1,r2∈R.For any c∈S,then cρ=(n,r)for some n∈M,r∈R.Further,

    Thus a+c,b+c∈Qm+n,so(a+c,b+c)∈v.Similarly,we can prove that(c+a,c+b)∈v,(ac,bc)∈v,(ca,cb)∈v.Hence v is a congruence on S.

    Finally,we shall show that S/v is a rectangular band semiring.Let a∈S.There exists m∈M such that a∈Qm.Since Qmis a subsemiring of S,we have a+a,a·a∈Qm,so (a,a+a)∈v,(a,a·a)∈v and then av=av+av=av·av.For any a,b,c∈S,then a+b+c∈Qmfor some m∈M.a+c∈Qmbecause of Qmis a quasi dense.Further, (a+b+c,a+c)∈v,so av+bv+cv=av+cv.Now,we know that S/v is a rectangular band semiring.Hence v is a rectangular band semiring congruence on S.

    Proposition 2.5Let S be an E-inversive semiring and N be a normal subsemiring of S. Then the relation ρN={(a,b)∈S×S:(?x,y∈N)x+a=b+y}is a skew-ring congruence on S and kerρN=N.

    ProofFirstly,we show that ρNis a congruence on S.Let a,b,c∈S.Suppose that a′∈W(a)since S is an E-inversive semiring,W(a)is nonempty.By N is full,then a′+a,a+a′∈E+(S)?N.Note that(a+a′)+a=a+(a′+a),we have(a,a)∈ρN. Suppose that(a,b)∈ρN.Then x+a=b+y for some x,y∈N.If a′∈W(a),b′∈W(b), then a+a′+x∈N,y+b′+b∈N.It follows that a′+x+a∈N,b+y+b′∈N since N is ref l exive,so a′+x+a+b′+b∈N,a+a′+b+y+b′∈N.Further,

    Hence(b,a)∈ρN.Suppose that(a,b)∈ρN,(b,c)∈ρN.Then x+a=b+y,z+b=c+w for some x,y,z,w∈N.Thus(z+x)+a=z+b+y=c+(w+y)and z+x,w+y∈N, it follows that(a,c)∈ρN.Hence ρNis an equivalence relation on S.Suppose that(a,b)∈ρNand c∈S.Then x+a=b+y for some x,y∈N.If b′∈W(b),c′∈W(c),then

    Since b+c+c′+b′+x,c′+b′+b+y+c∈N,we have(a+c,b+c)∈ρN.Hence ρNis an additive right compatible.Dual,we can show that ρNis an additive left compatible.Suppose that(a,b)∈ρNand c∈S.Then x+a=b+y for some x,y∈N,therefore,

    where xc,yc∈N since N is an ideal of S.We deduce that(ac,bc)∈ρN.Dual,we can prove that(ca,cb)∈ρN.Hence ρNis a congruence on S.

    Next,we shall show that ρNis a skew-ring congruence on S.Clearly,S/ρNis a semiring, we just need to prove that(S/ρN,+)is a group.For any x∈N.Claim that xρNis the identity of S/ρN.Let a∈S and a′∈W(a).Then a+x+a′,a′+a∈N and

    that is,(a,a+x)∈ρN.Note that x+a+a′,a′+a∈N and

    so(a,x+a)∈ρN.We obtain that xρNis the identity of S/ρN.Clearly,xρN=yρN=eρNfor all x,y∈N,e∈E+(S).Thenit follows that a′ρNis an inverse of aρN.Now,we have S/ρNis a group.Consequently,ρNis a skew-ring congruence on S.

    Finally,we shall show that kerρN=N.Let a∈N and a′∈W(a).Then

    Since a+a′∈E+(S)?N,we deduce that(a,a+a′)∈ρN,so a∈kerρN.Let a∈kerρN. There is e∈E+(S)such that(a,e)∈ρN,therefore,x+a=e+y for some x,y∈N.Since e,y∈N,we have e+y∈N and so x+a∈N.We have a∈N since N is closed.Consequently, kerρN=N.

    From the above proposition we obtain the following corollary.

    Corollary 2.6Let S be an E-inversive semiring and N be a normal subsemiring of S. Then(a,b)∈ρNif and only if a+x,b+x∈N for some x∈S.

    Now,we give a characterization of rectangular ring congruences on an E-inversive semiring.

    Theorem 2.7Let S be an E-inversive semiring and ρ be a rectangular ring congruence on S.Then ρ=v∩ρNwhere v and N are def i ned as above,and it is unique of this expression.

    ProofNotice that N is the preimage of M×{0R}by the canonical epimorphism ρ . We f i rst show that N is a normal subsemiring of S.Clearly,N is a nonempty subset of S.If a,b∈N,then aρ=(m,0),bρ=(n,0)for some m,n∈M.It follows that

    so a+b,ab∈N.We have N is a subsemiring of S.For any a∈N and x∈S,then aρ=(m,0),xρ=(n,r)for some m,n∈M,r∈R.It follows that

    so ax∈N,we deduce that NS?N.Dual,we have SN?N.Hence N is an ideal of S.For any e∈E+(S),then eρ∈E+(M×R),so e∈N.We deduce that N is full.Let a,b∈S be such that a+b∈N.Then(a+b)ρ=(m,0)for some m∈M.Let aρ=(m1,r1),bρ=(m2,r2) for some m1,m2∈M,r1,r2∈R.Then m1+m2=m,r1+r2=0.Further,

    since R is a ring.Hence b+a∈N which implies N is ref l exive.Let a∈Nw.There exists b∈N such that b+a∈N.Let aρ=(m,r),bρ=(n,0)for some m,n∈M,r∈R.Thenit follows that r=0.Further,aρ=(m,0)∈M×{0R}.Hence a∈N and Nw?N.Conversely, let a∈N.For any b∈N,then b+a∈N since N is a subsemiring of S.Hence a∈Nw and N?Nw.We obtain that N is closed.Consequently,N is a normal subsemiring of S.

    Secondly,by Proposition 2.5,we know that ρNis a skew-ring congruence on S.For any a,b∈S,then aρ=(m1,r1),bρ=(m2,r2),where m1,m2∈M,r1,r2∈R.Let x∈S and xρ=(m,?r1?r2),where m∈M,?r1,?r2are ring additive inverses of r1,r2in S, respectively.Then

    since R is a ring.So a+b+x,b+a+x∈N,(a+b,b+a)∈ρNby Corollary 2.6.We have (S/ρN,+,·)is a ring and ρNis a ring congruence on S.By Proposition 2.4,we know that v is a rectangular band semiring congruence on S.

    Thirdly,we shall show that ρ=v∩ρN.Let(a,b)∈ρ and aρ=(m,r)where m∈M,r∈R. Let x∈S be such that xρ=(m,?r)where?r is a ring additive inverse of r in R.Then

    It follows that a+x,b+x∈N,so(a,b)∈ρN.Also,aρ=(m,r)=bρ∈{m}×R.Hence a,b∈Qmand(a,b)∈v.We obtain that(a,b)∈v∩ρN.Consequently,ρ?v∩ρN.Conversely, let(a,b)∈v∩ρN.Then aρ,bρ∈{m}×R(aρ=(m,r1),bρ=(m,r2)),a+x,b+x∈N for some m∈M,x∈Qn,where n∈M.Let xρ=(n,r).Then

    On the other hand(a+x)ρ∈M×{0R},hence r1=?r.Similarly,we can prove that r2=?r. Thus(a,b)∈ρ.Consequently,ρ=v∩ρN.

    Finally,we shall show that this expression is unique.Suppose that ρ=v∩ρN=v?∩ρ?N. Let(a,b)∈v.Because v∩v?is a rectangular band semiring congruence,we know that there exists e,f∈E+(S)such that e∈a(v∩v?),f∈b(v∩v?)by Proposition 1.4,so (a,e)∈v∩v??v,(f,b)∈v∩v??v and(e,f)∈v.Since ρNis a ring congruence,we have (e,f)∈trρN?ρNby Proposition 1.5.Therefore,(e,f)∈v∩ρN=v?∩ρ?N?v?.Further, (a,e)∈v?,(e,f)∈v?,(f,b)∈v?,thus(a,b)∈v?.Hence v?v?.We may equally well show the opposite inclusion.

    Then v?=v,so ρ=v∩ρN=v∩ρ?N.Let(a,b)∈ρN.Since(a+a+b,a+b)∈v and (a+b+b,a+b)∈v,we have(a+a+b,a+b+b)∈v,so

    Since S is an E-inversive semiring,we know that there exists a′∈W(a)and b′∈W(b)such that a′+a,b+b′∈E+(S).By(a+a+b,a+b+b)∈ρ?N,then

    By Proposition 2.5,we know that(a′+a)ρ?N=(b+b′)ρ?Nis the identity of S/ρ?N.Therefore, (a′+a+a+b+b′,a)∈ρ?Nand(b,a′+a+b+b+b′)∈ρ?N,so(a,b)∈ρ?N.We deduce that ρN?ρ?N.Similarly,we have ρ?N?ρN.Thus ρN=ρ?Nand the conclusion holds.

    From Proposition 1.4,Proposition 1.5 and Theorem 2.7,we obtain the following two corollaries.

    Corollary 2.8Let ρ be a rectangular ring congruence on an E-inversive semiring S. Then S/ρ~=S/v×S/ρN.

    Corollary 2.9Let S be an E-inversive semiring.Then each rectangular ring congruence on S is uniquely determined by its kernel and trace.

    Theorem 2.10Let ρ be a rectangular ring congruence on an E-inversive semiring S. Then for any m∈M,S/ρN~=Qm/ρ(N∩Qm).

    ProofLet m∈M.Put Nm=N∩Qm.Def i ne the mapping φ:Qm/ρNm→S/ρNby (aρNm)φ=aρN(a∈Qm).By Proposition 2.5,we have ρNmis a congruence on Qm.Clearly,φ is well-def i ned.Further,let a∈S and c∈Nm?N.Then aρ=(n,r)and cρ=(m,0),where m,n∈M,r∈R.It follows that

    We know that φ is surjective.Let a,b∈Qmand(aρNm)φ=(bρNm)φ.Then(a,b)∈ρN,so a+x,b+x∈N for some x∈S.Moveover,for every c∈Nm?N,a+c+x,b+c+x∈N since N is ref l exive.Thus

    since(Qm+N+Qm)?Qmand similarly,we have c+(b+c+x)+c∈Nm.Since c+ a,c+b,c+x+c∈Qm,we deduce that(c+a,c+b)∈ρNm.By Proposition 2.5,we have c∈Nm=kerρNm,there exists e∈E+(Qm)such that cρNm=eρNm.So

    We know that φ is injective.For any a,b∈Qm,

    Hence S/ρN~=Qm/ρ(N∩Qm).

    [1]GOLAN J S.The Theory of Semirings and Their Applications[M].The Netherlands:Kluwer Academic Publisher,1999.

    [2]GIGON R S.Congruences and group congruences on a semigroup[J].Semigroup Forum,2013,86(2):431-450.

    [3]GIGON R S.Rectangular group congruences on a semigroup[J].Semigroup Forum,2013,86(2)451-459.

    [4]GUO Yu-qi,SHUM K P,SEN M K.The semigroup structure of left clif f ord semigroups[J].Acta Math Sin, 2003,19(4):783-792.

    [5]HOWIE J M.An Introduction to Semigroup Theory[M].London:Acadmic Press,1976.

    [6]PETRICH M.Inverse Semigroups[M].New York:Wiley,1983:1-674.

    [7]SIRIPITUKDET M,SATTAYAPORN S.Band congruences on E-inversive E-semigroups[J].International Journal of Algebra,2010,4(19):923-929.

    [8]SIRIPITUKDET M,SATTAYAPORN S.The least group congruence on E-inversive semigroups and E-inversive E-semigroups[J].Thai Journal of Mathematics,2005,3(2):163-169.

    [9]SEN M K,GUO Yu-qi,SHUM K P.A class of idempotent semiring[J].Semigroup Forum,2000,60:351-367.

    [10]WANG Zheng-pan,ZHOU Yuan-lan,GUO Yu-qi.A note on band semirings[J].Semigroup Forum,2005, 71:439-442.

    [11]YAMADA M.Inversive semigroups I[J].Proc Japan Acad,1963,39:100-103.

    [12]ZHOU Yuan-lan.Orthodox semiring with additive idempotents satisfy permutation identities[J].Journal of Mathematical Research and Exposition,2006,26(4):715-719.

    [13]ZHOU Yuan-lan,GUO Yu-qi,WANG Zheng-pan.The semigroup structure of orthorings[J].Acta Math Sci, 2008,28(6):1097-1102.

    tion:20M10,16Y60

    1002–0462(2014)04–0529–10

    date:2013-01-23

    Supported by the National Natural Science Foundation of China(10961014,11101354); Supported by the Natural Science Foundation of Jiangxi Province(0611051);Supported by the Science Foundation of the Education Department of Jiangxi Province(GJJ09459)

    Biography:CHENG Zi-qiang(1988-),male,native of Shangrao,Jiangxi,a master of Jiangxi Normal University,M.S.D.,engages in algebraic theory of semigroups.

    CLC number:O152.7Document code:A

    少妇 在线观看| 国语对白做爰xxxⅹ性视频网站| a 毛片基地| 熟妇人妻不卡中文字幕| 国产精品人妻久久久久久| 美女脱内裤让男人舔精品视频| 婷婷色麻豆天堂久久| xxx大片免费视频| 99九九在线精品视频| 日本黄色片子视频| 高清视频免费观看一区二区| 亚洲精品aⅴ在线观看| 女人精品久久久久毛片| videossex国产| 18禁动态无遮挡网站| 少妇的逼水好多| 国产免费一级a男人的天堂| 色婷婷av一区二区三区视频| 人妻人人澡人人爽人人| 国产亚洲av片在线观看秒播厂| 女性生殖器流出的白浆| 精品国产一区二区久久| 一区二区三区乱码不卡18| 亚洲精品国产av蜜桃| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99热这里只有精品一区| 久久精品人人爽人人爽视色| 精品久久久久久电影网| 好男人视频免费观看在线| 亚洲精品国产av蜜桃| 国产成人freesex在线| 这个男人来自地球电影免费观看 | 亚洲国产精品999| 99国产精品免费福利视频| 婷婷色麻豆天堂久久| 欧美国产精品一级二级三级| 亚洲欧美日韩另类电影网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲丝袜综合中文字幕| av网站免费在线观看视频| 精品久久蜜臀av无| 亚洲欧美中文字幕日韩二区| av视频免费观看在线观看| 男女免费视频国产| 国产精品免费大片| 一边摸一边做爽爽视频免费| 精品少妇黑人巨大在线播放| 久久久久精品久久久久真实原创| 精品国产国语对白av| 亚洲av不卡在线观看| 精品少妇黑人巨大在线播放| 搡女人真爽免费视频火全软件| xxxhd国产人妻xxx| 高清毛片免费看| www.av在线官网国产| 男人操女人黄网站| 毛片一级片免费看久久久久| 高清在线视频一区二区三区| 天堂中文最新版在线下载| 久久久久久伊人网av| 美女内射精品一级片tv| 十八禁高潮呻吟视频| 亚洲av二区三区四区| 亚洲精品日韩av片在线观看| 人人妻人人添人人爽欧美一区卜| 中文字幕制服av| 国产一区二区三区综合在线观看 | 91在线精品国自产拍蜜月| 欧美丝袜亚洲另类| 伊人久久精品亚洲午夜| 国产国语露脸激情在线看| 日日爽夜夜爽网站| 精品人妻一区二区三区麻豆| 在线看a的网站| 国产一区亚洲一区在线观看| 最近手机中文字幕大全| 欧美精品高潮呻吟av久久| 国产精品久久久久久久电影| 久久久国产一区二区| 日韩亚洲欧美综合| av视频免费观看在线观看| 久久久午夜欧美精品| 亚洲精品国产色婷婷电影| 狂野欧美白嫩少妇大欣赏| 两个人免费观看高清视频| 久久免费观看电影| 国产成人av激情在线播放 | 久久热精品热| 国产精品女同一区二区软件| 国产精品久久久久久精品古装| 欧美人与善性xxx| 国产精品一国产av| 日韩欧美精品免费久久| h视频一区二区三区| 中文天堂在线官网| 视频中文字幕在线观看| 高清在线视频一区二区三区| 久久久久久久久久久久大奶| 国产成人av激情在线播放 | 汤姆久久久久久久影院中文字幕| 免费观看性生交大片5| 亚洲av不卡在线观看| 久久久久久久久久久免费av| 亚州av有码| av女优亚洲男人天堂| 亚洲精品久久成人aⅴ小说 | 成年人午夜在线观看视频| 一级毛片aaaaaa免费看小| 国产精品 国内视频| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| 国产精品人妻久久久久久| 亚洲美女黄色视频免费看| 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| 性高湖久久久久久久久免费观看| 国产欧美另类精品又又久久亚洲欧美| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看| 亚洲精品色激情综合| 中文乱码字字幕精品一区二区三区| 在线观看免费视频网站a站| freevideosex欧美| 国产成人a∨麻豆精品| 日日啪夜夜爽| 久久99一区二区三区| 国产精品三级大全| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 午夜免费鲁丝| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看 | 插逼视频在线观看| 狂野欧美激情性xxxx在线观看| 妹子高潮喷水视频| 国产av精品麻豆| 国产国拍精品亚洲av在线观看| 亚洲精品第二区| 久久久久久久久久成人| 色吧在线观看| 99热全是精品| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 免费看av在线观看网站| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 一个人免费看片子| 免费人妻精品一区二区三区视频| 精品卡一卡二卡四卡免费| 久久久久久久亚洲中文字幕| 在线观看免费日韩欧美大片 | 欧美xxⅹ黑人| 国产成人av激情在线播放 | 亚洲精品日韩av片在线观看| 热99国产精品久久久久久7| h视频一区二区三区| 欧美精品一区二区免费开放| 国产在视频线精品| 久久亚洲国产成人精品v| 亚洲精品日韩av片在线观看| 国产老妇伦熟女老妇高清| 免费看不卡的av| 久久精品国产自在天天线| 最后的刺客免费高清国语| 亚洲三级黄色毛片| 久久精品国产自在天天线| 免费观看的影片在线观看| 母亲3免费完整高清在线观看 | 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| tube8黄色片| 亚洲精品自拍成人| 久久久精品94久久精品| 99热全是精品| 成年美女黄网站色视频大全免费 | av有码第一页| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 全区人妻精品视频| 天美传媒精品一区二区| 男女无遮挡免费网站观看| 久久99精品国语久久久| 少妇猛男粗大的猛烈进出视频| 国产高清三级在线| 如日韩欧美国产精品一区二区三区 | 日本猛色少妇xxxxx猛交久久| 欧美3d第一页| 久久99一区二区三区| 黄色怎么调成土黄色| 精品亚洲成国产av| av福利片在线| 免费黄色在线免费观看| 全区人妻精品视频| 一二三四中文在线观看免费高清| 热99久久久久精品小说推荐| 日韩三级伦理在线观看| 蜜桃久久精品国产亚洲av| 午夜福利网站1000一区二区三区| 男男h啪啪无遮挡| 亚洲丝袜综合中文字幕| 亚洲av.av天堂| 午夜激情福利司机影院| 精品熟女少妇av免费看| 亚洲欧美日韩卡通动漫| a级片在线免费高清观看视频| 精品国产一区二区久久| 亚洲精品第二区| 免费av不卡在线播放| 男女边吃奶边做爰视频| 国产日韩欧美亚洲二区| 如日韩欧美国产精品一区二区三区 | 精品人妻一区二区三区麻豆| av免费观看日本| 亚洲av免费高清在线观看| 日韩成人伦理影院| 国产成人精品婷婷| av在线app专区| 免费人妻精品一区二区三区视频| 曰老女人黄片| 免费av不卡在线播放| 精品一区在线观看国产| 国产精品麻豆人妻色哟哟久久| 国产黄频视频在线观看| 国产精品久久久久成人av| 人人妻人人爽人人添夜夜欢视频| 97在线视频观看| 熟妇人妻不卡中文字幕| 国产午夜精品久久久久久一区二区三区| 亚洲婷婷狠狠爱综合网| 高清视频免费观看一区二区| 免费久久久久久久精品成人欧美视频 | 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线| 久久国产亚洲av麻豆专区| 人妻 亚洲 视频| 精品国产一区二区久久| 如何舔出高潮| 最新的欧美精品一区二区| 黄色毛片三级朝国网站| 在线精品无人区一区二区三| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲 | 少妇猛男粗大的猛烈进出视频| 国产av一区二区精品久久| 一区二区av电影网| 女的被弄到高潮叫床怎么办| 欧美日韩成人在线一区二区| 美女国产高潮福利片在线看| 欧美三级亚洲精品| av国产久精品久网站免费入址| 国产不卡av网站在线观看| 女人精品久久久久毛片| 国产深夜福利视频在线观看| 国产 一区精品| 黄色视频在线播放观看不卡| 狠狠婷婷综合久久久久久88av| 日韩成人av中文字幕在线观看| 亚洲第一av免费看| 日日撸夜夜添| 丝瓜视频免费看黄片| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 成人免费观看视频高清| 国产综合精华液| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| 亚洲av中文av极速乱| 国产在视频线精品| 黑丝袜美女国产一区| 日本av手机在线免费观看| 一级毛片aaaaaa免费看小| 亚洲国产精品专区欧美| 丝瓜视频免费看黄片| 成人手机av| 黄色视频在线播放观看不卡| 我的老师免费观看完整版| 91精品伊人久久大香线蕉| a级片在线免费高清观看视频| 欧美精品国产亚洲| 精品亚洲成国产av| 国产极品粉嫩免费观看在线 | 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 欧美激情极品国产一区二区三区 | 国产亚洲一区二区精品| 视频在线观看一区二区三区| 久久久久精品性色| 亚洲欧美精品自产自拍| 一本久久精品| 人体艺术视频欧美日本| 亚洲国产最新在线播放| 看十八女毛片水多多多| 欧美性感艳星| 免费看不卡的av| 国产成人精品婷婷| 成人综合一区亚洲| 国产男人的电影天堂91| 亚洲国产毛片av蜜桃av| 日韩大片免费观看网站| 老女人水多毛片| 少妇丰满av| 国产日韩欧美视频二区| 亚洲av国产av综合av卡| 99热6这里只有精品| 久久99一区二区三区| 午夜老司机福利剧场| 亚洲精品美女久久av网站| 中文字幕最新亚洲高清| 另类亚洲欧美激情| 丰满乱子伦码专区| 免费少妇av软件| 女人精品久久久久毛片| 乱码一卡2卡4卡精品| 少妇人妻 视频| 国产一级毛片在线| av免费观看日本| 韩国高清视频一区二区三区| 免费高清在线观看视频在线观看| 国产乱来视频区| 久久热精品热| 久久久久国产精品人妻一区二区| 日韩人妻高清精品专区| 黄色视频在线播放观看不卡| 精品人妻偷拍中文字幕| 久久久久国产精品人妻一区二区| 亚洲av中文av极速乱| 欧美日韩av久久| 满18在线观看网站| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 我的老师免费观看完整版| 国产在视频线精品| 久久人妻熟女aⅴ| 午夜老司机福利剧场| 久久精品人人爽人人爽视色| 国产免费一区二区三区四区乱码| 国产男女超爽视频在线观看| av国产久精品久网站免费入址| 国产精品.久久久| 久久青草综合色| 国产不卡av网站在线观看| 午夜激情久久久久久久| 大又大粗又爽又黄少妇毛片口| 国产欧美另类精品又又久久亚洲欧美| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 国产一区有黄有色的免费视频| 我的女老师完整版在线观看| 国产亚洲精品第一综合不卡 | 一区二区三区乱码不卡18| 色94色欧美一区二区| 免费观看无遮挡的男女| 国产免费现黄频在线看| 亚洲高清免费不卡视频| 久久久久久久久久久免费av| 国模一区二区三区四区视频| videosex国产| 精品国产国语对白av| 亚洲成色77777| 日日摸夜夜添夜夜爱| 免费大片黄手机在线观看| 观看美女的网站| 欧美+日韩+精品| 97在线视频观看| 成人午夜精彩视频在线观看| 国产亚洲最大av| 久久久精品免费免费高清| 一级a做视频免费观看| 男人添女人高潮全过程视频| 九色成人免费人妻av| 亚洲丝袜综合中文字幕| 成人影院久久| 国产毛片在线视频| 人人妻人人添人人爽欧美一区卜| 黄色一级大片看看| 国产精品久久久久久av不卡| 欧美日韩综合久久久久久| 王馨瑶露胸无遮挡在线观看| 熟女电影av网| 精品一区二区三区视频在线| a级毛片在线看网站| 黄色视频在线播放观看不卡| 国产精品国产三级专区第一集| 日韩一区二区三区影片| 制服诱惑二区| 内地一区二区视频在线| 国产成人免费观看mmmm| 亚洲第一av免费看| 国产精品欧美亚洲77777| 午夜免费观看性视频| 精品久久久久久久久av| 国产精品不卡视频一区二区| xxxhd国产人妻xxx| 久久女婷五月综合色啪小说| 国产精品久久久久成人av| 欧美xxⅹ黑人| 97精品久久久久久久久久精品| 最新的欧美精品一区二区| 国产视频内射| 看非洲黑人一级黄片| 熟妇人妻不卡中文字幕| 成人国产av品久久久| 色婷婷av一区二区三区视频| 天天影视国产精品| 丰满乱子伦码专区| 99国产精品免费福利视频| 一区二区三区四区激情视频| 成人亚洲精品一区在线观看| 中文字幕精品免费在线观看视频 | 啦啦啦在线观看免费高清www| 精品一区二区三卡| 中文字幕最新亚洲高清| 久久久久国产网址| 一区二区三区免费毛片| 男女免费视频国产| 亚洲精品成人av观看孕妇| 日本与韩国留学比较| 婷婷成人精品国产| www.色视频.com| 亚洲欧美色中文字幕在线| 在线观看三级黄色| 国产精品国产av在线观看| 国产精品女同一区二区软件| 女性生殖器流出的白浆| 国产在视频线精品| 国产精品 国内视频| 国产精品国产三级国产专区5o| 免费人妻精品一区二区三区视频| 亚洲精品国产av蜜桃| 久久久久久伊人网av| 天天影视国产精品| av天堂久久9| 99国产精品免费福利视频| 久久 成人 亚洲| 夫妻性生交免费视频一级片| 精品亚洲乱码少妇综合久久| 男女边摸边吃奶| 最近的中文字幕免费完整| 久久99精品国语久久久| 99热这里只有精品一区| 久久久久视频综合| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| 黄色一级大片看看| 我要看黄色一级片免费的| 伊人亚洲综合成人网| 在线观看www视频免费| 国产欧美日韩综合在线一区二区| 国产日韩欧美亚洲二区| 国国产精品蜜臀av免费| 亚洲精品美女久久av网站| 一区二区三区免费毛片| 中文天堂在线官网| 蜜桃国产av成人99| 色吧在线观看| 另类亚洲欧美激情| 国产免费视频播放在线视频| 免费黄色在线免费观看| 亚洲精品国产av成人精品| 精品久久久久久电影网| 国产精品免费大片| 狂野欧美激情性bbbbbb| 国产成人freesex在线| 日韩不卡一区二区三区视频在线| 女性生殖器流出的白浆| 纵有疾风起免费观看全集完整版| av免费在线看不卡| 综合色丁香网| 国产69精品久久久久777片| 波野结衣二区三区在线| 九色成人免费人妻av| 天堂俺去俺来也www色官网| 在线观看一区二区三区激情| 国产成人精品久久久久久| av在线观看视频网站免费| 在线观看国产h片| 亚洲精品国产av蜜桃| 99国产综合亚洲精品| av一本久久久久| 欧美丝袜亚洲另类| 大陆偷拍与自拍| √禁漫天堂资源中文www| 99久国产av精品国产电影| 亚洲国产色片| 精品少妇黑人巨大在线播放| 看非洲黑人一级黄片| 黄色视频在线播放观看不卡| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 久久韩国三级中文字幕| 久久毛片免费看一区二区三区| 26uuu在线亚洲综合色| 亚洲精品av麻豆狂野| 精品亚洲乱码少妇综合久久| 一本大道久久a久久精品| 考比视频在线观看| 日韩一本色道免费dvd| 插阴视频在线观看视频| 丝瓜视频免费看黄片| 在线亚洲精品国产二区图片欧美 | 91久久精品国产一区二区成人| 赤兔流量卡办理| 美女主播在线视频| 最后的刺客免费高清国语| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 最后的刺客免费高清国语| 日日摸夜夜添夜夜添av毛片| 亚洲综合色惰| 欧美丝袜亚洲另类| 亚洲精品视频女| 成人无遮挡网站| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品专区欧美| 少妇熟女欧美另类| 精品国产露脸久久av麻豆| 国产精品一区二区在线不卡| 国产亚洲精品第一综合不卡 | 伦理电影大哥的女人| av一本久久久久| 99久久人妻综合| 国产免费一级a男人的天堂| 美女xxoo啪啪120秒动态图| 91成人精品电影| 国产黄频视频在线观看| 欧美 亚洲 国产 日韩一| 高清视频免费观看一区二区| 99久久中文字幕三级久久日本| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 青春草亚洲视频在线观看| 精品亚洲成a人片在线观看| 欧美日韩成人在线一区二区| 我要看黄色一级片免费的| 一级毛片aaaaaa免费看小| 一本色道久久久久久精品综合| 亚洲国产精品国产精品| 亚洲精品,欧美精品| 国产精品一区www在线观看| 九草在线视频观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久人妻| 久久毛片免费看一区二区三区| 亚洲精品乱久久久久久| 秋霞在线观看毛片| 国产成人精品福利久久| 日韩不卡一区二区三区视频在线| 日本午夜av视频| 国产亚洲精品久久久com| 热99久久久久精品小说推荐| 3wmmmm亚洲av在线观看| 美女内射精品一级片tv| 久久这里有精品视频免费| 欧美日韩在线观看h| 日本欧美国产在线视频| 久久女婷五月综合色啪小说| 9色porny在线观看| 日韩一区二区视频免费看| 欧美bdsm另类| 一级黄片播放器| 久久免费观看电影| 春色校园在线视频观看| 久久女婷五月综合色啪小说| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 一边亲一边摸免费视频| 精品亚洲成国产av| 视频区图区小说| 国产精品久久久久久久久免| 2022亚洲国产成人精品| 下体分泌物呈黄色| 亚洲精品,欧美精品| 中文字幕制服av| 精品一区二区免费观看| 少妇精品久久久久久久| 高清av免费在线| 麻豆成人av视频| 热99国产精品久久久久久7| 亚洲一区二区三区欧美精品| 成人二区视频| 成人免费观看视频高清| 搡女人真爽免费视频火全软件| 欧美成人午夜免费资源| 亚洲国产av新网站| 日日啪夜夜爽| av又黄又爽大尺度在线免费看| 秋霞伦理黄片| 人人妻人人添人人爽欧美一区卜| 久久鲁丝午夜福利片| 大片免费播放器 马上看| 大话2 男鬼变身卡| 最近2019中文字幕mv第一页| 欧美日韩成人在线一区二区| 国产欧美日韩一区二区三区在线 | 97精品久久久久久久久久精品| 亚洲天堂av无毛| 亚洲国产精品国产精品| 精品久久久久久久久av| 久久久久久久久久成人| 丰满少妇做爰视频| 人妻夜夜爽99麻豆av| 秋霞在线观看毛片| 一区二区av电影网| 久久婷婷青草| 日韩强制内射视频| 免费看光身美女| 一级毛片我不卡| 永久网站在线| 狂野欧美激情性bbbbbb| 国产欧美日韩综合在线一区二区| 丁香六月天网| 精品一区在线观看国产| 日韩成人伦理影院|