• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion*

    2014-07-18 12:09:47WANGRui王銳LUOXionglin羅雄麟andXUFeng許鋒ResearchInstituteofAutomationChinaUniversityofPetroleumBeijing102249China
    關(guān)鍵詞:王銳

    WANG Rui (王銳), LUO Xionglin (羅雄麟)** and XU Feng (許鋒)Research Institute of Automation, China University of Petroleum, Beijing 102249, China

    Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion*

    WANG Rui (王銳), LUO Xionglin (羅雄麟)** and XU Feng (許鋒)
    Research Institute of Automation, China University of Petroleum, Beijing 102249, China

    With CO combustion promoters, the role of combustion air flow rate for concerns of economics and control is important. The combustion air is conceptually divided to three parts: the air consumed by coke burning, the air consumed by CO combustion and the air unreacted. A mathematical model of a fluid catalytic cracking (FCC) unit, which includes a quantitative correlation of CO heterogeneous combustion and the amount of CO combustion promoters, is introduced to investigate the effects of promoters on the three parts of combustion air. The results show that the air consumed by coke burning is almost linear to combustion air flow rate, while the air consumed by CO combustion promoters tends to saturate as combustion air flow rate increases, indicating that higher air flow rate can only be used as a manipulated variable to control the oxygen content for an economic concern.

    fluid catalytic cracking unit, CO combustion promoters, combustion air partition

    1 INTRODUCTION

    Fluid catalytic cracking (FCC) unit is one of the most important processes in a refinery, so it is essential to be operated near the optimal condition. The performance of the operating condition concerning economics and control should be considered based on an appropriate mathematical model. Despite the efforts for modeling [1-12], control [13-17] and optimization [18-20] of FCC unit during the past decades, the enormous complexity still makes the optimization a challenging problem [21].

    The behavior of regenerator dominates the steady state and dynamic behavior of the system, because the heat released by coke burning and CO combustion dominates the conversion in the riser and the residence time of catalyst in the regenerator is much longer than that in the riser. Hence, coke burning and CO combustion in the regenerator are important characteristics for concerns of economics and control.

    Several FCC models have considered CO combustion in both homogeneous and heterogeneous phases. In the model proposed by Arbel et al. [3], heterogeneous combustion of CO is related to CO combustion promoters by introducing a factor to represent the relative combustion rate. However, the quantitative correlation between the relative combustion rate and the amount of the added CO combustion promoters was not mentioned. The model proposed by Secchi et al. [8] adopts the same method to simulate the relative heterogeneous combustion rate which did not mention the quantitative correlation, either. The models proposed by Ali et al. [4], Arandes et al. [6], and Han and Chung [7] all adopt the kinetics of CO heterogeneous combustion proposed by Morley and de Lasa [22, 23]. In the work of Fernandes et al. [9, 10], the rate expression for CO heterogeneous combustion is from a technical report by Institut Francais Du Petrole (IFP). In these models, the combustion rate is not quantitatively correlated with the amount of CO combustion promoters added.

    On the other hand, for controlling CO combustion in the regenerator, several studies focused on the selection of control structure for FCC unit. Hovd and Skogestad [15] presented a study on the selection of the structure of regulatory control loops in a general FCC unit based on the analysis of linear models derived from the nonlinear model of Lee and Groves [2]. They suggested a 2×2 structure, with catalyst circulation rate controlling riser temperature while combustion air flow rate controlling flue gas oxygen content or regenerator temperature. Based on the dynamic model of an FCC unit with high-efficiency regenerator developed by Fernandes et al. [10], a 4×4 structure was determined for decentralized control [24], with the regenerated catalyst slide valve, spent catalyst slide valve, flue gas slide valve and combustion air flow rate controlling the riser temperature, catalyst inventory in the stripper, regenerator pressure and flue gas oxygen content, respectively. However, the amount of CO combustion promoters is also a measure for controlling the CO combustion together with combustion air flow rate concerning economics of the process. Lacking of a correlation between the amount of CO combustion promoters and CO heterogeneous combustion, these studies have exaggerated the role of air flow rate in the control of CO combustion in the regenerator. Hence, the role of combustion air flow rate for concerns of economics and control should be investigated with the amount of CO combustion promoters added.

    In this paper, the combustion air is conceptually divided into three parts: the air consumed by coke burning, the air consumed by CO combustion and theair unreacted. In order to investigate the effect of CO combustion promoters on the combustion air partition, the heterogeneous combustion of CO is quantitatively correlated to the amount of CO combustion promoters added in an FCC unit with high-efficiency regenerator. The effect is discussed based on the sensitivity analysis of CO combustion with respect to the air flow rate and the amount of CO combustion promoters added.

    2 MODELING OF FCC UNIT WITH CO COMBUSTION PROMOTERS

    The model in this work is based on the dynamic model of an FCC unit with high-efficiency regenerator under complete combustion proposed by Luo [25]. Since the high-efficiency regenerator is generally designed with excess combustion air to guarantee the fast fluidization in the combustor, it is assumed that no CO exists in the regenerator with plenty of CO combustion promoters added in the base model. In order to investigate the mechanism of CO combustion in the regenerator, a detailed CO combustion model for the regenerator is introduced taking into account CO combustion promoters [26]. The schematic diagram of FCC unit with high-efficiency regenerator is illustrated in Fig. 1.

    With the assumption that the coke deposited on the spent catalysts is composed of carbon and hydrogen, the reactions in the combustor include

    where β is the intrinsic molar ratio CO2/CO, with the correlation proposed by Xu et al. [27]

    Consequently, the combustion air is divided into three parts: the air consumed by coke burning Vair,coke, the air consumed by CO combustion Vair,COand the air unreacted in the flue gas Vair,flue, as shown in Fig. 2.

    The kinetics for combustion of carbon and hydrogen adopt the model suggested by Lin [28]:

    Figure 1 Schematic diagram of FCC unit with high-efficiency regenerator

    Figure 2 Conceptual partition of combustion air in FCC unit

    3 EFFECT OF COMBUSTION PROMOTERS ON COMBUSTION AIR PARTITION

    In order to investigate the effects of combustion air flow rate and the amount of CO combustion promoters added on CO combustion in the regenerator, sensitivity analysis is performed at different air flow rates and amounts of combustion promoters as illustrated in Fig. 3. The base case operating condition of a 0.7 Mt·a?1FCC unit with high-efficiency regenerator is shown in Table 1.

    Table 1 Base case operating conditions of FCCU

    The effects of combustion air flow rate and the amount of CO combustion promoters on regenerator temperatures in combustor and dense bed are illustrated in Figs. 3 (a) and 3 (b). There exists a maximum temperature in the combustor as the air flow rate increases with the same amount of CO combustionpromoters. This is mainly because when small amount of air is introduced, the partial pressure of oxygen in the combustor is very low, deteriorating the CO combustion and lowering the regenerator temperature, especially with a small amount of promoters. When the air flow rate is too high, the air will function as a coolant to deteriorate coke burning. The regenerator temperature in the dense bed is greatly affected by the condition of the combustor because the air introduced into the dense bed is far less than that into the combustor. Hence, the change of regenerator temperature in the dense bed is similar to that in the combustor. On the other hand, both the temperatures in the combustor and dense bed decrease as the amount of promoters decreases. The effects of the air flow rate and the amount of CO combustion promoters on CO and O2contents in the flue gas and coke content of regenerated catalyst are illustrated in Figs. 3 (c) and 3 (d). The CO content and coke content of regenerated catalyst decrease to certain values as the air flow rate increases while the O2content increases almost linearly to the air flow rate. Fig. 3 illustrates that the air flow rate and the amount of CO combustion promoters both significantly affect the catalyst regeneration. However, CO combustion promoters can only directly promote the CO combustion and do not directly affect coke burning. Therefore, when the cost of CO combustion promoters is concerned, the effect of CO combustion promoters on the air consumed by CO is a key aspect.

    For the high-efficiency regenerator, only the air entering the combustor is considered for the partition of combustion air, because the air introduced to the dense bed only assures the incipient fluidization and the coke burned is much less than that in the combustor, which differs greatly from general countercurrent dense bed regenerators. In addition, since the homogeneous combustion rate of CO is much lower than the heterogeneous combustion rate in the presence of CO combustion promoters, the air consumed by CO is mainly by the promotion of CO combustion promoters.

    We define the air consumed by coke burning Vair,coke, the air consumed by CO combustion Vair,COand the air unreacted in the flue gas Vair,flueas

    Figure 3 Sensitivity analysis on combustion air flow rate and amount of CO combustion promoters added

    Figure 4 (a) shows the partition of combustion air with respect to combustion air flow rate at the amount of CO combustion promoters equal to 0.004, i.e. 2 μgplatinum per gram catalyst. The air unreacted remarkably increases compared to other two parts as the air flow rate increases, indicating that the regeneration is in a quite good condition since the high-efficiency regenerator is commonly operated with excess combustion air and plenty of CO combustion promoters to ensure fast fluidization in the combustor and complete combustion. The effects of promoters on the air consumed by coke burning and CO combustion are illustrated in Figs. 4 (b) and 4 (c). The air consumed by coke burning is almost linear to the air flow rate, while the air consumed by CO combustion promoters tends to saturate as the air flow rate increases, especially when the amount of CO combustion promoters is low. This suggests that there exists an optimal combustion air flow rate with certain amount of CO combustion promoters concerning economics, and beyond this optimal flow rate, increasing combustion air may not significantly increase heterogeneous combustion of CO and the air flow rate can only be used to regulate the oxygen content in the flue gas for an economic concern.

    More attention should be paid to the curve with CO combustion promoters of 0.002 in Fig. 4 (c) since the air consumed by CO combustion is far less than those under the other two conditions. In Fig. 3 (c), the CO content in the flue gas with promoters of 0.002 is much higher, indicating the probability of afterburning is higher no matter how much combustion air is injected into the regenerator, namely, combustion air flow rate is no longer an efficient manipulated variable for CO combustion. To prevent afterburning, an increase in the amount of CO combustion promoters is crucial.

    Furthermore, from the viewpoint of process design and control, the difference between the amounts of combustion promoters 0.002 and 0.004 and the potential optimal air flow rate at certain amount of promoters provide the potential of reducing the consumption of promoters and operation cost. To obtain an optimized operating condition, the integrated design of process and control based on dynamic simulation is needed in the future.

    Figure 4 Partition of combustion air and effect of CO promoters on partition

    4 CONCLUSIONS

    This paper divides combustion air into three parts: the air consumed by coke burning, the air consumed by CO combustion and the air unreacted in the flue gas. To investigate the effects of CO combustion promoters on these parts, a mathematical model of an FCC unit is introduced with a quantitative correlation of CO heterogeneous combustion to the amount of combustion promoters and sensitivity analysis is performed at different combustion air flow rates and amounts of CO combustion promoters. It is indicated that there exists an optimal air flow rate at certain amount of combustion promoters concerning economics and the air flow rate is not an efficient manipulated variable for CO combustion at small amount of combustion promoters.

    NOMENCLATURE

    Subscripts

    REFERENCES

    1 McFarlane, R.C., Reineman, R.C., Bartee, J.F., Georgakis, C., “Dynamic simulator for a model IV fluid catalytic cracking unit”, Computers & Chemical Engineering, 17 (3), 275-300 (1993).

    2 Lee, E., Groves, Jr.F.R., “Mathematical model of the fluidized bed catalytic cracking plant”, Transactions, 2 (3), 219-236 (1985).

    3 Arbel, A., Huang, Z., Rinard, I.H., Shinnar, R., Sapre, A.V., “Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current generation of FCC’s”, Industrial & Engineering Chemistry Research, 34 (4), 1228-1243 (1995).

    4 Ali, H., Rohani, S., Corriou, J.P., “Modelling and control of a riser type fluid catalytic cracking (FCC) unit”, Chem. Eng. Res. Des., 75 (4), 401-412 (1997).

    5 Ellis, R.C., Li, X., Riggs, J.B., “Modeling and optimization of a model IV fluidized catalytic cracking unit”, AIChE Journal, 44 (9), 2068-2079 (1998).

    6 Arandes, J.M., Azkoiti, M.J., Bilbao, J., de Lasa, H.I., “Modelling FCC units under steady and unsteady state conditions”, The Canadian Journal of Chemical Engineering, 78 (1), 111-123 (2000).

    7 Han, I.S., Chung, C.B., “Dynamic modeling and simulation of a fluidized catalytic cracking process. Part i: Process modeling”, Chemical Engineering Science, 56 (5), 1951-1971 (2001).

    8 Secchi, A.R., Santos, M.G., Neumann, G.A., Trierweiler, J.O., “A dynamic model for a FCC UOP stacked converter unit”, Computers & Chemical Engineering, 25 (4-6), 851-858 (2001).

    9 Fernandes, J.L., Verstraete, J.J., Pinheiro, C.I.C., Oliveira, N.M.C., Ribeiro, F.R., “Dynamic modelling of an industrial R2R FCC unit”, Chemical Engineering Science, 62 (4), 1184-1198 (2007).

    10 Fernandes, J.L., Pinheiro, C.I.C., Oliveira, N.M.C., Inverno, J., Ribeiro, F.R., “Model development and validation of an industrial UOP fluid catalytic cracking unit with a high-efficiency regenerator”, Industrial & Engineering Chemistry Research, 47 (3), 850-866 (2008).

    11 Gao, J.S., Xu, C.M., Yang, G.H., Guo, Y.C., Lin, W.Y., “Numerical simulation on gas-solid two-phase turbulent flow in FCC riser reactors (I) Tubulent gas-solid flow-reaction model”, Chin. J. Chem. Eng., 6 (1), 12-20 (1998).

    12 Gao, J.S., Xu, C.M., Yang, G.H., Guo, Y.C., Wang, X.L., “Numerical simulation on gas-solid two-phase turbulent flow in FCC riser reactors (II) Numerical simulation on the gas-solid two-phase turbulent flow”, Chin. J. Chem. Eng., 6 (1), 21-28 (1998).

    13 Cristea, M.V., Agachi, S.P., Marinoiu, V., “Simulation and model predictive control of a UOP fluid catalytic cracking unit”, Chemical Engineering and Processing: Process Intensification, 42 (2), 67-91 (2003).

    14 Grosdidier, P., Mason, A., Aitolahti, A., Heinonen, P., Vanham?ki, V.,“FCC unit reactor-regenerator control”, Computers & Chemical Engineering, 17 (2), 165-179 (1993).

    15 Hovd, M., Skogestad, S., “Procedure for regulatory control structure selection with application to the FCC process”, AIChE Journal, 39 (12), 1938-1953 (1993).

    16 Arbel, A., Rinard, I.H., Shinnar, R., “Dynamics and control of fluidized catalytic crackers. 3. Designing the control system: Choice of manipulated and measured variables for partial control”, Industrial & Engineering Chemistry Research, 35 (7), 2215-2233 (1996).

    17 Alvarez-Ramirez, J., Valencia, J., Puebla, H., “Multivariable control configurations for composition regulation in a fluid catalytic cracking unit”, Chemical Engineering Journal, 99 (3), 187-201 (2004).

    18 Loeblein, C., Perkins, J., “Structural design for on-line process optimization: II. Application to a simulated FCC”, AIChE Journal, 45 (5), 1030-1040 (1999).

    19 Han, I.S., Riggs, J.B., Chung, C.B., “Modeling and optimization of a fluidized catalytic cracking process under full and partial combustion modes”, Chemical Engineering and Processing: Process Intensification, 43 (8), 1063-1084 (2004).

    20 Zanin, A.C., de Gouvea, M.T., Odloak, D., “Integrating real-time optimization into the model predictive controller of the FCC system”, Control Engineering Practice, 10 (8), 819-831 (2002).

    21 Pinheiro, C.I.C., Fernandes, J.L., Domingues, L., Chambel, A.J.S., Graca, I., Oliveira, N.M.C., Cerqueira, H.S., Ribeiro, F.R., “Fluid catalytic cracking (FCC) process modeling, simulation, and control”, Industrial & Engineering Chemistry Research, 51 (1), 1-29 (2012).

    22 Morley, K., de Lasa, H.I., “On the determination of kinetic parameters for the regeneration of cracking catalyst”, The Canadian Journal of Chemical Engineering, 65 (5), 773-777 (1987).

    23 Morley, K., de Lasa, H. I., “Regeneration of cracking catalyst influence of the homogeneous CO postcombustion reaction”, The Canadian Journal of Chemical Engineering, 66 (3), 428-432 (1988).

    24 Fernandes, J.L., Pinheiro, C.I.C., Oliveira, N.M.C., Inverno, J., Ribeiro, F.R., “Closed-loop dynamic behavior of an industrialhigh-efficiency FCC unit”, In: 16th Mediterranean Conference on Control Automation, Sauter, D., ed., Institute of Electrical and Electronics Engineers, Ajaccio, France, 1829-1834 (2008).

    25 Luo, X.L., “Dynamic modeling and operation analysis of FCCU with high efficiency regenerator”, Ph. D. Thesis,China University of Petroleum, Beijing (1997). (in Chinese)

    26 Wang, R., Luo, X.L., Xu, F., “Multiple steady states of FCCU with varying CO concentration”, CIESC Journal, 64 (8), 2930-2937 (2013). (in Chinese)

    27 Xu, C.M., Lin, S.X., Yang, G.H., “Determination of CO2/CO in dense bed during cracking catalyst regeneration”, Journal of the University of Petroleum, China: Natural Science Edition, 14 (6), 84-93(1990). (in Chinese)

    28 Lin, S.X., Petroleum Refining Engineering, 2nd edition, Petroleum Industry Press, Beijing (1988). (in Chinese)

    29 Wei, F., Lin, S.X., Yang, G.H., “Kinetic study of gas-phase CO slow oxidation”, Journal of the University of Petroleum, China: Natural Science Edition, 12 (4-5), 110-116(1988). (in Chinese)

    30 Liu, D., Sun, P., Liu, X., Wang, J., Ma, F., Zhao, J., “The activity determination of Pt/Al2O3CO-promoted catalyst used in regenerator of catalytic cracking (I) The kinetics of CO oxidation over new Pt/Al2O3promoter”, Chemical Engineering (China), 25 (3), 18-22 (1997). (in Chinese)

    31 Liu, D., Liu, X., Wang, J., Sun, P., He, W., Zhao, J., “The activity determination of Pt/Al2O3CO-promoted catalyst used in regenerator of catalytic cracking (II) The determination and simulation of equilibrium activity”, Chemical Engineering (China), 25 (3), 23-26 (1997). (in Chinese)

    32 Chen, J.W., Catalytic Cracking Technology and Engineering, 2nd edition, SINOPEC Press, Beijing (2005). (in Chinese)

    2013-07-18, accepted 2013-11-08.

    * Supported by the National Natural Science Foundation of China (21006127) and the National Basic Research Program of China (2012CB720500).

    ** To whom correspondence should be addressed. E-mail: luoxl@cup.edu.cn

    猜你喜歡
    王銳
    復(fù)旦大學(xué)陳建華教授 華東師范大學(xué)王銳副教授
    Core structure and Peierls stress of the 90?dislocation and the 60?dislocation in aluminum investigated by the fully discrete Peierls model
    愛丁堡的蝴蝶睡著了
    花火A(2022年3期)2022-06-13 03:30:21
    Vacuum-gap-based lumped element Josephson parametric amplifier
    『盲盒』脫癮,告別孤獨遇見愛
    “盲盒”脫癮,告別孤獨遇見愛
    盲盒脫癮記:愛的煙火治愈最深的孤獨
    Equivalence—based Translation theories
    “失戀陣線聯(lián)盟”瓦解:女大學(xué)生“奪愛”現(xiàn)場怒殺盟友
    含可再生能源的熱電聯(lián)供型微網(wǎng)經(jīng)濟運行優(yōu)化
    十八禁人妻一区二区| 国产视频内射| 法律面前人人平等表现在哪些方面| 国产成人系列免费观看| 最好的美女福利视频网| 最近视频中文字幕2019在线8| 九色国产91popny在线| 欧美性猛交╳xxx乱大交人| 日本成人三级电影网站| 给我免费播放毛片高清在线观看| 亚洲专区中文字幕在线| 淫妇啪啪啪对白视频| 欧美在线一区亚洲| 久久久久久九九精品二区国产 | 99久久综合精品五月天人人| 国产精品九九99| 少妇熟女aⅴ在线视频| 一边摸一边抽搐一进一小说| 日韩欧美精品v在线| 99久久99久久久精品蜜桃| 欧美黑人巨大hd| 亚洲熟妇中文字幕五十中出| 男人舔奶头视频| 亚洲一区中文字幕在线| 精品日产1卡2卡| 最近最新免费中文字幕在线| 久久精品影院6| 久久久久久久午夜电影| 国产欧美日韩一区二区三| 精品电影一区二区在线| 在线观看舔阴道视频| 日韩欧美国产在线观看| 老司机午夜十八禁免费视频| 老鸭窝网址在线观看| 长腿黑丝高跟| 日本 av在线| 伊人久久大香线蕉亚洲五| 国产精品1区2区在线观看.| 一区二区三区国产精品乱码| 免费在线观看黄色视频的| 国产一区二区激情短视频| 免费在线观看日本一区| 日韩欧美免费精品| 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| videosex国产| 国产午夜福利久久久久久| 两性夫妻黄色片| 少妇粗大呻吟视频| 国产精品久久视频播放| 成人高潮视频无遮挡免费网站| 欧美成人性av电影在线观看| 亚洲成人精品中文字幕电影| 欧美 亚洲 国产 日韩一| 色综合欧美亚洲国产小说| 日韩欧美免费精品| 亚洲真实伦在线观看| 精品第一国产精品| 欧美黑人巨大hd| 一级a爱片免费观看的视频| 国产亚洲精品av在线| 1024手机看黄色片| 欧美黑人精品巨大| 亚洲国产精品合色在线| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 精品无人区乱码1区二区| 午夜a级毛片| 亚洲中文日韩欧美视频| 亚洲av熟女| 亚洲人成网站在线播放欧美日韩| x7x7x7水蜜桃| 国产欧美日韩精品亚洲av| 欧美 亚洲 国产 日韩一| 18禁黄网站禁片午夜丰满| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 亚洲av成人不卡在线观看播放网| 亚洲人成伊人成综合网2020| 久久精品国产清高在天天线| 亚洲最大成人中文| 三级毛片av免费| 女生性感内裤真人,穿戴方法视频| 国产精品99久久99久久久不卡| www国产在线视频色| 亚洲精品色激情综合| 亚洲专区国产一区二区| www.www免费av| 国产一区二区在线观看日韩 | av福利片在线观看| 久久久精品国产亚洲av高清涩受| 亚洲精品美女久久av网站| 日韩精品中文字幕看吧| 99久久精品国产亚洲精品| 搡老岳熟女国产| 亚洲欧美日韩东京热| x7x7x7水蜜桃| 丝袜美腿诱惑在线| 久久久久亚洲av毛片大全| 中文字幕av在线有码专区| 国内精品久久久久久久电影| 制服丝袜大香蕉在线| 男人舔女人的私密视频| 啦啦啦观看免费观看视频高清| 欧美色视频一区免费| 久久精品国产亚洲av香蕉五月| 欧美性长视频在线观看| 亚洲性夜色夜夜综合| 国产成人精品久久二区二区免费| 长腿黑丝高跟| 黄色a级毛片大全视频| 免费看十八禁软件| 成人三级黄色视频| 国产激情欧美一区二区| 麻豆av在线久日| 久久这里只有精品中国| 一级毛片精品| 精品欧美国产一区二区三| 午夜a级毛片| 岛国在线观看网站| 亚洲精品国产一区二区精华液| av超薄肉色丝袜交足视频| 少妇被粗大的猛进出69影院| 手机成人av网站| 日本一区二区免费在线视频| 宅男免费午夜| 国产熟女xx| 亚洲真实伦在线观看| 亚洲人成网站在线播放欧美日韩| 欧美精品亚洲一区二区| 国产主播在线观看一区二区| 国产熟女xx| 精品久久蜜臀av无| 一级片免费观看大全| 五月伊人婷婷丁香| 国产精品国产高清国产av| 男女那种视频在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲熟妇熟女久久| 又粗又爽又猛毛片免费看| 国产熟女xx| 国产成人一区二区三区免费视频网站| 亚洲18禁久久av| 精品国内亚洲2022精品成人| 这个男人来自地球电影免费观看| www日本黄色视频网| 久久国产精品影院| 免费一级毛片在线播放高清视频| 97超级碰碰碰精品色视频在线观看| 极品教师在线免费播放| a在线观看视频网站| 久久久久久久久久黄片| 在线视频色国产色| 婷婷精品国产亚洲av| 亚洲国产中文字幕在线视频| 叶爱在线成人免费视频播放| 久久婷婷人人爽人人干人人爱| www.精华液| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 日日夜夜操网爽| 好男人在线观看高清免费视频| 琪琪午夜伦伦电影理论片6080| 神马国产精品三级电影在线观看 | 色尼玛亚洲综合影院| 亚洲一码二码三码区别大吗| 国产高清视频在线观看网站| 天天躁夜夜躁狠狠躁躁| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产中文字幕在线视频| 人成视频在线观看免费观看| 亚洲真实伦在线观看| 黄色成人免费大全| 国产激情欧美一区二区| 99热6这里只有精品| 国语自产精品视频在线第100页| 又爽又黄无遮挡网站| 日本a在线网址| 午夜免费成人在线视频| 亚洲欧美日韩东京热| 91大片在线观看| 19禁男女啪啪无遮挡网站| 成人欧美大片| 欧美成人一区二区免费高清观看 | 啪啪无遮挡十八禁网站| 最好的美女福利视频网| 日韩欧美在线乱码| 非洲黑人性xxxx精品又粗又长| 男女之事视频高清在线观看| 五月伊人婷婷丁香| 久久精品91蜜桃| 成人18禁高潮啪啪吃奶动态图| 日韩av在线大香蕉| 久久精品人妻少妇| 又紧又爽又黄一区二区| 男男h啪啪无遮挡| 久久久国产成人免费| 搡老妇女老女人老熟妇| 精品电影一区二区在线| 午夜激情av网站| 非洲黑人性xxxx精品又粗又长| 亚洲欧美一区二区三区黑人| 91成年电影在线观看| 亚洲自拍偷在线| 动漫黄色视频在线观看| 亚洲男人的天堂狠狠| 草草在线视频免费看| 国产精品亚洲一级av第二区| 免费一级毛片在线播放高清视频| 中文字幕精品亚洲无线码一区| 夜夜爽天天搞| 男女之事视频高清在线观看| 国产成人精品久久二区二区91| 亚洲男人天堂网一区| 在线永久观看黄色视频| 国产又色又爽无遮挡免费看| 国产精品久久久久久亚洲av鲁大| 又紧又爽又黄一区二区| 日韩三级视频一区二区三区| 白带黄色成豆腐渣| e午夜精品久久久久久久| 91成年电影在线观看| 1024香蕉在线观看| 国内精品一区二区在线观看| 18禁裸乳无遮挡免费网站照片| 午夜免费成人在线视频| 怎么达到女性高潮| 欧美极品一区二区三区四区| 亚洲国产欧洲综合997久久,| 亚洲片人在线观看| 亚洲欧美日韩东京热| 窝窝影院91人妻| 久久久国产成人精品二区| 又大又爽又粗| 久久人妻福利社区极品人妻图片| 久久人人精品亚洲av| 我的老师免费观看完整版| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一欧美日韩一区二区三区| 久久这里只有精品19| 国产av又大| 91av网站免费观看| 久久天堂一区二区三区四区| 我的老师免费观看完整版| 欧美 亚洲 国产 日韩一| 亚洲精品av麻豆狂野| 午夜福利成人在线免费观看| 麻豆国产av国片精品| 桃红色精品国产亚洲av| 欧美黑人巨大hd| 十八禁人妻一区二区| 淫秽高清视频在线观看| 国产一区二区在线av高清观看| 免费av毛片视频| www.999成人在线观看| 国产精品自产拍在线观看55亚洲| 亚洲av成人av| 久久精品aⅴ一区二区三区四区| 999精品在线视频| 欧美激情久久久久久爽电影| 午夜日韩欧美国产| 丁香六月欧美| 精品久久蜜臀av无| 国产69精品久久久久777片 | 国内久久婷婷六月综合欲色啪| 午夜福利视频1000在线观看| 亚洲国产精品成人综合色| 黄色视频,在线免费观看| 一a级毛片在线观看| 亚洲精品在线观看二区| 国内少妇人妻偷人精品xxx网站 | 在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 日韩欧美国产一区二区入口| 国产精品1区2区在线观看.| 亚洲国产精品合色在线| 国产成+人综合+亚洲专区| 又黄又粗又硬又大视频| 女人爽到高潮嗷嗷叫在线视频| 看片在线看免费视频| 久久国产精品人妻蜜桃| 日韩高清综合在线| www.www免费av| 日本 欧美在线| 一个人观看的视频www高清免费观看 | 亚洲欧美精品综合久久99| 女警被强在线播放| 欧美乱妇无乱码| 久久香蕉激情| 国产熟女午夜一区二区三区| 久久性视频一级片| 中国美女看黄片| 黄色视频不卡| 日韩三级视频一区二区三区| 国产主播在线观看一区二区| 此物有八面人人有两片| 欧美日韩黄片免| 精品福利观看| 成人高潮视频无遮挡免费网站| 日韩大尺度精品在线看网址| 正在播放国产对白刺激| 久久热在线av| 欧美大码av| 熟女少妇亚洲综合色aaa.| 国产区一区二久久| 精品午夜福利视频在线观看一区| 国产成人aa在线观看| 久久精品国产亚洲av高清一级| 99国产综合亚洲精品| av视频在线观看入口| 国产精品av久久久久免费| 亚洲av美国av| 欧美日韩黄片免| 欧美在线一区亚洲| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱色亚洲激情| 久久久国产精品麻豆| 亚洲 欧美 日韩 在线 免费| 夜夜看夜夜爽夜夜摸| 精品国产亚洲在线| 色哟哟哟哟哟哟| 757午夜福利合集在线观看| 亚洲av成人一区二区三| 在线播放国产精品三级| 久久草成人影院| 亚洲人成伊人成综合网2020| 女人被狂操c到高潮| 在线看三级毛片| 在线观看免费午夜福利视频| 午夜精品在线福利| 久99久视频精品免费| 老司机福利观看| 99精品在免费线老司机午夜| 麻豆成人av在线观看| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区三| 最近最新中文字幕大全免费视频| 最近在线观看免费完整版| 无人区码免费观看不卡| 女警被强在线播放| 欧美黄色淫秽网站| 少妇的丰满在线观看| 高清在线国产一区| 国产av麻豆久久久久久久| 超碰成人久久| 欧美成人午夜精品| 成人国产一区最新在线观看| 欧美日本亚洲视频在线播放| 97人妻精品一区二区三区麻豆| 岛国视频午夜一区免费看| 亚洲无线在线观看| 国产精品av久久久久免费| 欧美黑人巨大hd| 国产精华一区二区三区| 热99re8久久精品国产| 欧美极品一区二区三区四区| 最新美女视频免费是黄的| 欧美日本视频| 成人永久免费在线观看视频| 亚洲成人免费电影在线观看| 日本黄大片高清| 色在线成人网| 免费在线观看完整版高清| 国产91精品成人一区二区三区| 亚洲av日韩精品久久久久久密| or卡值多少钱| 国产成人精品无人区| 国产精华一区二区三区| 久久久久久久午夜电影| 狠狠狠狠99中文字幕| 久久精品综合一区二区三区| 精品国产乱码久久久久久男人| 高清毛片免费观看视频网站| 可以在线观看的亚洲视频| 久久久久国产一级毛片高清牌| 91大片在线观看| 国产亚洲精品av在线| 午夜激情av网站| 午夜视频精品福利| 嫩草影视91久久| 久久精品夜夜夜夜夜久久蜜豆 | 99久久国产精品久久久| 一卡2卡三卡四卡精品乱码亚洲| 欧美大码av| 国产高清videossex| 好看av亚洲va欧美ⅴa在| 777久久人妻少妇嫩草av网站| 亚洲中文字幕日韩| 午夜福利18| 草草在线视频免费看| 中文字幕人妻丝袜一区二区| 亚洲av电影在线进入| 俄罗斯特黄特色一大片| 哪里可以看免费的av片| 午夜福利免费观看在线| 免费人成视频x8x8入口观看| 亚洲一卡2卡3卡4卡5卡精品中文| xxxwww97欧美| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区国产精品乱码| 熟妇人妻久久中文字幕3abv| 人妻夜夜爽99麻豆av| av欧美777| 国产三级黄色录像| 香蕉丝袜av| 日本 欧美在线| 可以在线观看的亚洲视频| 久久久久国产一级毛片高清牌| www国产在线视频色| 高清在线国产一区| www.熟女人妻精品国产| 好看av亚洲va欧美ⅴa在| 在线观看66精品国产| 成人av一区二区三区在线看| xxxwww97欧美| 中文字幕高清在线视频| 亚洲全国av大片| 亚洲中文字幕日韩| 伊人久久大香线蕉亚洲五| 欧美在线黄色| 欧美黑人欧美精品刺激| 久久久精品欧美日韩精品| 最近最新中文字幕大全免费视频| 一进一出抽搐动态| 精品日产1卡2卡| 99精品在免费线老司机午夜| 老司机深夜福利视频在线观看| 99久久久亚洲精品蜜臀av| av欧美777| 国产精品自产拍在线观看55亚洲| 大型av网站在线播放| 精品欧美国产一区二区三| а√天堂www在线а√下载| 狂野欧美白嫩少妇大欣赏| 国产又黄又爽又无遮挡在线| 两性午夜刺激爽爽歪歪视频在线观看 | 91字幕亚洲| 无遮挡黄片免费观看| 最近在线观看免费完整版| www.999成人在线观看| 久久香蕉激情| 亚洲国产日韩欧美精品在线观看 | 午夜精品在线福利| 国产亚洲精品av在线| 日本 av在线| 欧美成狂野欧美在线观看| 成人欧美大片| 美女午夜性视频免费| 毛片女人毛片| 好看av亚洲va欧美ⅴa在| avwww免费| x7x7x7水蜜桃| 手机成人av网站| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 88av欧美| bbb黄色大片| 黑人操中国人逼视频| av在线播放免费不卡| 欧美zozozo另类| 在线看三级毛片| 变态另类成人亚洲欧美熟女| 美女午夜性视频免费| 99国产精品一区二区蜜桃av| 两个人看的免费小视频| 午夜福利在线在线| 母亲3免费完整高清在线观看| 午夜久久久久精精品| 国产精品久久久久久亚洲av鲁大| 我要搜黄色片| 久久午夜综合久久蜜桃| 国产精品影院久久| 99久久无色码亚洲精品果冻| 脱女人内裤的视频| 在线视频色国产色| 给我免费播放毛片高清在线观看| 国产熟女xx| 久久久久久久久久黄片| 久久香蕉激情| 成年版毛片免费区| 视频区欧美日本亚洲| 国产精品 欧美亚洲| 欧美一区二区精品小视频在线| 最近最新中文字幕大全免费视频| 国产精品一区二区免费欧美| 欧美av亚洲av综合av国产av| 亚洲成av人片免费观看| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 非洲黑人性xxxx精品又粗又长| av免费在线观看网站| videosex国产| 亚洲第一电影网av| 91字幕亚洲| 俺也久久电影网| 超碰成人久久| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲av一区麻豆| 亚洲国产高清在线一区二区三| 俄罗斯特黄特色一大片| 国产在线精品亚洲第一网站| 91字幕亚洲| 丝袜人妻中文字幕| 亚洲国产欧美网| 亚洲,欧美精品.| 精品久久蜜臀av无| 黄色成人免费大全| 99国产综合亚洲精品| 亚洲第一电影网av| 国产三级在线视频| 两性夫妻黄色片| 757午夜福利合集在线观看| 天堂动漫精品| 蜜桃久久精品国产亚洲av| 男人舔女人的私密视频| 国模一区二区三区四区视频 | 男女那种视频在线观看| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 亚洲av五月六月丁香网| 极品教师在线免费播放| 国产成人av激情在线播放| 亚洲片人在线观看| xxxwww97欧美| 中文亚洲av片在线观看爽| 女生性感内裤真人,穿戴方法视频| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 在线观看日韩欧美| 老司机在亚洲福利影院| 免费在线观看完整版高清| 老司机福利观看| 亚洲真实伦在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品98久久久久久宅男小说| 日韩欧美免费精品| 啦啦啦韩国在线观看视频| 亚洲精品久久成人aⅴ小说| 欧美黄色淫秽网站| 精品国产亚洲在线| 一夜夜www| 日韩欧美在线乱码| 五月玫瑰六月丁香| 成人18禁在线播放| 精品久久久久久,| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 免费看日本二区| 国产99白浆流出| 中亚洲国语对白在线视频| 久久人妻av系列| 午夜免费成人在线视频| 久久久久国内视频| 国内精品一区二区在线观看| 国产精品精品国产色婷婷| 一级毛片精品| 国产私拍福利视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 最好的美女福利视频网| 亚洲人成电影免费在线| 欧美日韩黄片免| 国产精品 国内视频| 亚洲专区字幕在线| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 舔av片在线| 中文字幕高清在线视频| 国产精品一区二区三区四区久久| 国产精品 欧美亚洲| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 精品电影一区二区在线| 麻豆成人午夜福利视频| 亚洲熟女毛片儿| 中国美女看黄片| 白带黄色成豆腐渣| 免费观看人在逋| 韩国av一区二区三区四区| 亚洲精品粉嫩美女一区| 成人18禁高潮啪啪吃奶动态图| av欧美777| 欧美极品一区二区三区四区| 亚洲乱码一区二区免费版| 老司机午夜十八禁免费视频| 999久久久精品免费观看国产| 免费看十八禁软件| 国产视频一区二区在线看| 免费看十八禁软件| 777久久人妻少妇嫩草av网站| 日韩av在线大香蕉| 国产亚洲精品一区二区www| www.999成人在线观看| 欧美色欧美亚洲另类二区| 天天一区二区日本电影三级| 国产精品日韩av在线免费观看| av超薄肉色丝袜交足视频| 成熟少妇高潮喷水视频| 久久国产乱子伦精品免费另类| av片东京热男人的天堂| 男人舔女人的私密视频| 一级作爱视频免费观看| 色哟哟哟哟哟哟| 别揉我奶头~嗯~啊~动态视频| 不卡一级毛片| 国产亚洲av嫩草精品影院| 国产99白浆流出| 后天国语完整版免费观看| 国产精品久久久久久久电影 | 亚洲午夜理论影院| 国产三级黄色录像| 免费一级毛片在线播放高清视频| 十八禁网站免费在线| xxx96com|