• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Forward Extraction of Boric Acid from Salt Lake Brine by 2-Ethyl-1,3-hexanediol in Toluene Using Single Drop Technique*

    2014-07-18 12:09:48Jianhua呂建華LIUJidong劉繼東SUNYujie孫玉潔andLIChunli李春利SchoolofChemicalEngineeringHebeiUniversityofTechnologyTianjin300130China
    關(guān)鍵詞:建華

    Lü Jianhua (呂建華), LIU Jidong (劉繼東), SUN Yujie (孫玉潔) and LI Chunli (李春利)**School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China

    Kinetics of Forward Extraction of Boric Acid from Salt Lake Brine by 2-Ethyl-1,3-hexanediol in Toluene Using Single Drop Technique*

    Lü Jianhua (呂建華), LIU Jidong (劉繼東), SUN Yujie (孫玉潔) and LI Chunli (李春利)**
    School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, China

    The kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in toluene was investigated using the single drop technique. The factors affecting the extraction rate include interfacial area between aqueous phase and organic phase, initial concentration of boric acid in aqueous phase, initial concentration of 2-ethyl-1,3-hexanediol in organic phase, and extraction temperature. The experimental results show that the extraction rate increases with the increase of the initial concentration of boric acid and 2-ethyl-1,3-hexanediol, interfacial area of two phases, and temperature. With the temperature-dependence study, it is showed that the extraction is a diffusion-controlled process. The kinetic equation is presented for pH 1.0 in the aqueous phase and temperature of 318 K.

    kinetics, boric acid, extraction, mass transfer, single drop technique

    1 INTRODUCTION

    Boric acid is widely used in industry due to its excellent characteristics, such as glass, ceramic, detergent, plastic, agricultural and textile industries [1]. Although the boric acid production is increasing, the supply does not meet the demand. The raw materials used to produce boric acid are boron ore and salt lake brine. After decades of mining, boron ore resources decline sharply. Brine contains quite a lot of boric acid, but its utilization is still at the primary stage because of low concentration of boric acid [2]. Solvent extraction has many advantages for extracting low-concentration boric acid. Some alcohols present good properties for extracting boric acid from salt lake brine, such as monohydric alcohol [3-5], dibasic alcohol [6-8] and mixed alcohols [9, 10].

    Lü et al. studied the kinetics of boric acid extraction from salt lake brine with monohydric alcohol [11]. Although the extraction effect of dibasic alcohol is better than monohydric alcohol, the kinetics has not been reported.

    The single drop technique is an appropriate technique for studying kinetics of extraction [12-14]. In this study, the kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in toluene is investigated. The effects of interfacial area between aqueous and organic phases, initial concentration of boric acid in aqueous phase, initial concentration of 2-ethyl-1,3-hexanediol in organic phase, and extraction temperature on the extraction rate are examined. The results provide reliable basic data for the selection and design of industrial device.

    2 EXPERIMENTAL

    2.1 Chemicals and reagents

    The pH value is one of the most important factors in the extraction. H3BO3polymerizes and gradually transforms to polymeric borate anions in the range of pH 3.0 to 5.0. In this pH range, H3BO3does not react with alcohol. When the pH value is less than 3.0, almost all boric acid is in the molecular form of H3BO3[15], and the change of [H+] has little influence on the coefficient of distribution [11]. The salt lake brine used in this study was a crystal mother liquid of boric acid, from Jinaier salt lake, Qinghai province, China, the pH value of which is approximately equal to 1.0, so the experiment on extraction rate were carried out at pH=1.0.

    The component and physical properties of the salt lake brine are listed in Table 1. 2-ethyl-1,3-hexanediol was supplied from Jinlong Industry, Tianjin, China. Toluene was supplied from Jiangtian Chemical Technology, Tianjin, China. All chemicals were of analytical reagent grade and used without further purification.

    Table 1 Component and physical properties of the salt lake brine (293.15 K)

    2.2 Experimental setup and operation

    The experimental setup of single drop technique is shown in Fig. 1. The drop size was changed by usingcapillaries with different sizes (1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 mm). The velocity of organic phase was controlled by the needle valve at 100±5 drops per minute. The contact-time of the two phases was controlled by the height of the aqueous phase (150, 300, 450, or 600 mm). The average volume of drops was calculated from the volume of 400 drops collected in a graduated flask. For a particular height of aqueous phase, the contact-time of organic drop with aqueous phase was calculated by averaging the rising time of 10 drops. The concentrations of boric acid in aqueous and organic phases were estimated by double indicator titration method [16].

    Figure 1 Schematic diagram of experimental set-up of single drop technique1—dropping funnel; 2—column of organic phase; 3—jacketed pipe of constant temperature bath; 4—needle valve; 5—piston; 6—pipe of flowing back; 7—capillary; 8—extraction column; 9—overflow vent; 10—feed hopper of aqueous phase

    2.3 Data processing

    The r is defined as the amount of boric acid through unit area per unit time. At a constant temperature, r can be calculated by

    where r is the rate of mass transfer, A and V are the surface area and volume of a drop, [H3BO3] is the concentration of boric acid, t is the rising time of droplet, and subscript o refers to organic phase.

    For the single drop technique, a great shortcoming is the end effect, which is the mass transfer of boric acid in the period for droplets to form at the bottom of extraction column and coalesce at the top of the column, but is not considered in Eq. (1). Therefore, the mass transfer per unit interfacial area is measured by changing the height of columns, then the slopes of lines represent33Od[H BO]/dt in Eq. (1), so that the experimental results are not affected by the end effect (the intercept of line shows the influence of the end effect). In the process of drop rising in the extraction column, it is assumed that the drop behaves as a rigid sphere and the organic phase is relatively stable. The volume V is the average volume of drops and the surface area A is calculated with the average volume.

    The experiments of single drop technique were carried out under the condition far from extraction equilibrium. Horner [17] has pointed out that reverse mass transfer rate is far less than forward mass transfer rate. Therefore, the reverse mass transfer rate of H3BO3from organic phase to aqueous phase is neglected in this study. The measurement results are forward extraction rate of H3BO3from aqueous phase to organic phase. In addition, the volume of aqueous phase is much larger than that of organic phase, so changes of H3BO3concentration in aqueous phase are neglected. The end effect of drops at the top and bottom of extraction column is the same. At fixed [H+] and temperature, the extraction rate of boric acid is expressed as

    where k is extraction rate constant, a and b are the reaction order with respect to [H3BO3] and [R(OH)2], respectively.

    Equation (2) can be written as

    For fixed [R(OH)2], the relationship between lgr and lg[H3BO3] is linear with slope a; for fixed [H3BO3], the relationship between lgr and lg[R(OH)2] is linear with slope b. From Eq. (2), k value can be calculated.

    The effect of temperature on the extraction rate can be expressed by the Arrhenius equation. The value of apparent activation energy (Ea) can be calculated by [18]

    where R is the universal gas constant (8.314 J·mol?1·K?1), T is the reaction temperature, and B is the constant in the Arrhenius equation. The plot of lnk vs. 1/T yields a straight line, whose slope multiplying (R?) is the activation energy (Ea).

    According to classic transition state theory [19, 20], we have

    where h is Planck’s constant (6.626068×10?34J?s), k?is the Boltzmann constant (1.3806503×10?23J·K?1), H± Δ is the enthalpy of activation, and S±Δ is the entropy of activation.

    Equation (5) shows that the plot of ln(/)rh k T?vs. 1/T is a straight line with slope (/HR±?Δ) and intercept332+). Thus theln([H BO][R(OH)]) a b value of G±Δ at a particular temperature may be evaluated as

    where G±Δ is the Gibbs free energy of activation.

    3 RESULTS AND DISCUSSION

    3.1 Effect of specific surface area on extraction rate Figure 2 presents the effect of specific surface area on extraction rate at five volume ratios of 2-ethyl-1,3-hexanediol to toluene (1︰1, 2︰3, 3︰8, 1︰5, 1︰9) with fixed H3BO3concentration. Different specific surface areas are from capillaries with different sizes. The chemical reaction between boric acid and 2-ethyl-1,3-hexanediol in the extraction process may occur in the bulk aqueous phase or organic phase or at the interface. Fig. 2 shows that the extraction rate of boric acid is directly proportional to the specific surface area. Because the increase in H3BO3concentration is directly proportional to the number of H3BO3molecules crossing the interface, the chemical reaction occurs at the interface. The result is similar to the extraction results of 2-ethyl hexanol and boric acid [11]. The extraction rate by 2-ethyl-1,3-hexanediol is higher than the transfer rate of boric acid.

    Figure 2 Effect of specific surface area on extraction rate at different concentrations of 2-ethyl-1,3-hexanediol ([H3BO3]=

    3.2 Effect of initial boric acid concentration in aqueous phase on extraction rate

    Table 2 shows the effect of initial boric acid concentration on extraction rate at fixed 2-ethyl-1,3-hexanediol concentration. The extraction rate of boric acid increases with the increase of boric acid concentration in aqueous phase, since more boric acid molecules are brought to the interface and participate in the esterification reaction.

    3.3 Effect of initial concentrations of 2-ethyl-1,3-hexanediol in organic phase on extraction rate

    Table 2 Effect of boric acid initial concentration in aqueous phase on extraction rate([R(OH)2]=0.9205 mol·L?1, pH=1.0, T=318 K)

    The effect of initial concentrations of 2-ethyl-1,3-hexanediol on extraction rate at fixed H3BO3concentration is shown in Table 3. The extraction rate increases with the increase of initial concentrations of 2-ethyl-1,3-hexanediol. The variation of 2-ethyl-1,3-hexanediol concentration changes the drop diameter from the same capillary, resulting in different specific surface area. In order to evaluate the effects of initial concentrations of 2-ethyl-1,3-hexanediol on extraction rate in the same specific surface area, we define the corrected extraction rate (r′) as the one at certain specific surface area and volume of drops. The corrected extraction rates are calculated by the linear relation between extraction rate (r) and specific surface

    area in Fig. 2 and shown in Table 3, with the drop volume of 1.1188×10?5L and its specific surface area of 2162 m?1.

    Table 3 Effect of initial 2-ethyl-1,3-hexanediol concentration in organic phase on extraction rate ([H3BO3]=0.1748 mol·L?1, pH=1.0, T=318 K )

    Table 4 Effect of temperature on extraction rate ([H3BO3]=0.1748 mol·L?1, [R(OH)2]=1.0739 mol·L?1, pH=1.0)

    Equation (2) is used for regression of the data in Tables 2 and 3 with the linear least square method. The equation of extraction kinetics at 318 K can be expressed as

    The extraction rate constant is k=9.085×10?3L2.101·mol?1.101·m?2·s?1, with relative standard deviation of 5.92%. Thus the extraction reaction is approximately first-order with respect to 2-ethyl-1,3-hexanediol and H3BO3.

    3.4 Effect of temperature on extraction rate

    The effect of temperature on extraction rate at fixed concentrations of H3BO3and 2-ethyl-1,3-hexanediol is shown in Table 4. The extraction rate increases with the increase of extraction temperature. The relationship between extraction rate constant and temperature is shown in Fig. 3.

    Figure 3 Effect of temperature on reaction rate constant ([H3BO3]=0.1748 mol·L?1, [R(OH)2]=1.0739 mol·L?1, pH=1)

    In general, the controlling step of chemical reaction can be judged by the value of activation energy. Wang et al. [21] have classified the controlling step of this system in this way. When the activation energy is larger than 42 kJ·mol?1, the controlling step is chemical reaction; when the activation energy is less than 13 kJ·mol?1, the reaction is diffusion-controlled; when the activation energy is 20-34 kJ·mol?1, the rates of mass transfer and reaction are in the same order of magnitude. In this study, the activation energy is Ea= 10 kJ·mol?1from Eq. (4), so the reaction of extracting boric acid is considered as a diffusion-controlled process.

    calculated results are: ΔH± = 7 kJ·mol?1, ΔS± =?262 J·mol?1·K?1, and ΔG± = 91 kJ·mol?1.

    3.5 Analysis on reaction mechanism

    The reaction between boric acid and 2-ethyl-1,3-hexanediol is

    In the experiment, the aqueous phase containing boric acid and organic phase were mixed in a separating funnel. After a period of time the concentration of boric acid in aqueous phase was not changed, and the boric acid concentrations in organic and aqueous phases were analyzed. At the ratio of O/A of 2︰1, 1︰1, 1︰2, 1︰3 and 1︰4, the distribution coefficients at different concentrations of 2-ethyl-1,3-hexanediol were measured by the slope method. B(OHare first formed by H3BO3ionization in acid solution, and one boric acid molecule and one 2-ethyl-1,3-hexanediol molecule react to form an intermediate

    Figure 4 Distribution coefficient and 2-ethyl-1,3-hexanediol concentration

    The straight lines of lgD against lg[R(OH)2] and their slops are shown in Fig. 4. These slopes are approximately equal to 2.0. It indicates that the ester form of boric acid is H3BO3·2R(OH)2. Eq. (7) shows that the extraction rate is nearly proportional to concentrations of boric acid and 2-ethyl-1,3-hexanediol, while Fig. 4 shows that the ultimate ester form of boric acid is H3BO3·2R(OH)2. These indicate that the extraction reaction between boric acid and 2-ethyl-1,3-hexanediol is a stepwise reaction. Traces of H+andmolecule, which reacts with one 2-ethyl-1,3-hexanediol molecule to the ultimate ester form H3BO3·2R(OH)2. The main reactions between boric acid and 2-ethyl-1,3-hexanediol in this extraction are as follows:

    When the ionization equilibrium of H3BO3is broken by esterification of R(OH)2and4B(OH)?forms and participates in the reaction. Because the extraction reaction can be considered as diffusion-controlled, the reaction rates of reactions (12), (13) and (14) are very fast. However, since the diffusion rate of R(OH)2is not large enough to supply the reaction, reaction rate (14) is decreased. By increasing concentrations of boric acid in aqueous phase and 2-ethyl-1,3-hexanediol in organic phase, the diffusion rate is increased, so the overall extraction rate increases. In general, the chemical reaction mechanism can be judged by S±(OH)?, more 4 Δ. The value of S±Δ becomes negative when solvent molecules are tightly attached to H3BO3(SN2 mechanism), and S±Δ becomes positive when solvent molecules dissociate from H3BO3(SN1 mechanism). In this experiment, reaction (14) occurs via the SN2 mechanism (S±Δ=?261.3688 J·mol?1·K?1).

    4 CONCLUSIONS

    The reaction between boric acid and 2-ethyl-1,3-hexanediol occurs at the interface between the two phases and the extraction reaction is diffusion-controlled. The values of activation energy (Ea), enthalpy of activation (H±Δ), entropy of activation S±Δ, and G±Δ are obtained.

    The kinetic equation of extraction is obtained, and the extraction reaction is approximately first-order with respect to concentrations of 2-ethyl-1,3-hexanediol and H3BO3. The main reaction steps with 2-ethyl-1,3-hexanediol and boric acid is described by the SN2 mechanism.

    NOMENCLATURE

    Superscripts

    Subscripts

    REFERENCES

    1 Mergen, A., Demirhan, M.H., Bilen, M., “Processing of boric acid from borax by a wet chemical method”, Advanced Powder Technology, 14 (3), 279-293 (2003).

    2 Li, J., Fan, Z.G., Liu, Y.L., Liu, S.L., Jiang, T., Xi, Z.P., “Preparation of boric acid from low-grade ascharite and recovery of magnesium sulfate”, Transactions of Nonferrous Metals Society of China, 20 (6), 1161-1165 (2010).

    3 Vinogradov, E.E., “Extraction of boric acid with isoamyl alcohol from hydrochloric acid solutions”, Zh. Strukt. Khim., 7, 2813-2816 (1962).

    4 Brown, C.G., Sanderson, B.R., “Solvent extraction of boron”, Chem. Ind., 1978a, 68-73 (1978).

    5 Vinogradov, E.E., Shamiryan, P.S., Tarasova, G.N., Ivanov, A.A., Panasyuk, G.P., “The system, boric acid, lithium chloride,2-ethylhexanol”, Zh. Neorg. Khim., 46, 860-865 (2001).

    6 Brown, C.G., Sanderson, B.R, “Solvent extraction of boron”, Chem. Ind., 1978b, 68-73 (1978).

    7 Shvarts, E.M., Kalve, I., Telzhenskaya, P.N., “Extraction of boric acid in the boric acid, sulphuric acid, water system”, Latv. Kim. Z., 3/4, 88-93 (1995).

    8 Svares, E., Putnina, A., Kalve, I., Sennikova, L.M., Kirchanov, A.,“Extraction of boric acid by normal 1,3-diols”, Zh. Neorg. Khim., 28, 2333-2337 (1983).

    9 Lü, J.H., Sun, Y.J., Li, C.L., “Mass transfer coefficient of extracting boric acid by 2-ethyl-1,3-hexanediol”, CIESC Journal, 63 (S1), 145-153 (2012). (in Chinese)

    10 Ayers, P., Dudeney, A.W.L., Kahraman, F., “Solvent extraction of boron with 2-ethyl-1,3-hexanediol and 2-chloro-4-(1,1,3,3-tetramethylbutyl)-6-methylol-phenol”, Journal of Inorganic and Nuclear Chemistry, 43, 2097-2100 (1981).

    11 Lü, J.H., Li, C.L., Geng, H., “Kinetics for extraction of boric acid from salt lake brine by 2-ethyl hexanol-toluene”, CIESC Journal, 61 (12), 3124-3129 (2010).

    12 Zhu, P., Hong, D., Wu, J.H., Qian, G.R., “Kinetics of forward extraction of Ti(IV) from H2SO4 medium by P507 in kerosene using the single drop technique”, Rare Metals, 30 (1), 1-7 (2011).

    13 Biswas, R.K., Hayat, M.A., “Kinetics of extraction of Zr(IV) from chloride solution after 30-day ageing by D2EHPA using the single drop technique”, Hydrometallurgy, 75, 45-54 (2004).

    14 Muhammad, I.S., Md, F.B., Md, S.J., Bahruddin, S., “Kinetics of lanthanum (III) extraction from nitrate-acetato medium by Cyanex 272 in toluene using the single drop technique”, Hydrometallurgy, 67, 45-52 (2002).

    15 Ingri, N., Lagerstrom, G., Frydman, M., Sillen, L.G., “Equilibrium studies of polyanions. 2. Polyborates in NaClO4medium”, Acta Chemica Scandinavica, 11, 1034-1058 (1957).

    16 Qinghai Institute of Salt Lakes., Analysis of Brine and Salt, Science Press, Beijing (1973). (in Chinese)

    17 Horner, D.E., “Process for recovery of strontium values from fission product waste solutions”, U.S. Pat., 3122414(1964).

    18 Pannetier, X., Souchay, P., Chemical Kinetics, Elsevier, Amsterdam (1967).

    19 Biswas, R.K., Habib, M.A., Bari, M.F., “Kinetics of backward extraction of Mn(II) from Mn-D2EHP complex in kerosene to hydrochloric acid medium using single drop technique”, Hydrometallurgy, 46 (3), 493-362 (1997).

    20 Maron, S.H., Frutton, F., Principles of Physical Chemistry, 4th edition, MacMillan, New York, 571-584 (1975).

    21 Wang, K.Y., Cheng, B.C., Shu, W.Y., Solvent Extraction Chemistry, Central South University of Technology Press, Hunan, 74 (1991).

    2012-09-21, accepted 2012-12-17.

    * Supported by the Natural Science Foundation of the Education Department Hebei Province (2009426), and Educational Commission of Hebei Province (ZH2011221).

    ** To whom correspondence should be addressed. E-mail: ctstljh@hebut.edu.cn

    猜你喜歡
    建華
    倒立奇奇
    故事作文·低年級(2018年11期)2018-11-19 17:25:58
    托尼逃跑
    米沙在書里
    可怕的事
    哈比的愿望
    100歲的貝其
    變變變
    阿嗚想做貓
    快樂的秘密
    一区二区av电影网| 最近最新中文字幕大全电影3| 亚洲国产精品成人久久小说| 国语对白做爰xxxⅹ性视频网站| 噜噜噜噜噜久久久久久91| 国产亚洲最大av| 男女国产视频网站| 夫妻午夜视频| 欧美精品国产亚洲| 国产欧美另类精品又又久久亚洲欧美| 丰满人妻一区二区三区视频av| 3wmmmm亚洲av在线观看| 亚洲精品日韩av片在线观看| 神马国产精品三级电影在线观看| 国产高潮美女av| 亚洲一区二区三区欧美精品 | 日本wwww免费看| 亚洲av成人精品一二三区| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影| 亚洲综合色惰| 亚洲美女视频黄频| 视频区图区小说| 少妇丰满av| 亚洲美女视频黄频| 午夜日本视频在线| 美女脱内裤让男人舔精品视频| 大香蕉久久网| 97超碰精品成人国产| 亚洲成人一二三区av| 色播亚洲综合网| 天美传媒精品一区二区| 国产成人免费无遮挡视频| 六月丁香七月| 国模一区二区三区四区视频| av国产久精品久网站免费入址| 国精品久久久久久国模美| 亚洲国产精品成人综合色| 六月丁香七月| 免费观看的影片在线观看| 亚洲欧美清纯卡通| 久久久色成人| 国产淫片久久久久久久久| 国产黄色视频一区二区在线观看| 亚洲欧美日韩另类电影网站 | 综合色丁香网| 女人十人毛片免费观看3o分钟| 最近中文字幕高清免费大全6| 免费观看无遮挡的男女| 能在线免费看毛片的网站| 国产片特级美女逼逼视频| 最近的中文字幕免费完整| 日韩一区二区三区影片| 性色av一级| 亚洲综合精品二区| 在线免费十八禁| 啦啦啦啦在线视频资源| 亚洲精品中文字幕在线视频 | www.av在线官网国产| 欧美最新免费一区二区三区| 免费观看在线日韩| av网站免费在线观看视频| 亚洲精品亚洲一区二区| 国内少妇人妻偷人精品xxx网站| 欧美精品人与动牲交sv欧美| 国产精品成人在线| 欧美日韩视频精品一区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品av视频在线免费观看| av免费在线看不卡| 日日撸夜夜添| 久久久国产一区二区| 91久久精品国产一区二区三区| 久久6这里有精品| 亚洲四区av| 色视频www国产| 别揉我奶头 嗯啊视频| 一级爰片在线观看| 秋霞伦理黄片| 人妻制服诱惑在线中文字幕| 精品国产露脸久久av麻豆| 91午夜精品亚洲一区二区三区| 亚洲精品成人久久久久久| 免费不卡的大黄色大毛片视频在线观看| 又粗又硬又长又爽又黄的视频| 精品久久国产蜜桃| 色视频在线一区二区三区| 好男人视频免费观看在线| 好男人在线观看高清免费视频| 麻豆乱淫一区二区| 18禁动态无遮挡网站| 欧美一级a爱片免费观看看| 久久久久久久久久成人| 最近中文字幕2019免费版| av网站免费在线观看视频| 亚洲成人中文字幕在线播放| 美女国产视频在线观看| 国国产精品蜜臀av免费| 日日摸夜夜添夜夜爱| 亚洲精品国产av成人精品| 热99国产精品久久久久久7| 色视频www国产| 国产综合懂色| 欧美人与善性xxx| 日本黄大片高清| 亚洲天堂av无毛| 高清日韩中文字幕在线| 亚洲最大成人av| 禁无遮挡网站| 女的被弄到高潮叫床怎么办| 欧美97在线视频| 国产精品.久久久| 日韩一本色道免费dvd| 成人黄色视频免费在线看| 一级毛片 在线播放| 国产视频首页在线观看| 丝袜美腿在线中文| 久久久久网色| 国产精品蜜桃在线观看| 亚洲av成人精品一区久久| 人人妻人人看人人澡| 国产老妇女一区| 国产黄色免费在线视频| 亚洲国产精品专区欧美| 国国产精品蜜臀av免费| av卡一久久| 亚洲人与动物交配视频| 日日啪夜夜爽| 91精品一卡2卡3卡4卡| 精品国产一区二区三区久久久樱花 | 草草在线视频免费看| 中国三级夫妇交换| 99九九线精品视频在线观看视频| 天天躁日日操中文字幕| 精品人妻熟女av久视频| 亚洲国产成人一精品久久久| 亚洲丝袜综合中文字幕| 九草在线视频观看| 交换朋友夫妻互换小说| 亚洲欧美成人综合另类久久久| 国产亚洲91精品色在线| 91在线精品国自产拍蜜月| 熟女人妻精品中文字幕| 蜜桃久久精品国产亚洲av| 人妻 亚洲 视频| 国产精品.久久久| 国产女主播在线喷水免费视频网站| 亚洲精品成人久久久久久| 国产亚洲午夜精品一区二区久久 | 少妇的逼水好多| 国产精品.久久久| 亚洲精品自拍成人| 亚洲av男天堂| 青青草视频在线视频观看| 美女内射精品一级片tv| 少妇熟女欧美另类| 精品99又大又爽又粗少妇毛片| a级一级毛片免费在线观看| 精品国产一区二区三区久久久樱花 | 亚洲欧美成人综合另类久久久| 国产成人福利小说| 国产免费视频播放在线视频| 日韩 亚洲 欧美在线| 久久精品国产鲁丝片午夜精品| 赤兔流量卡办理| 99视频精品全部免费 在线| 久久久午夜欧美精品| 亚洲av.av天堂| 欧美一区二区亚洲| 国产老妇伦熟女老妇高清| 亚洲人成网站在线播| 亚洲人成网站在线观看播放| av.在线天堂| 亚洲av成人精品一二三区| 激情 狠狠 欧美| 在现免费观看毛片| 99久久人妻综合| 国产成人一区二区在线| 国内精品美女久久久久久| 少妇丰满av| 在线观看美女被高潮喷水网站| 国产淫片久久久久久久久| 国产大屁股一区二区在线视频| 成人免费观看视频高清| 我的老师免费观看完整版| 国产黄频视频在线观看| 高清av免费在线| 亚洲欧美清纯卡通| 欧美3d第一页| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在| 草草在线视频免费看| 舔av片在线| 一级毛片我不卡| 特大巨黑吊av在线直播| 91精品一卡2卡3卡4卡| av.在线天堂| 亚洲欧洲国产日韩| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 国产高清三级在线| 五月开心婷婷网| 国产极品天堂在线| av又黄又爽大尺度在线免费看| 亚洲高清免费不卡视频| 特大巨黑吊av在线直播| 中国美白少妇内射xxxbb| 国产女主播在线喷水免费视频网站| 国产精品秋霞免费鲁丝片| 观看美女的网站| 下体分泌物呈黄色| 国产成人精品一,二区| av天堂中文字幕网| 亚洲精品成人久久久久久| 欧美日韩视频高清一区二区三区二| 久久久久性生活片| 免费黄频网站在线观看国产| 少妇高潮的动态图| 日韩欧美精品v在线| 激情 狠狠 欧美| 国产成人aa在线观看| 精品一区二区三卡| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美一区二区三区黑人 | 91久久精品国产一区二区成人| 国产视频内射| 午夜免费男女啪啪视频观看| 国产精品一区二区性色av| 日日撸夜夜添| 久久国内精品自在自线图片| videos熟女内射| 国产精品久久久久久久电影| 爱豆传媒免费全集在线观看| 日韩免费高清中文字幕av| 又爽又黄a免费视频| 白带黄色成豆腐渣| 国产精品福利在线免费观看| 欧美国产精品一级二级三级 | 高清午夜精品一区二区三区| 久久久久久九九精品二区国产| 国产成人精品婷婷| 色播亚洲综合网| 国产免费视频播放在线视频| 亚洲国产精品成人久久小说| 国产久久久一区二区三区| av线在线观看网站| 一个人看的www免费观看视频| 国产一区二区在线观看日韩| 日本爱情动作片www.在线观看| 建设人人有责人人尽责人人享有的 | 男女边吃奶边做爰视频| 99久国产av精品国产电影| 国产久久久一区二区三区| 白带黄色成豆腐渣| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 久久久精品欧美日韩精品| av又黄又爽大尺度在线免费看| 最近中文字幕2019免费版| 成人特级av手机在线观看| 少妇 在线观看| 亚洲精品视频女| 99热国产这里只有精品6| 久久97久久精品| 免费看av在线观看网站| 日韩在线高清观看一区二区三区| 国产高潮美女av| 免费不卡的大黄色大毛片视频在线观看| 国产亚洲最大av| 国产精品一二三区在线看| 国产成人一区二区在线| 国产 一区精品| 亚洲精品日韩av片在线观看| 午夜免费鲁丝| 嘟嘟电影网在线观看| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 亚洲高清免费不卡视频| 中文在线观看免费www的网站| 你懂的网址亚洲精品在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲av中文av极速乱| 一级毛片电影观看| 久久久久性生活片| 国产精品99久久久久久久久| 97人妻精品一区二区三区麻豆| 国产高清有码在线观看视频| 成人亚洲精品av一区二区| 黄色配什么色好看| 一区二区av电影网| 成人无遮挡网站| 国产高清三级在线| 两个人的视频大全免费| 国产精品三级大全| 一级黄片播放器| 欧美人与善性xxx| eeuss影院久久| 好男人视频免费观看在线| 国产色婷婷99| 亚洲精品亚洲一区二区| 免费大片18禁| 香蕉精品网在线| 亚洲色图av天堂| 亚洲怡红院男人天堂| 18禁裸乳无遮挡免费网站照片| 中文字幕久久专区| 亚洲精品久久久久久婷婷小说| 嫩草影院新地址| 国产在线一区二区三区精| 精品国产一区二区三区久久久樱花 | 伊人久久国产一区二区| 1000部很黄的大片| 偷拍熟女少妇极品色| 中文字幕制服av| 亚洲第一区二区三区不卡| 欧美另类一区| 国产精品久久久久久久久免| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱久久久久久| 简卡轻食公司| 在线精品无人区一区二区三 | 国产成人免费观看mmmm| 亚洲国产精品成人久久小说| 熟女av电影| 亚洲欧洲国产日韩| 美女cb高潮喷水在线观看| 亚洲人成网站在线观看播放| 亚洲av国产av综合av卡| 在线观看美女被高潮喷水网站| 国产在线一区二区三区精| 大话2 男鬼变身卡| 舔av片在线| 午夜精品国产一区二区电影 | 欧美精品国产亚洲| 性色av一级| 人人妻人人澡人人爽人人夜夜| av又黄又爽大尺度在线免费看| 国产乱来视频区| 亚洲成色77777| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美中文字幕日韩二区| 赤兔流量卡办理| 国产真实伦视频高清在线观看| 色播亚洲综合网| 一级爰片在线观看| 久久久午夜欧美精品| 卡戴珊不雅视频在线播放| tube8黄色片| 国产精品国产三级专区第一集| 日本爱情动作片www.在线观看| 久久精品国产鲁丝片午夜精品| 国产高潮美女av| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 国产精品久久久久久久电影| 一级毛片电影观看| 特大巨黑吊av在线直播| 欧美日韩一区二区视频在线观看视频在线 | 欧美日韩一区二区视频在线观看视频在线 | 寂寞人妻少妇视频99o| 国产成年人精品一区二区| 久久久久精品性色| 国产一区二区三区综合在线观看 | 99re6热这里在线精品视频| 菩萨蛮人人尽说江南好唐韦庄| 国产片特级美女逼逼视频| 亚洲性久久影院| 日本wwww免费看| 午夜爱爱视频在线播放| 国产成人一区二区在线| 免费av毛片视频| 熟女人妻精品中文字幕| 亚洲在久久综合| 亚洲伊人久久精品综合| 色婷婷久久久亚洲欧美| 免费av观看视频| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 国产欧美亚洲国产| 又粗又硬又长又爽又黄的视频| 国产精品伦人一区二区| 欧美激情久久久久久爽电影| 国产精品一及| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 亚洲av男天堂| 在线免费观看不下载黄p国产| 三级经典国产精品| 高清av免费在线| 亚洲久久久久久中文字幕| 两个人的视频大全免费| 久久久久久久精品精品| 成人美女网站在线观看视频| 97人妻精品一区二区三区麻豆| 亚洲四区av| 欧美日本视频| 国产精品偷伦视频观看了| 色播亚洲综合网| 午夜视频国产福利| 日本wwww免费看| 久久久久性生活片| 高清午夜精品一区二区三区| 久久人人爽av亚洲精品天堂 | 97在线人人人人妻| 亚洲精品久久久久久婷婷小说| 欧美日韩国产mv在线观看视频 | 伊人久久精品亚洲午夜| 国产成人福利小说| 蜜桃久久精品国产亚洲av| 两个人的视频大全免费| 国精品久久久久久国模美| 午夜视频国产福利| 99热网站在线观看| 啦啦啦啦在线视频资源| 国产女主播在线喷水免费视频网站| 国产成人免费无遮挡视频| 日韩在线高清观看一区二区三区| 国产成人91sexporn| 国产乱来视频区| 亚洲欧美精品自产自拍| 色视频在线一区二区三区| 男女无遮挡免费网站观看| 又大又黄又爽视频免费| 精品人妻熟女av久视频| 你懂的网址亚洲精品在线观看| 日韩成人av中文字幕在线观看| 欧美变态另类bdsm刘玥| 一本色道久久久久久精品综合| 亚洲国产成人一精品久久久| 亚洲精品视频女| 国产亚洲精品久久久com| 岛国毛片在线播放| 国产高清国产精品国产三级 | av专区在线播放| 丰满人妻一区二区三区视频av| 久热久热在线精品观看| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 尾随美女入室| 啦啦啦在线观看免费高清www| 日本三级黄在线观看| 街头女战士在线观看网站| 成年人午夜在线观看视频| 黄色日韩在线| 综合色丁香网| 成年女人在线观看亚洲视频 | 国产在线一区二区三区精| 国产午夜精品久久久久久一区二区三区| 亚洲av免费高清在线观看| 欧美最新免费一区二区三区| 欧美日韩视频高清一区二区三区二| av专区在线播放| av免费在线看不卡| 欧美 日韩 精品 国产| 免费高清在线观看视频在线观看| 男人爽女人下面视频在线观看| 老司机影院毛片| 国产精品女同一区二区软件| 精品视频人人做人人爽| 日韩不卡一区二区三区视频在线| 日本黄色片子视频| 久久热精品热| 免费观看的影片在线观看| 亚洲婷婷狠狠爱综合网| 中文字幕人妻熟人妻熟丝袜美| 精品国产三级普通话版| 国产精品蜜桃在线观看| 国产精品久久久久久久电影| 日韩人妻高清精品专区| av国产久精品久网站免费入址| 波野结衣二区三区在线| 欧美xxxx黑人xx丫x性爽| 国产老妇女一区| 一本久久精品| 精品国产露脸久久av麻豆| 美女cb高潮喷水在线观看| 制服丝袜香蕉在线| 国内精品宾馆在线| 两个人的视频大全免费| 在线免费十八禁| 1000部很黄的大片| 2021少妇久久久久久久久久久| 国产有黄有色有爽视频| 亚洲最大成人手机在线| 精品国产露脸久久av麻豆| 99久久精品国产国产毛片| 亚洲欧美一区二区三区黑人 | 在线精品无人区一区二区三 | 亚洲婷婷狠狠爱综合网| 欧美最新免费一区二区三区| 亚洲高清免费不卡视频| 99久久九九国产精品国产免费| av国产精品久久久久影院| 精品少妇黑人巨大在线播放| 亚洲欧美成人综合另类久久久| 色哟哟·www| 一级爰片在线观看| 黄片wwwwww| 美女视频免费永久观看网站| 国产午夜精品久久久久久一区二区三区| 99热6这里只有精品| 日韩av不卡免费在线播放| 亚洲国产精品成人久久小说| 国产午夜福利久久久久久| 亚洲欧美清纯卡通| 成人免费观看视频高清| 亚洲aⅴ乱码一区二区在线播放| 国产成人freesex在线| 校园人妻丝袜中文字幕| 尾随美女入室| 青春草亚洲视频在线观看| 欧美一级a爱片免费观看看| 国产成人91sexporn| 久久精品国产鲁丝片午夜精品| 日韩不卡一区二区三区视频在线| 欧美成人精品欧美一级黄| 2021天堂中文幕一二区在线观| 久久久久国产精品人妻一区二区| 交换朋友夫妻互换小说| 简卡轻食公司| 永久免费av网站大全| 国产精品一区www在线观看| 精品熟女少妇av免费看| 春色校园在线视频观看| 九九在线视频观看精品| 欧美成人a在线观看| 亚洲成人av在线免费| 亚洲欧美清纯卡通| 亚洲电影在线观看av| 国产成人a∨麻豆精品| 色综合色国产| 久久韩国三级中文字幕| 白带黄色成豆腐渣| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb| 欧美性猛交╳xxx乱大交人| 亚洲无线观看免费| 成人漫画全彩无遮挡| 国产伦在线观看视频一区| 国产精品女同一区二区软件| 尾随美女入室| 日韩伦理黄色片| 18禁动态无遮挡网站| 亚洲精品成人久久久久久| 晚上一个人看的免费电影| 精华霜和精华液先用哪个| 香蕉精品网在线| 哪个播放器可以免费观看大片| 女的被弄到高潮叫床怎么办| 亚洲成人中文字幕在线播放| 亚洲av不卡在线观看| 亚洲精品成人久久久久久| 亚洲美女搞黄在线观看| 日韩制服骚丝袜av| 日韩一本色道免费dvd| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 国产久久久一区二区三区| 日韩不卡一区二区三区视频在线| 九九爱精品视频在线观看| 精品久久久久久电影网| 又爽又黄a免费视频| 日韩大片免费观看网站| 男女那种视频在线观看| 大码成人一级视频| 日韩电影二区| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| 超碰av人人做人人爽久久| 国产成人freesex在线| 黄色怎么调成土黄色| 伦精品一区二区三区| 综合色丁香网| 欧美激情久久久久久爽电影| 在线观看免费高清a一片| 欧美三级亚洲精品| 亚洲欧美成人精品一区二区| 狂野欧美激情性xxxx在线观看| 最近手机中文字幕大全| 国产精品伦人一区二区| 国产成人精品一,二区| 尾随美女入室| 日韩精品有码人妻一区| 禁无遮挡网站| 国产日韩欧美亚洲二区| 亚洲精品亚洲一区二区| 王馨瑶露胸无遮挡在线观看| 人人妻人人看人人澡| av.在线天堂| 国精品久久久久久国模美| 亚洲av中文字字幕乱码综合| 视频区图区小说| 亚洲精品影视一区二区三区av| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久| 精品少妇久久久久久888优播| 日韩电影二区| 草草在线视频免费看| 最近2019中文字幕mv第一页| 美女高潮的动态| 亚洲欧美一区二区三区黑人 | 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 大香蕉久久网| 国产精品爽爽va在线观看网站| 少妇熟女欧美另类| 亚洲第一区二区三区不卡| 亚洲,一卡二卡三卡| 日韩在线高清观看一区二区三区| 国产一区亚洲一区在线观看| 亚洲成人一二三区av| 色5月婷婷丁香|