• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration*

    2014-07-18 12:09:47HUANGHongyu黃宏宇HEZhaohong何兆紅YUANHaoran袁浩然KOBAYASHINoriyuki小林敬幸ZHAODandan趙丹丹KUBOTAMitsuhiro窪田光宏andGUOHuafang郭華芳GuangzhouInstituteofEnergyConversionChineseAcademyofSciencesGuangzhou50640ChinaSchoolofEngineeringNagoyaUnive
    關(guān)鍵詞:丹丹小林

    HUANG Hongyu (黃宏宇), HE Zhaohong (何兆紅)**, YUAN Haoran (袁浩然) KOBAYASHI Noriyuki (小林敬幸), ZHAO Dandan (趙丹丹) KUBOTA Mitsuhiro (窪田光宏)and GUO Huafang (郭華芳)Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 50640, ChinaSchool of Engineering, Nagoya University, Nagoya 464-8603, Japan

    Effect of Adsorbent Diameter on the Performance of Adsorption Refrigeration*

    HUANG Hongyu (黃宏宇)1,2, HE Zhaohong (何兆紅)1,**, YUAN Haoran (袁浩然)1, KOBAYASHI Noriyuki (小林敬幸)1,2, ZHAO Dandan (趙丹丹)1, KUBOTA Mitsuhiro (窪田光宏)2and GUO Huafang (郭華芳)11Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China2School of Engineering, Nagoya University, Nagoya 464-8603, Japan

    Adsorbents are important components in adsorption refrigeration. The diameter of an adsorbent can affect the heat and mass transfer of an adsorber. The effect of particle diameter on effective thermal conductivity was investigated. The heat transfer coefficient of the refrigerant and the void rate of the adsorbent layer can also affect the effective thermal conductivity of adsorbents. The performance of mass transfer in the adsorber is better when pressure drop decreases. Pressure drop decreases with increasing permeability. The permeability of the adsorbent layer can be improved with increasing adsorbent diameter. The effect of adsorbent diameter on refrigeration output power was experimentally studied. Output power initially increases and then decreases with increasing diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameters. Keywords adsorption refrigeration, heat and mass transfer, adsorbent diameter, thermal conduction, permeability

    1 INTRODUCTION

    With the increasing economic development and environment protection, adsorption refrigeration technology as the green refrigeration method has received much attention. Adsorption refrigeration can be driven by low-grade heat source, such as waste heat from the process industry and solar energy [1, 2]. Thus, the adsorption technology can enhance the energy utilization efficiency for recovering low-grade heat and reduce fossil resource consumption. Furthermore, environment friendly refrigerants are used in adsorption refrigeration, making the refrigeration system simple and adsorption chiller with low noise performance.

    Common working pairs include silica gel-water [3-6], zeolite-water [7, 8], and active carbon-methanol [9, 10]. Silica gel is widely used because of its better adsorption performance for vapor and low regenerated temperature. Thus, most products of adsorption refrigeration can use the silica gel-water working pair. Adsorbents are considered as important components in adsorption refrigeration systems and are directly associated with refrigeration performance. And the heat and mass transfer performance of adsorbent are studied generally to examine adsorption refrigeration performance.

    The effective diffusivity of the adsorption refrigeration working pair 13X-H2O was determined through thermogravimetry (TG) under the unsteady diffusion by Wang et al [11]. The surface diffusion of water was found to be the main control factor in pellet diffusion. Wang and Wang [12] compared the temperature field and adsorbed mass distribution in the adsorbent bed, and discussed some thermodynamic analyses with various surface diffusing velocity coefficients. Enhancing the rate of adsorption or desorption can improve the coefficient of performance (COP) in an adsorption refrigeration system. A model for the heat and mass transfer process of an active carbon-methanol adsorption bed was developed [13]. The relationship among adsorption temperature, adsorption rate, adsorbed quantity, COP, and cycle time were investigated using numerical methods.

    Permeability is one of the important parameters in the adsorption of adsorbents. It represents the mass transfer performance of an adsorbate and indicates the pressure drop when an adsorbate flows through an adsorbent layer. The distributions of temperature and adsorbate concentration were considerably affected by bed permeability [14]. The permeability of two types of monolithic activated carbons was investigated to develop a design for a high-performance generator for sorption refrigeration systems. Permeability was found to be highly anisotropic [15]. The porosity of the adsorbent bed in a zeolite-13X/water adsorption cooling system was numerically studied. It was found that the porosity of the adsorbent bed had a strong effect on the performance of the adsorption cooling system [16]. The permeability of the consolidated composite activated carbon adsorbent for refrigeration was studied. The simple solidified adsorbent was found to have a higher permeability than that of the consolidated adsorbent [17]. Wang [18] found that the permeability of compressed expanded natural graphite (ENG) treated with acid decreased with increasing density, which was much lower than that of compressed ENG without treatment. Tian et al. [19] tested the permeability of compacted graphite using nitrogen as the gas source. It was found that the permeability had dramatic differences when the curing density changed from 100kg·m?3to 400 kg·m?3and the permeability ranged from 10?14m2to 10?12m2. The thermal conductivities and the permeabilities of the AC/ENG consolidated composite adsorbents were studied using the steadystate method. With a density of 600 kg·m?3, the permeability grew with the size of the grains, and the thermal conductivities of the active carbon (AC) grains were constant at 0.36 W·m?1·K?1.

    Considering the importance of the heat and mass transfer of the adsorbent, analyses of effective thermal conduction coefficient and permeability with different silica gel particle diameters were proposed. The effect of adsorption chiller with different silica gel diameters on cooling power was evaluated and presented in this paper.

    2 MATERIALS AND ANALYSIS

    2.1 Material

    Four types of silica gels adsorbent with different diameter were used. The parameters (particle diameter, mass, void ratio, and specific surface area) of the silica gel adsorbent were shown in Table 1.

    Table 1 Silica gel adsorbent parameters

    2.2 Thermal conduction

    The heat transfer process in adsorption packed beds consists of three parts. The first is the heat conduction in a porous particle adsorbent. The second is the heat transfer between the adsorbent and the metal surface of the heat exchanger. The last is the heat convection between the metal surface and the heating/cooling liquid, where the heat transfer coefficient is better than that of the others. Hence, the controlling thermal resistance of the adsorption packed bed is in the adsorbent side. The thermal conduction coefficient of the particle adsorbent is very poor because of the porosity of the adsorbent. The heat transfer performance of the adsorption packed bed is affected by the poor thermal conduction coefficient. The thermal conduction coefficients of silica gel, zeolite and active carbon are 0.1-0.2 W·m?1·K?1, 0.1 W·m?1·K?1and 0.3-0.5 W·m?1·K?1, respectively [20, 21].

    These thermal conduction coefficients are tested under steady-state conditions. However, the adsorption quantity of the adsorbent of the adsorption packed bed in actual working conditions changes over time, and the thermal conduction coefficient of the adsorbent varies under unsteady state conditions. The latter is called effective thermal conductivity. Effective thermal conductivity dependent on the adsorption/desorption rate is higher than that under steady-state conditions and directly affects the performance of the adsorber. The equation of effective thermal conductivity (Krupiczka equation) can be expressed as follows:

    where keis the effective thermal conductivity of the adsorbent, kvis the thermal conductivity of the refrigerant vapor, ksis the thermal conductivity of the adsorbent and n is given as

    where ε is the void rate of the adsorbent layer, which is the ratio of space between particle adsorbents to total volume of adsorbent.

    No temperature difference between adsorbent and heat transfer flow is considered as precondition using Krupiczka equation.

    The relationship between the diameter and the effective thermal conductivity of silica gel is shown in Fig. 1. The effective thermal conductivity can remain stable without obvious changes at adsorbent diameters of 305, 390, 513 and 605 μm. However, the effective thermal conductivity at an adsorbent diameter of 700 μm obviously decreases and is far below those of the four sizes of adsorbent. The effective thermal conductivity decreases with decreasing n according to Eq. (1). Increasing void ratio can lead to a decrease in n according to Eq. (2). The effective thermal conductivity of 700 μm is much lower than that of other diameters because of higher void ratio.

    Figure 1 Effect of adsorbent diameter on effective thermal conductivity

    2.3 Permeability

    The mass transfer performance of the adsorber is an important characteristic of adsorption refrigeration. The mass transfer in the particle adsorbent of the packed bed in the adsorption chiller was studied. Therefrigerant flows through the adsorbent layer to reach the adsorbent surface by overcoming the mass transfer resistance in the adsorbent layer, and then goes deep into the micropore and mesopore to complete the adsorption process. Although the physical property of the adsorbent and the geometric property of the packed bed affect mass transfer, the mass transfer resistance in the adsorbent layer affected by the pressure drop in the adsorbent layer is an important parameter of mass transfer. The mass transfer in the adsorber improves with decreasing pressure drop in the adsorbent layer. The pressure drop in the adsorbent layer is given as

    where Δp is the pressure drop in the adsorbent layer, μ is the viscosity coefficient of the refrigerant, u is the velocity though the adsorbent layer, l is the thickness of the adsorbent layer and kpis the permeability of the adsorbent. kp(Blake-Kozeny equation) can be expressed semi-empirically as

    where d is the diameter of the adsorbent and ε is the void ratio.

    Based on Eq. (3), Δp can be reduced to improve mass transfer when kpincreases. Based on Eqs. (3) and (4), mass transfer is enhanced when the diameter of the adsorbent d increases. In addition, the permeability kpis related to the square of the diameter d2, and it increases with increasing void ratio. The effect of adsorbent diameter on permeability is shown in Fig. 2. Permeability increases with increasing adsorbent diameter. The permeability at a diameter of 700 μm is obviously higher than that at other adsorbent diameters because of combined effect of higher void ratio and larger diameter.

    Figure 2 Effect of diameter on permeability

    3 EXPERIMENTAL

    Figure 3 Experimental setup1—adsorber; 2—heat exchanger; 3—evaporator; 4—condenser; 5,6—air valve; 7—magnetic pumping; 8—valve; 9—level gage

    Figure 4 Connection between TH and TM flows

    To evaluate the effect on cooling performance, the adsorption-desorption experiments were carried out.

    The experimental setup is shown in Fig. 3. The experimental installation consisted of adsorbers, evaporator, condenser, water pump, valves, level gage, and so on. Two adsorbers can provide continuous refrigeration. The liquid levels in the evaporator and condenser are observed through their level gages. The connection of heat transfer flow into the two adsorbers is presented in Fig. 4. Heat transfer flow (TH) can be used to heat the adsorber for desorption. TL flow can be for the evaporator, and TM flow can cool the adsorber to remove the sensible heat of the adsorbent. TM flow was also connected to the condenser to remove the latent heat of condensation. Pt temperature sensors were installed in the inlet/outlet of the TH, TL, and TM flows. And the processes of adsorber were described as follows:

    (1) Adsorption process: One piece of adsorber was connected with TM flow. When the pressure in the evaporator reached the saturation pressure of the temperature TL flow in the evaporator, evaporation process of refrigerant began. And the refrigerant steam would flow from evaporator to the adsorber when the valve between the evaporator and adsorber was open. And the adsorption process in the adsorber would start.

    (2) Desorption process: One piece of adsorber was connected with TH flow. The heat form TH flow provided the heat source of adsorber. The refrigerant steam from the adsorber would flow into the condenser with the valve between the adsorber and condenser opening.

    Before the experiment, the packed bed with particle adsorbent must be dried.

    The experimental conditions were listed as follows:

    (1) The temperature of the TH, TM, and TL flows were at 353 K, 303 K, and 288 K, respectively.

    (2) The flow rate in the different parts is shown in Table 2.

    Table 2 Flow rates in the different parts

    (3) The cycle times include 120, 150, 180, and 210 s.

    The chilled water from the evaporator can provide the output power for refrigeration, which can be defined as follows:

    where Cpis the thermal capacity of flow in the evaporator, F is the flow rate in the evaporator, ΔT is the temperature difference between the inlet and outlet of the flow in the evaporator and tcycleis the cycle time of the experiment.

    Figure 5 shows a set of output power curves under different diameters and cycle times. Output power initially increases and then decreases with increasing diameter under different cycle times. At a diameter of 605 μm, the output power with cycle times of 120 s and 180 s reach its maximum, respectively. This result can be attributed to the joined effect of heat and mass transfer in the adsorber on the output power of refrigeration. Considering the mass transfer, the permeability of the adsorbent layer can be improved with increasing diameter, leading to low pressure drop through the adsorbent layer. It can also help enhance mass transfer in the adsorbent.

    Figure 5 Effect of particle diameter on output power at different cycle times

    In particular, the permeability of the adsorbent with a diameter of 700 μm is much higher compared with that of adsorbents with other diameters. Therefore, mass transfer performance would be the best at an adsorbent diameter of 700 μm. In terms of heat transfer, effective thermal conductivity can remain stable without obvious changes at adsorbent diameters of 305, 390, 513 and 605 μm. Effective thermal conductivity with adsorbent diameter of 700 μm obviously decreases and is much lower than that with other diameters. Considering the effects of mass and heat transfer, the output power of refrigeration reaches or be close to its maximum with an adsorbent diameter of 605 μm. In addition, output power with an adsorbent diameter of 700 μm is higher than that with adsorbent diameters of 390 and 513 μm. Hence, the effect of mass transfer on output power is greater than that of heat transfer. Otherwise, output power would increase when the cycle time is reduced under similar diameter conditions. The maximum output power is 320 W at a diameter of 605 μm and a cycle time of 120 s.

    The effect of adsorbent diameter on heat and mass transfer is investigated. Effective thermal conductivity can remain stable without obvious changes at adsorbent diameters of 305, 390, 513 and 605 μm. Effective thermal conductivity obviously decreases at an adsorbent diameter of 700 μm. Permeability increases with increasing adsorbent diameter and void ratio. The permeability at an adsorbent diameter of 700 μm is obviously higher than that at other adsorbent diameters. Output power initially increases and then decreases with increasing adsorbent diameter under different cycle time conditions. Output power increases with decreasing cycle time under similar diameter conditions. The maximum output power is 320 W at an adsorbent diameter of 605 μm and a cycle time of 120 s. The results suggest that the effect of mass transfer on output power is greater than that of heat transfer under experimental conditions.

    NOMENCLATURE

    REFERENCES

    1 Critoph, R.E., Zhong, Y., “Review of trends in solid sorption refrigeration and heat pumping technology”, J. Process Mech. Eng., 219, 285-300 (2005).

    2 Wang, R.Z., Oliveira, R.G., “Adsorption refrigeration-An efficient way to make good use of waste heat and solar energy”, Prog. Energy Combust. Sci., 32, 424-458 (2006).

    3 Chua, T., Ng, K.C., Chakraborty, A., Oo, N.M., Othman, M.A.,“Adsorption characteristics of silica gel-water systems”, J. Chem. Eng. Data, 47, 1177-1181 (2002).

    4 Cho, S.H., Kim J.N., “Modeling of a silica gel / water adsorption cooling system”, Energy, 17 (9), 829-839 (1992).

    5 Boelman, E.C., Saha, B.B., Kashiwagi, T., “Parametric study of asilica gel-water adsorption refrigeration cycle—the influence of thermal capacitance and heat exchanger UA-values on cooling capacity, power density and COP”, ASHRAE Transactions, 103, 139-148 (1997).

    6 Saha, B.B., Kashiwagi, T., “Experimental investigation of an advanced adsorption refrigeration cycle”, ASHRAE Transactions, 103, 50-58 (1997).

    7 Kakiuchi, H., Shimooka, S., Iwade, M., Oshima, K., Yamazaki, M., Terada, S., “Water vapor adsorbent FAM-Z02 and its applicability to adsorption heat pump”, J. Chem. Eng. Japan, 31, 273-277 (2005).

    8 Kakiuchi, H., Shimooka, S., Iwade, M., Oshima, K., Yamazaki, M., Terada, S., “Novel water vapor adsorbent FAM-Z01 and its applicability to an adsorption heat pump”, J. Chem. Eng. Japan, 31, 361-364 (2005).

    9 Critoph, R.E., Vogel, R., “Possible adsorption pairs for use in solar cooling”, Ambient Energy, 7, 183-190 (1986).

    10 Meunier, F., Douss, N., “Performance of adsorption heat pumps. Active carbon-methanol and zeolite-water pairs”, ASHRAE Transactions, 2, 267-274 (1990).

    11 Wang, Q., Chen, G.M., Han, B.Y., “Determination and analysis of the effective diffusivity of adsorption refrigeration working pair”, Acta Energiae Solaris Sinica, 22, 187-191 (2001).

    12 Wang, W., Wang, R.Z., “Investigation of solid adsorption refrigeration cycle with non-equilibrium adsorption”, J. Eng. Thermophys., 22, 674-676 (2001).

    13 Yang, P.Z., Chen, H.X., “Heat and mass transfer character on adsorption bed with consideration of non-equilibrium adsorption”, Cryogenics, (4), 15-20 (2008).

    14 Demir, H., Mobedi, M., Ulku, S., “Effects of porosity on heat and mass transfer in a granular adsorbent bed”, Int. Commun. Heat Mass Transfer, 36, 372-377 (2009).

    15 Tamainot-Telto, Z., Critoph, R.E., “Monolithic carbon for sorption refrigeration and heat pump applications”, Appl. Therm. Eng., 21, 37-52 (2001).

    16 Leong, K.C., Liu, Y., “Numerical modeling of combined heat and mass transfer in the adsorbent bed of a zeolite/water cooling system”, Appl. Therm. Eng., 24, 2359-2374 (2004).

    17 Wang, L.W., Tamainot-Telto, Z., Thorpe, R., Critoph, R.E., Metcalf, S.J., Wang, R.Z., “Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration”, Renewable Energy, 36, 2062-2066 (2011).

    18 Wang, L.W., Metcalf, S.J., Critoph, R.E., Tamainot-Telto, Z., Thorpe, R., “Two types of natural graphite host matrix for composite activated carbon adsorbents”, Appl. Therm. Eng., 50 (2), 1652-1657 (2013).

    19 Tian, B., Jin, Z.Q., Wei, D.S., Wang, L.W., Wang, R.Z., “Testing on permeability of compacted graphite”, CIESC J., 61, 35-38 (2010). (in Chinese)

    20 Jin, Z.Q., Tian, B., Wang, L.W., Wang, R.Z., “Study on thermal conductivities and permeabilities of AC/ENG consolidated composite adsorbents”, Journal of Shanghai Jiaotong University, 45, 866-869 (2011).

    21 Guilleminot, J.J., Chalfen, J.B, Choisier, A., “Heat and mass transfer characteristics of composites for adsorption heat pumps”, In: Proceedings of the International Absorption Heat Pump Conference, ASME, AES-Vol. 31, 401-405, New Orleans (1994).

    2012-09-16, accepted 2012-11-19.

    * Supported by the Chinese Academy of Science Visiting Professorship for Senior International Scientists project (2009Z2-1973).

    ** To whom correspondence should be addressed. E-mail: hezh@ms.giec.ac.cn

    猜你喜歡
    丹丹小林
    紙的由來之路
    小林倦了
    意林(2023年20期)2023-11-30 20:45:38
    特別怕冷
    意林(2023年4期)2023-04-28 07:10:30
    冷冷的小林
    意林(2023年24期)2023-03-12 08:28:47
    相距多少米
    高中數(shù)學(xué)之美
    為夢孤獨
    意林(2021年11期)2021-09-10 07:22:44
    林丹丹
    海峽姐妹(2020年1期)2020-03-03 13:36:06
    高考前與高考后
    意林(2019年16期)2019-09-04 21:00:12
    別來無恙
    意林(2018年7期)2018-05-03 16:29:44
    av天堂中文字幕网| 亚洲人成网站高清观看| 成人特级av手机在线观看| 又紧又爽又黄一区二区| 1024手机看黄色片| 男女视频在线观看网站免费| 国产高清视频在线观看网站| 久久久久亚洲av毛片大全| 一级黄色大片毛片| 少妇的逼水好多| 国产精品永久免费网站| 久久精品国产99精品国产亚洲性色| 天堂动漫精品| 欧美绝顶高潮抽搐喷水| 在线观看日韩欧美| 免费大片18禁| 亚洲,欧美精品.| 欧美又色又爽又黄视频| 国语自产精品视频在线第100页| 亚洲欧美日韩高清在线视频| 麻豆国产av国片精品| 美女大奶头视频| 亚洲人成网站在线播放欧美日韩| 国产在线精品亚洲第一网站| 久久久久性生活片| 亚洲国产欧美一区二区综合| 国产黄a三级三级三级人| 天天躁狠狠躁夜夜躁狠狠躁| av天堂中文字幕网| 一区二区三区国产精品乱码| 中出人妻视频一区二区| 中亚洲国语对白在线视频| 十八禁网站免费在线| 午夜影院日韩av| 九九在线视频观看精品| 色综合婷婷激情| 成人欧美大片| 小蜜桃在线观看免费完整版高清| 老司机午夜福利在线观看视频| 麻豆成人午夜福利视频| 久久久久九九精品影院| 亚洲精品中文字幕一二三四区| 琪琪午夜伦伦电影理论片6080| 免费电影在线观看免费观看| 国产三级在线视频| 国产精品1区2区在线观看.| 国产激情偷乱视频一区二区| 午夜久久久久精精品| 很黄的视频免费| 久久性视频一级片| 久久中文字幕一级| 99精品欧美一区二区三区四区| 啦啦啦免费观看视频1| 国产男靠女视频免费网站| 999精品在线视频| 欧美日韩精品网址| 国产亚洲精品av在线| 啦啦啦观看免费观看视频高清| 午夜成年电影在线免费观看| 欧美一级毛片孕妇| 成人性生交大片免费视频hd| 成人性生交大片免费视频hd| 中国美女看黄片| 久久久久久久午夜电影| 十八禁网站免费在线| 色吧在线观看| 国产成人系列免费观看| 午夜视频精品福利| 国产免费男女视频| 男女那种视频在线观看| 校园春色视频在线观看| av片东京热男人的天堂| 精品一区二区三区视频在线 | 黑人操中国人逼视频| 少妇的逼水好多| 国产综合懂色| 性欧美人与动物交配| 国产淫片久久久久久久久 | 欧美日韩福利视频一区二区| 露出奶头的视频| 香蕉av资源在线| 日韩欧美精品v在线| 三级国产精品欧美在线观看 | 久久天堂一区二区三区四区| 亚洲成人中文字幕在线播放| 国产私拍福利视频在线观看| 免费av毛片视频| 好男人电影高清在线观看| 成年版毛片免费区| 亚洲国产日韩欧美精品在线观看 | 成年免费大片在线观看| 最近最新免费中文字幕在线| 中文字幕熟女人妻在线| АⅤ资源中文在线天堂| 婷婷六月久久综合丁香| 91字幕亚洲| 一区二区三区激情视频| 欧美绝顶高潮抽搐喷水| 日日夜夜操网爽| 午夜成年电影在线免费观看| 免费在线观看成人毛片| 亚洲色图 男人天堂 中文字幕| 国产成人精品无人区| 露出奶头的视频| 宅男免费午夜| 亚洲精品色激情综合| 97人妻精品一区二区三区麻豆| 国产一区二区在线观看日韩 | 中文字幕av在线有码专区| 免费观看精品视频网站| 中文字幕久久专区| 亚洲天堂国产精品一区在线| 婷婷丁香在线五月| 婷婷丁香在线五月| svipshipincom国产片| 精品久久久久久成人av| 99久久综合精品五月天人人| 国产日本99.免费观看| 精品熟女少妇八av免费久了| 嫁个100分男人电影在线观看| cao死你这个sao货| 露出奶头的视频| or卡值多少钱| 日本精品一区二区三区蜜桃| 19禁男女啪啪无遮挡网站| 成年女人永久免费观看视频| www.999成人在线观看| 精品久久久久久久毛片微露脸| 色吧在线观看| 亚洲av免费在线观看| 国产又色又爽无遮挡免费看| www.自偷自拍.com| 国产精品综合久久久久久久免费| 12—13女人毛片做爰片一| 国产三级在线视频| 亚洲,欧美精品.| 天堂动漫精品| 宅男免费午夜| 天堂√8在线中文| 国产高清视频在线观看网站| 久久久久久久久久黄片| 美女黄网站色视频| 色吧在线观看| 久久天堂一区二区三区四区| 国产精品香港三级国产av潘金莲| 欧美av亚洲av综合av国产av| 日韩欧美国产一区二区入口| 国产精品野战在线观看| 欧美中文日本在线观看视频| 精品无人区乱码1区二区| 一进一出抽搐动态| 高清毛片免费观看视频网站| www.www免费av| a在线观看视频网站| 午夜免费激情av| 国产精华一区二区三区| 亚洲精品久久国产高清桃花| 国产精品 国内视频| 国产成人精品久久二区二区91| 国产精品精品国产色婷婷| 久久久久久大精品| 国产av不卡久久| 日韩三级视频一区二区三区| 欧美性猛交黑人性爽| 久久香蕉国产精品| 床上黄色一级片| 露出奶头的视频| 中文字幕熟女人妻在线| 久久中文字幕一级| 国产精品自产拍在线观看55亚洲| 最近视频中文字幕2019在线8| 琪琪午夜伦伦电影理论片6080| 久久久国产精品麻豆| 亚洲无线在线观看| 中文字幕熟女人妻在线| 欧美日韩乱码在线| cao死你这个sao货| 嫩草影院入口| 俺也久久电影网| 夜夜夜夜夜久久久久| www国产在线视频色| 欧美色欧美亚洲另类二区| 熟女少妇亚洲综合色aaa.| 亚洲欧洲精品一区二区精品久久久| 成人18禁在线播放| 国产探花在线观看一区二区| 一本综合久久免费| 不卡一级毛片| 国产三级中文精品| 搡老岳熟女国产| 国产私拍福利视频在线观看| 在线观看美女被高潮喷水网站 | 国产高清有码在线观看视频| 精品久久久久久久末码| 久久九九热精品免费| 国产97色在线日韩免费| 日本撒尿小便嘘嘘汇集6| xxxwww97欧美| 老司机福利观看| 色av中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久电影中文字幕| 久久久久精品国产欧美久久久| 国产精品电影一区二区三区| 日日夜夜操网爽| 国产伦一二天堂av在线观看| 午夜两性在线视频| www.自偷自拍.com| 午夜福利欧美成人| 天堂动漫精品| 亚洲欧美一区二区三区黑人| 亚洲色图 男人天堂 中文字幕| 亚洲人与动物交配视频| 成人亚洲精品av一区二区| 免费一级毛片在线播放高清视频| 香蕉久久夜色| 亚洲国产高清在线一区二区三| 神马国产精品三级电影在线观看| 99re在线观看精品视频| 国产精品一及| 搡老妇女老女人老熟妇| 这个男人来自地球电影免费观看| 亚洲国产色片| 狂野欧美白嫩少妇大欣赏| 亚洲欧洲精品一区二区精品久久久| 在线国产一区二区在线| 免费av不卡在线播放| 99久久久亚洲精品蜜臀av| 国产不卡一卡二| 中文字幕人妻丝袜一区二区| 偷拍熟女少妇极品色| 夜夜爽天天搞| 操出白浆在线播放| 欧美另类亚洲清纯唯美| 脱女人内裤的视频| 日韩国内少妇激情av| 国产精品久久久久久久电影 | 日本熟妇午夜| 精品一区二区三区视频在线观看免费| 精品电影一区二区在线| 国产一区二区在线观看日韩 | 国产精品一区二区三区四区免费观看 | 真实男女啪啪啪动态图| 欧美最黄视频在线播放免费| 国产高清视频在线播放一区| 好男人电影高清在线观看| 91av网一区二区| 综合色av麻豆| www.www免费av| 97超级碰碰碰精品色视频在线观看| 真实男女啪啪啪动态图| 日韩国内少妇激情av| 国产爱豆传媒在线观看| 精品国产三级普通话版| 午夜福利免费观看在线| 天天躁日日操中文字幕| 夜夜夜夜夜久久久久| 日日摸夜夜添夜夜添小说| 动漫黄色视频在线观看| 村上凉子中文字幕在线| 国产午夜精品久久久久久| 香蕉国产在线看| 亚洲男人的天堂狠狠| 窝窝影院91人妻| 手机成人av网站| 精品电影一区二区在线| 久久精品国产亚洲av香蕉五月| 亚洲18禁久久av| 久久天堂一区二区三区四区| 极品教师在线免费播放| 亚洲五月婷婷丁香| 国产视频内射| 高潮久久久久久久久久久不卡| 精品福利观看| 久久精品人妻少妇| 免费av毛片视频| 亚洲av电影在线进入| 夜夜爽天天搞| 国产精品美女特级片免费视频播放器 | 蜜桃久久精品国产亚洲av| 精品国产乱子伦一区二区三区| 国产精品99久久99久久久不卡| av中文乱码字幕在线| 岛国视频午夜一区免费看| 欧美日韩中文字幕国产精品一区二区三区| 丝袜人妻中文字幕| 真实男女啪啪啪动态图| 白带黄色成豆腐渣| 男女午夜视频在线观看| 床上黄色一级片| 99热6这里只有精品| 夜夜躁狠狠躁天天躁| 国产精品久久久久久亚洲av鲁大| 我要搜黄色片| 成人三级做爰电影| 国产毛片a区久久久久| 99re在线观看精品视频| 99riav亚洲国产免费| 真人做人爱边吃奶动态| 国产一区在线观看成人免费| 禁无遮挡网站| 亚洲成av人片在线播放无| 最新中文字幕久久久久 | 亚洲欧美精品综合久久99| 国产乱人伦免费视频| 亚洲熟妇中文字幕五十中出| 久久久色成人| 精品久久久久久久久久久久久| 成人国产综合亚洲| 欧美在线黄色| 国产成人精品久久二区二区91| 久久久久国产一级毛片高清牌| 亚洲国产日韩欧美精品在线观看 | 大型黄色视频在线免费观看| 丰满人妻一区二区三区视频av | 国产私拍福利视频在线观看| 男女视频在线观看网站免费| 欧美成人免费av一区二区三区| 欧美日本视频| 91av网一区二区| 欧美xxxx黑人xx丫x性爽| xxx96com| 欧美三级亚洲精品| 1024香蕉在线观看| 美女 人体艺术 gogo| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 亚洲成a人片在线一区二区| 亚洲在线观看片| 岛国在线观看网站| 亚洲av美国av| 好男人在线观看高清免费视频| 麻豆成人av视频| 国产亚洲91精品色在线| 韩国高清视频一区二区三区| 人妻夜夜爽99麻豆av| 免费搜索国产男女视频| 级片在线观看| 午夜福利高清视频| 一区二区三区四区激情视频| av黄色大香蕉| 天天躁夜夜躁狠狠久久av| 欧美精品一区二区大全| 国产精品人妻久久久久久| 国产极品天堂在线| 青春草亚洲视频在线观看| 超碰av人人做人人爽久久| 精品人妻一区二区三区麻豆| 在线观看av片永久免费下载| 国模一区二区三区四区视频| 91精品一卡2卡3卡4卡| 婷婷六月久久综合丁香| 卡戴珊不雅视频在线播放| av在线亚洲专区| 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 国产69精品久久久久777片| 久久精品国产亚洲av涩爱| 久久久久精品久久久久真实原创| 亚洲精品影视一区二区三区av| 老司机福利观看| 天天一区二区日本电影三级| 亚洲成人中文字幕在线播放| 久久久久久大精品| 久久久国产成人免费| 国产日韩欧美在线精品| 成人亚洲欧美一区二区av| 亚洲av成人av| a级毛色黄片| 日韩成人伦理影院| 黄片wwwwww| 久久久色成人| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 日日摸夜夜添夜夜爱| 天堂影院成人在线观看| 三级国产精品欧美在线观看| a级毛片免费高清观看在线播放| 中文字幕免费在线视频6| 欧美区成人在线视频| 国产黄a三级三级三级人| 国产精品伦人一区二区| .国产精品久久| 国产精品三级大全| 久久草成人影院| 成人亚洲欧美一区二区av| 一边亲一边摸免费视频| a级毛色黄片| 女人久久www免费人成看片 | 91久久精品国产一区二区成人| 国产在线一区二区三区精 | 久久久久久久久大av| 久久久色成人| 欧美变态另类bdsm刘玥| 蜜臀久久99精品久久宅男| 国产免费视频播放在线视频 | 久久久久久久久久久丰满| 亚洲中文字幕日韩| 欧美性猛交黑人性爽| 亚洲久久久久久中文字幕| av在线蜜桃| 欧美激情在线99| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 综合色丁香网| 又爽又黄a免费视频| 亚洲精品久久久久久婷婷小说 | 一级黄片播放器| 伊人久久精品亚洲午夜| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 99热精品在线国产| 美女大奶头视频| 久久午夜福利片| 精品国内亚洲2022精品成人| 国产精品国产三级专区第一集| 青青草视频在线视频观看| 又爽又黄a免费视频| 亚洲激情五月婷婷啪啪| 国产黄色小视频在线观看| 乱码一卡2卡4卡精品| 两个人的视频大全免费| 一夜夜www| 国产大屁股一区二区在线视频| 久久久亚洲精品成人影院| 国产高清有码在线观看视频| 国产高清三级在线| 亚洲欧美精品自产自拍| 最近视频中文字幕2019在线8| 高清在线视频一区二区三区 | 日本-黄色视频高清免费观看| 久久精品影院6| 99久国产av精品| 不卡视频在线观看欧美| 国产黄a三级三级三级人| 非洲黑人性xxxx精品又粗又长| 一级黄色大片毛片| 欧美性感艳星| 老司机福利观看| 亚洲第一区二区三区不卡| 国产黄片视频在线免费观看| 亚洲三级黄色毛片| av免费观看日本| 日韩欧美精品免费久久| 可以在线观看毛片的网站| 美女大奶头视频| 久99久视频精品免费| 九草在线视频观看| 床上黄色一级片| 精品99又大又爽又粗少妇毛片| 国内精品美女久久久久久| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 日韩精品青青久久久久久| 一区二区三区免费毛片| 国产伦理片在线播放av一区| 国模一区二区三区四区视频| 国产精品久久久久久久久免| 日本黄色视频三级网站网址| 成人漫画全彩无遮挡| 天堂影院成人在线观看| 日本午夜av视频| 99在线视频只有这里精品首页| 久久久久国产网址| 国产精品三级大全| 在线播放国产精品三级| 亚洲av中文av极速乱| av国产久精品久网站免费入址| 特级一级黄色大片| 国产成年人精品一区二区| 成人鲁丝片一二三区免费| 国产极品精品免费视频能看的| 免费大片18禁| 亚洲三级黄色毛片| 热99在线观看视频| 建设人人有责人人尽责人人享有的 | 嫩草影院新地址| 秋霞伦理黄片| 99国产精品一区二区蜜桃av| 秋霞伦理黄片| 久久久久久久久大av| 成人二区视频| 人妻夜夜爽99麻豆av| 亚洲aⅴ乱码一区二区在线播放| 欧美变态另类bdsm刘玥| 亚洲国产精品专区欧美| a级毛色黄片| 国产免费一级a男人的天堂| 一区二区三区乱码不卡18| 熟妇人妻久久中文字幕3abv| 中文精品一卡2卡3卡4更新| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| 精品久久久久久久末码| 97超碰精品成人国产| 变态另类丝袜制服| 亚洲天堂国产精品一区在线| 两个人的视频大全免费| 亚洲av一区综合| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 亚洲国产色片| .国产精品久久| 69av精品久久久久久| 国产伦一二天堂av在线观看| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 久热久热在线精品观看| av播播在线观看一区| 青春草国产在线视频| 久久久亚洲精品成人影院| 国产精品嫩草影院av在线观看| 欧美区成人在线视频| 欧美成人a在线观看| 伊人久久精品亚洲午夜| 舔av片在线| 久久这里有精品视频免费| 久久精品综合一区二区三区| 国产淫语在线视频| 日韩大片免费观看网站 | 熟女人妻精品中文字幕| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 欧美不卡视频在线免费观看| 激情 狠狠 欧美| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 日本三级黄在线观看| 成人三级黄色视频| 99热这里只有是精品在线观看| 22中文网久久字幕| av女优亚洲男人天堂| 欧美精品一区二区大全| 水蜜桃什么品种好| 久久欧美精品欧美久久欧美| 日韩一区二区三区影片| 午夜日本视频在线| 51国产日韩欧美| 日本免费一区二区三区高清不卡| 午夜福利视频1000在线观看| 欧美不卡视频在线免费观看| 嫩草影院新地址| 啦啦啦韩国在线观看视频| 亚洲自偷自拍三级| 99热这里只有精品一区| 91aial.com中文字幕在线观看| 韩国高清视频一区二区三区| 日韩av在线免费看完整版不卡| 精品欧美国产一区二区三| 亚洲欧美精品自产自拍| 久久久久九九精品影院| 亚洲av二区三区四区| 亚洲国产最新在线播放| 一个人看的www免费观看视频| 成人午夜高清在线视频| 搞女人的毛片| av在线播放精品| 精品酒店卫生间| 欧美激情在线99| www.av在线官网国产| 观看美女的网站| 麻豆成人av视频| 听说在线观看完整版免费高清| 97超碰精品成人国产| 欧美一区二区亚洲| 麻豆成人av视频| 成人午夜高清在线视频| 国内精品一区二区在线观看| 日本免费a在线| 日日摸夜夜添夜夜添av毛片| 在线观看美女被高潮喷水网站| 内射极品少妇av片p| 欧美性感艳星| 亚洲性久久影院| 两个人视频免费观看高清| 亚洲最大成人中文| 亚洲国产精品成人综合色| av天堂中文字幕网| 国语对白做爰xxxⅹ性视频网站| 日本黄大片高清| 中文乱码字字幕精品一区二区三区 | 建设人人有责人人尽责人人享有的 | 免费看av在线观看网站| 欧美日韩在线观看h| 国产一级毛片在线| eeuss影院久久| 亚洲不卡免费看| 国产成人免费观看mmmm| 国产色爽女视频免费观看| 国产精品一区二区三区四区久久| 国产成人精品一,二区| 欧美一区二区国产精品久久精品| 久久久久久久久中文| 国产一区二区在线av高清观看| 看黄色毛片网站| 舔av片在线| 国产午夜精品论理片| 一级毛片久久久久久久久女| 久久精品国产亚洲av涩爱| 免费搜索国产男女视频| 国产极品精品免费视频能看的| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 十八禁国产超污无遮挡网站| 噜噜噜噜噜久久久久久91| 国产精品.久久久| 久久久久网色| 亚洲欧美日韩无卡精品| 中文在线观看免费www的网站| 国产精品日韩av在线免费观看| 天天一区二区日本电影三级| 亚洲欧美清纯卡通| 久久精品人妻少妇| 国产91av在线免费观看|