• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Facile Route for Synthesis of LiFePO4/C Cathode Material with Nano-sized Primary Particles*

    2014-07-18 12:09:47XIAOZhengwei肖政偉HUGuorong胡國(guó)榮DUKe杜柯andPENGZhongdong彭忠東1FacultyofMetallurgicalandEnergyEngineeringKunmingUniversityofScienceandTechnologyKunming650093ChinaSchoolofMetallurgyandEnvironmentCentralSouthUniversityChangsha41008

    XIAO Zhengwei (肖政偉)**, HU Guorong (胡國(guó)榮), DU Ke (杜柯)and PENG Zhongdong (彭忠東)1Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, ChinaSchool of Metallurgy and Environment, Central South University, Changsha 410083, China

    A Facile Route for Synthesis of LiFePO4/C Cathode Material with Nano-sized Primary Particles*

    XIAO Zhengwei (肖政偉)1,**, HU Guorong (胡國(guó)榮)2, DU Ke (杜柯)2and PENG Zhongdong (彭忠東)21Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China2School of Metallurgy and Environment, Central South University, Changsha 410083, China

    A facile and practical route was introduced to prepare LiFePO4/C cathode material with nano-sized primary particles and excellent electrochemical performance. LiH2PO4was synthesized by using H3PO4and LiOH as raw materials. Then, as-prepared LiH2PO4, reduced iron powder and α-D-glucose were ball-milled, dried and sintered to prepare LiFePO4/C. X-ray diffractometry was used to characterize LiH2PO4, ball-milled product and LiFePO4/C. Differential scanning calorimeter-thermo gravimetric analysis was applied to investigate possible reactions in sintering and find suitable temperature for LiFePO4formation. Scanning electron microscopy was employed for the morphology of LiFePO4/C. As-prepared LiH2PO4is characterized to be in P21cn(33) space group, which reacts with reduced iron powder to form Li3PO4, Fe3(PO4)2and H2in ball-milling and sintering. The appropriate temperature for LiFePO4/C synthesis is 541.3-976.7 °C. LiFePO4/C prepared at 700 °C presents nano-sized primary particles forming aggregates. Charge-discharge examination indicates that as-prepared LiFePO4/C displays appreciable discharge capacities of 145 and 131 mA·h·g?1at 0.1 and 1 C respectively and excellent discharge capacity retention.

    lithium ion cell, reduced iron powder, ball-milling, LiFePO4/C, nano-sized primary particle

    1 INTRODUCTION

    Owing to exhausting of fossil fuels and increasingly severe greenhouse gases pollution, the development of electric vehicles (EVs) has long been an intense issue since it appeared in 1899 [1]. There are several candidates of rechargeable system for EVs batteries, such as Pb acid, Ni Cd, NiMH [2], but with respect to specific power (W·kg?1) and specific energy (W·h·kg?1), these technologies are outmatched by Li-ion battery technology. Since its commercialization by Sony in the early 1990s, this advanced system has become the prior consideration for vehicles.

    In view of the electrochemical properties of cathode materials for lithium ion cells, among LiCoO2and its derivatives, LiMn2O4and LiFePO4, LiFePO4owns the best holistic evaluation for EVs application: medium voltage, cheap raw materials, environmental friendliness, high temperature stability and safety, and appreciable theoretical capacity of 170 mA·h·g?1, which is comparable to the actual capacity of commercialized and widely used LiCoO2[3-6]. As regard to the application to EVs, LiMn2O4has the “seemingly” insurmountable problem of electrochemical instability at elevated temperatures [7].

    However, LiFePO4has the disadvantage of very low electronic conductivity, 10?9-10?10S·cm?1. Many studies have been carried out to improve its electronic conductivity and electrochemical performance. Conductive carbon coating/mixing [8], metal coating/mixing [9], aliovalent ion doping [10] and nano-sizing LiFePO4particles [11] have been introduced and proved to be effective. Among these improved methods, the effectiveness of carbon coating/mixing to obtain cathode material LiFePO4/C composite with excellent electrochemical performance has been confirmed by many research groups. Aliovalent ion doping remains to be controversial in that: (1) the theoretical calculation indicates that doping is not energetically favorable [12], (2) the formation of conductive phases between active particles may account for the improved electronic conductivity of “doped LiFePO4” [13].

    LiFePO4has been commercialized, and A123 Systems is one of the most famous and best suppliers of this cathode material. A123 Systems is noted for its LiFePO4product of well-separated nano-sized LiFePO4particles, which can provide very short routes for Li+intrusion/extrusion in electrochemical processes and effect excellent rate capability as a cathode material in lithium ion cells. However, its shortcoming is obvious: nano-sized particles need much more binder for cathode fabrication, greatly reducing the volumetric energy density of cathode. Therefore, it will be meaningful to synthesize LiFePO4aggregates with nano-sized primary particles to keep the advantage of short routes for Li+intrusion/extrusion in electrochemical process and reduce the amount of binder used in cathode fabrication.

    Nao-sized LiFePO4synthesis often needs sophisticated techniques and harsh conditions in liquid or sol-gel [14, 15]. In this work, we choose an easy and simple method to introduce carbon to synthesizeLiFePO4/C composite cathode material for lithium ion cells. LiH2PO4is prepared by making use of H3PO4and LiOH. Then, LiH2PO4, reduced iron powder and α-D-glucose (C6H12O6·H2O) are ball-milled and sintered to prepare LiFePO4/C. The as-prepared composite cathode material is characterized for its characteristics and charge-discharge performance.

    2 EXPERIMENTAL

    At room temperature, 1.5 mol·L?1LiOH aqueous solution was slowly added into 85% (by mass) H3PO4aqueous solution under vigorous agitation, with the molar ratio of 1︰1. The product solution was left to stand for hours until its pH value became constant. The solution was then heated on stirring to vaporize and white solid LiH2PO4was derived.

    LiH2PO4and reduced iron powder with molar ratio of 1︰1 and a certain amount of α-D-glucose (C6H12O6·H2O) were mixed and ball-milled at a speed of 400-500 r·min?1for 5 h with pure ethanol as grinding medium. The obtained slurry was dried at 100 °C to remove volatile constituents to get dried lump, which was sintered in an argon atmosphere at 700 °C for 15 h to obtain LiFePO4/C.

    The dried lump was examined with differential scanning calorimeter-thermo gravimetric analysis (DSC-TGA) on SDTQ 600 using V 8.0 Build 95 software to investigate the reactions of constituents to form LiFePO4, with heating rate of 10 K·min?1and argon flow rate of 100 ml·min?1. As-prepared LiH2PO4, dried lump and synthesized LiFePO4/C were characterized by X-ray diffractometry (XRD) with Philips X-pert powder diffractometer using Cu Kα radiation. The morphology of LiFePO4/C was characterized by scanning electron microscopy (SEM) on JSM-6360LV (JEOL).

    LiFePO4/C, poly(vinylidene fluoride) (PVDF) binder and acetylene black with mass ratio of 75︰10︰15 were mixed and ground with the addition of suitable amount of N-methyl pyrrolidinone (NMP) solvent. The slurry was spread uniformly over an aluminum foil current collector and was dried at 120 °C under vacuum. The slurry with a mass ratio 2︰1 for acetylene black︰PVDF binder (with NMP as the solvent) was uniformly coated onto the dried electrode, which was also dried at 120 °C under vacuum. Circular cathode sheets were punched with an area of 0.785 cm2for each. For coin cell fabrication, the electrolyte was 1 mol·L?1LiPF6in a mixture of ethylene carbonate, ethyl methyl carbonate and dimethyl carbonate with volume ratio of 1︰1︰1. Metallic lithium wafer was used as the counter electrode, and Celgard 2400 polypropylene microporous membrane as separator. Coin cell 2025 with the prepared cathode electrode was assembled in an argon-filled glovebox free from oxygen and water vapor. At room temperature, the rate capability (1C=170 mA·h·g?1) for LiFePO4/C cathode material was galvanostatically examined in the voltage window of 2.5-4.1 V on Land BTI-40. The specific capacity of the cathode in this work referred to that of LiFePO4/C loaded.

    3 RESULTS AND DISCUSSION

    Figure 1 XRD pattern for as-prepared LiH2PO4

    Figure 1 gives the XRD result for as-prepared LiH2PO4. The characteristic peaks for the compound are sharp and perfect, indicating a high degree of crystallinity. The pattern agrees well with that of LiH2PO4indexed in P21cn(33) space group [International Centre for Diffraction Data/Joint Committee on Powder Diffraction Standards (ICDD/JCPDS) 21-0498] and no impurity phase is found, indicating a high purity product. Therefore, the method employed is a practicable way of soft chemistry synthesis for LiH2PO4of high purity and crystallinity.

    Figure 2 shows the XRD pattern for the dried lump, obtained by ball-milling the mixture of LiH2PO4, reduced iron powder and α-D-glucose, revealing the presence of crystallized Li3PO4and iron residue in the mixture. Therefore, LiH2PO4and reduced iron powder have reacted in the ball-milling process, but the reaction is not complete. From the color of blueness, it can be deduced that Fe3(PO4)2forms in the process. Nocharacteristic peaks of LiH2PO4are observed, suggesting its consumption by chemical reactions and decrease in crystallinity in the ball-milling. Since bubbling was observed in the ball-milling process, the principal reaction in this step is

    Figure 2 XRD pattern for dried lump from ball-milled mixture of LiH2PO4, reduced iron powder and α-D-glucose

    Therefore, the main constituents of the dried lump are residual LiH2PO4and Fe, products Li3PO4and Fe3(PO4)2.

    Figure 3 shows DSC-TGA curves of the ball-milled mixture, with three thermal peaks. The first one at 107.7 °C corresponds to a heavy mass loss on TGA curve, which can be attributed to the loss of crystalliferous water and decomposition of the mechanically activated α-D-glucose, further reaction of residual LiH2PO4and reduced iron powder to form Li3PO4and Fe3(PO4)2, and liberation of H2. Some studies have reported the application of the mixture of an inert gas (Ar or N2) and H2for synthesizing LiFePO4cathode material with excellent electrochemical performance [16, 17]. In this work, the release of H2in the sintering is favorable to the formation of LiFePO4, providing a strong reductive atmosphere for ferrous iron. The mass of the sample stays unchanged after 383.3 °C, which is the evidence for

    Figure 3 DSC-TGA for the dried lump of ball-milled mixture of LiH2PO4, reduced iron powder and α-D-glucose

    The last peak of DSC curve at 976.7 °C reflects the decomposition of LiFePO4with the loss of Li at high temperatures. Therefore, at a temperature between 541.3 and 976.7 °C, LiFePO4can be synthesized via the approach adopted in this work. It is worth mentioning that LiFePO4can not be successfully prepared when LiH2PO4, reduced iron powder and α-D-glucose are simply mixed and ground but not ball-milled before sintering in argon.

    Figure 4 gives the XRD pattern for LiFePO4/C synthesized at 700 °C. The diffraction result is indexed in the orthorhombic space group Pnma. The peaks on the diffraction line are sharp and perfect, suggesting a high degree of crystallinity for as-prepared LiFePO4/C. The pattern agrees well with that for triphylite (JCPDS NO. 40-1499), and no impurity phases consisting of lithium, iron, or phosphorous can be detected, indicating that the iron residue in the dried lump is completely consumed in the sintering process. No diffraction peaks for crystallized carbon are revealed in Fig. 4, indicating the amorphous form of the conductive reagent resulting from anaerobic pyrolysis of α-D-glucose.

    Figure 5 shows the SEM morphology of as-prepared LiFePO4/C. Nano-sized primary particles with narrow size distribution agglomerate to aggregates in micrometers. The formation of aggregates is favorable to cathode fabrication because nano-sized particles cause wetting problems and need much more PVDF binder, which will greatly reduce the volumetric energy density of the cathode. In the ball-milling step, LiH2PO4and reduced iron powder reacted in such a way that the latter is dissolved and consumed gradually. The primary particle size of the product, dried lump, can reach nano-scale after the milling the completion of chemical reactions accompanied by mass loss. The second thermal peak is at 433.9 °C, without mass loss in the corresponding part of TGA curve. The thermal effect can be ascribed to the substantial formation of LiFePO4until 541.3 °C:process, without serious agglomeration in milling. Nano-sized particles of ball-milled product are beneficial to the formation of LiFePO4in the following sintering, in which the presence of carbon from decomposition of α-D-glucose also prohibits the growth of LiFePO4particles [18]. As shown in Fig. 5, pores distribute between nano-sized LiFePO4/C primary particles. These pores can be well wetted by electrolyte and provide more sites for electrochemical reactions which only occur at those points where the active material, conductive diluent and electrolyte meet [7]. Meanwhile, the nano-size of LiFePO4primary particles provides very short routes for Li+intrusion/ extrusion in electrochemical processes [19]. Moreover, the diffusivity of Li+is inversely proportional to the square of particle size of LiFePO4[20]. Therefore, nano-sized primary particles of as-prepared LiFePO4/C in this work help Li+ions migrate and diffuse in LiFePO4crystals. It can be predicted that as-synthesized LiFePO4/C cathode material may exhibit very good electrochemical performance.

    Figure 4 XRD pattern of LiFePO4/C synthesized at 700 °C

    Figure 5 SEM image for LiFePO4/C synthesized at 700 °C

    Figure 6 Typical charge-discharge profiles for as-prepared LiFePO4/C at 0.1 and 1 C

    Figure 6 shows the typical charge-discharge profiles for as-prepared LiFePO4/C at 0.1 and 1 C. The 0.1 C charge-discharge curves for the cathode electrode present a flat plateau at around 3.45 V, the voltage at which both the lithium intrusion and extrusion at room temperature proceed in a two-phase reaction [21] between LiFePO4and FePO4crystallizing in space group Pnma. The as-prepared LiFePO4/C displays discharge capacities of 145 and 131 mA·h·g?1at 0.1 and 1 C, respectively, which are comparable to those reported in literature. It is noted that at 0.1 C the discharge curve for LiFePO4/C exhibits a higher voltage plateau than that at 1 C. In addition, the higher the rate is, the bigger the gap is between charge-discharge plateau voltages, but the charge-discharge plateau voltages at 0.1 C are much better kept at around 3.45 V than those at 1 C. These results suggest that higher rates can swiftly increase the polarization during the charge-discharge process.

    The olivine structure is thought to be the intrinsic reason for the low electronic conductivity of the compound. This group is exemplified by LiFePO4which has a hexagonally-close-packed oxygen array, with the octahedra sharing edges (LiO6) or corners (FeO6). The poor electronic conductivity of pristine LiFePO4is imputed to the absence of continuous edge-shared FeO6network [22]. Carbon coating/mixing treatment on pure LiFePO4particle can greatly improve its electronic conductivity and then rate capability in electrochemical process. In this work, the nano-sized primary particles also contribute to the improvement in electrochemical capability. The very short Li+migration routes in the primary particles facilitate the diffusion of Li+ions, which has been proved to beanother factor to limit the rate performance of LiFePO4[23]. Magasinski et al. introduced C-Si granules with nano-sized primary particles which exhibit excellent electrochemical performance when used as anode in lithium ion cells [24].

    Figure 7 shows the rate capability and capacity retention for LiFePO4/C in the first 50 cycles of charge-discharge process. At 0.1 and 1 C, the capacity retention is well maintained. Even at 1 C, LiFePO4/C displays a discharge capacity of 131 mA·h·g?1, which is comparable to that reported [25]. The excellent capacity retention can be attributed to carbon coating/ mixing and as-prepared LiFePO4/C cathode material itself, whose primary particles with uniform size alleviate the sluggish migration and diffusion of Li+[26]. Moreover, nano-sized primary particles are more endurable to the strain in expansion and contraction of LiFePO4unit cell during Li+intrusion and extrusion [19], leading to good cycling ability.

    Figure 7 Rate capability and capacity retention for as-prepared LiFePO4/C

    Further work will be done to improve the rate capacity of LiFePO4/C prepared via the procedure in this work by optimizing the experimental conditions, ball-milling speed and duration, choice of conductive carbon precursor, synthesis temperature and time, and so on. Even the reduced iron powder can be tailored to be as fine as possible which will need an inert atmosphere in ball-milling and subsequent steps for LiFePO4/C synthesis. At the same time, in the aggregates each nano-sized primary LiFePO4particle should be well coated by conductive carbon whose content in LiFePO4/C may be optimized.

    4 CONCLUSIONS

    LiFePO4/C cathode material with nano-sized primary particles was successfully synthesized by using as-prepared LiH2PO4, reduced iron powder and α-D-glucose, which were ball-milled, dried and sintered. In the sintering, H2release is favorable to the formation of LiFePO4. Nano-sized primary particles provide very short routes for Li+migration and diffusion in electrochemical processes. As-prepared LiFePO4/C

    exhibits appreciable discharge capacities of 145 and 131 mA·h·g?1at 0.1 and 1 C respectively and excellent capacity retention at each of the tested rates. The facile route is a feasible approach for preparation of LiFePO4/C cathode material with nano-sized primary particles. Further work for the improvement on the electrochemical performance of LiFePO4/C synthesized by the method will be carried out.

    REFERENCES

    1 Armand, M., Tarascon, J.M., “Building better batteries”, Nature, 451 (7), 652-657 (2008).

    2 Ovshinsky, S.R., Fetcenko, M.A., Ross, J., “A nickel metal hydride battery for electric vehicles”, Science, 260 (5105), 176-181 (1993).

    3 Yu, W.L., Zhao, Y.P., Rao, Q.L., “Rapid and continuous production of LiFePO4/C nano-particles in super heated water”, Chin. J. Chem. Eng., 17 (1), 171-174 (2009).

    4 Yang, K.D., Tan, F.X., Wang, F., Long, Y.F., Wen, Y.X., “Response surface optimization for process parameters of LiFePO4/C preparation by carbothermal reduction technology”, Chin. J. Chem. Eng., 20 (4), 793-802 (2012).

    5 Xiao, Z.W., Hu, G.R., Du K., Peng, Z.D., Deng, X.R., “High density LiFePO4/C composite cathode material for lithium ion batteries”, Chin. J. Nonferr. Metal., 17 (12), 2040-2045 (2007). (in Chinese)

    6 Zhang, W.X., Zhao, F., Wang, Q., Yang, Z.H., “LiFePO4synthesized by hydrothermal method from Li3PO4and its modification”, CIESC. J., 61 (10), 2719-2725 (2010). (in Chinese)

    7 Whittingham, M.S., “Lithium batteries and cathode materials”, Chem. Rev., 104 (10), 4271-4301 (2004).

    8 Yoon, M.S., Islam, M., Park, Y.M., Ur, S.C., “Effect of synthesizing method on the properties of LiFePO4/C composite for rechargeable lithium-ion batteries”, Electron. Mater. Lett., 9 (2), 187-193 (2013).

    9 Park, K.S., Song, J.T., Chung, H.T., Kim, S.J., Lee, C.H., Kang, K.T., Kim, H.G., “Surface modification by silver coating for improving electrochemical properties of LiFePO4”, Solid State Commun., 129 (5), 311-314 (2004).

    10 Chung, S.Y., Bloking, J., Chiang, Y.M., “Electronically conductive phosphor-olivines as lithium storage electrode”, Nat. Mater., 1 (2), 123-128 (2002).

    11 Jeong, E.D., Kim, H.J., Ahn, C.W., Ha, M.G., Hong, T.E., Kim, H.G., Jin, J.S., Bae, J.S., Hong, K.S., Kim, Y.S., Kim, H.J., Doh, C.H., Yang, H.S., “Synthesis and electrochemical studies of nano-scale carbon-coated LiFePO4electrodes for Li-ion batteries”, J. Nanosci. Nanotechnol., 9 (7), 4467-4471 (2009).

    12 Fisher, C.A.J., Prieto, V.M.H., Islam, M.S., “Lithium battery materials LiMPO4(M=Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior”, Chem. Mater., 20 (18), 5907-5915 (2008).

    13 Herle, P.S., Ellis B., Coombs, N., Nazar, L.F., “Nano-network electronic conduction in iron and nickel olivine phosphates”, Nat. Mater., 3 (3), 147-152 (2004).

    14 Sides, C.R., Croce, F., Young, V.Y., Martin, C.R., Scrosati, B., “A high-rate, nanocomposite LiFePO4/carbon cathode”, Electrochem. Solid-State Lett., 8 (9), A484-A487 (2005).

    15 Arumugam, D., Kalaignan, G.P., Manisankar, P., “Synthesis and electrochemical characterizations of nano-crystalline LiFePO4and Mg-doped LiFePO4cathode materials for rechargeable lithium-ion batteries”, J. Solid State Electrochem., 13 (2), 301-307 (2009).

    16 Rho, Y.H., Nazar, L.F., Perry, L., Ryan, D., “Surface chemistry ofLiFePO4studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties”, J. Electrochem. Soc., 154 (4), A283-A289 (2007).

    17 Shi, Y., Chou, S.L., Wang, J.Z., Wexler, D., Li, H.J., Liu, H.K., Wu, Y.P., “Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion betteries with enhanced rate capacity”, J. Mater. Chem., 22 (32), 16465-16470 (2012).

    18 Hsu, K.F., Tsay, S.Y., Hwang, B.J., “Synthesis and characterization of nano-sized LiFePO4cathode materials prepared by a citric acid-based sol-gel route”, J. Mater. Chem., 14 (17), 2690-2695 (2004).

    19 Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Schalkwijk, W.V.,“Nanostructured materials for advanced energy conversion and storage devices”, Nat. Mater., 4 (5), 366-377 (2005).

    20 Ma, J.X., Wang, C.S., Wroblewski, S., “Kinetic characteristics of mixed conductive electrodes for lithium ion batteries”, J. Power Sources, 164 (2), 849-856 (2007).

    21 Hu, G.R., Xiao, Z.W., Du, K., Peng, Z.D., Deng, X.R., “Preparation of LiFePO4for lithium ion battery using Fe2P2O7as precursor”, J. Cent. South Univ., 15 (4), 531-534 (2008).

    22 Thackeray, M., “An unexpected conductor”, Nat. Mater., 1 (2), 81-82 (2002).

    23 Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., Antipov, E.V., “Determination of lithium diffusion coefficient in LiFePO4electrode by galvanostatic and potentiostatic intermittent titration techniques”, Electrochim. Acta, 55 (8), 2939-2950 (2010).

    24 Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G., “High-performance lithium-ion anodes using a hierarchical bottom-up approach”, Nat. Mater., 9 (4), 353-358 (2010).

    25 Xu, Z.H., Xu, L., Lai, Q.Y., Ji, X.Y., “Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells”, Mater. Chem. Phys., 105 (1), 80-85 (2007).

    26 Wang, C.S., Hong, J., “Ionic/electronic conducting characteristics of LiFePO4cathode materials”, Electrochem. Solid-State Lett., 10 (3), A65-A69 (2007).

    2013-03-22, accepted 2013-07-07.

    * Supported partially by the Natural Science Foundation of Yunnan Province (2010ZC051) and Analysis and Testing Foundation (2009-041) and Starting Research Fund (14118245) from Kunming University of Science and Technology.

    ** To whom correspondence should be addressed. E-mail: csuxiao@163.com

    男男h啪啪无遮挡| 人妻制服诱惑在线中文字幕| 这个男人来自地球电影免费观看 | 亚洲精品一区蜜桃| 久久久久国产网址| 26uuu在线亚洲综合色| 亚洲情色 制服丝袜| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 成年美女黄网站色视频大全免费 | 日韩欧美精品免费久久| 精品亚洲乱码少妇综合久久| 全区人妻精品视频| 精品一区二区免费观看| 亚洲婷婷狠狠爱综合网| 国产在线一区二区三区精| 久久久久国产网址| 国产一区二区在线观看av| 免费观看性生交大片5| 麻豆精品久久久久久蜜桃| 99热这里只有是精品50| 交换朋友夫妻互换小说| av免费在线看不卡| 久久 成人 亚洲| 一级黄片播放器| 日韩欧美一区视频在线观看 | 日韩一区二区三区影片| 人妻一区二区av| 精品熟女少妇av免费看| 2018国产大陆天天弄谢| 国产美女午夜福利| 国产伦理片在线播放av一区| freevideosex欧美| 国产精品一区二区在线不卡| 国产精品久久久久久精品古装| kizo精华| 成人黄色视频免费在线看| 国产精品女同一区二区软件| 晚上一个人看的免费电影| 国产探花极品一区二区| 少妇人妻一区二区三区视频| 久久 成人 亚洲| 中文字幕制服av| 国产探花极品一区二区| 日韩伦理黄色片| 亚洲,一卡二卡三卡| 在线观看www视频免费| 91精品一卡2卡3卡4卡| 亚洲av国产av综合av卡| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 人人妻人人看人人澡| 欧美精品一区二区大全| 国产精品一区二区在线不卡| 丝袜在线中文字幕| 黑丝袜美女国产一区| 国产精品秋霞免费鲁丝片| 中文字幕av电影在线播放| 国产一级毛片在线| 亚洲国产日韩一区二区| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇内射三级| 丁香六月天网| 一级,二级,三级黄色视频| 国产男女内射视频| 日本黄色片子视频| 看免费成人av毛片| 色吧在线观看| 51国产日韩欧美| 国产成人午夜福利电影在线观看| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| 丁香六月天网| 亚洲精品亚洲一区二区| 日本av手机在线免费观看| 一级av片app| 精品人妻熟女毛片av久久网站| 日本av免费视频播放| 天美传媒精品一区二区| 极品少妇高潮喷水抽搐| 三级国产精品欧美在线观看| 青春草亚洲视频在线观看| 国产精品一二三区在线看| 久久av网站| 午夜av观看不卡| 日韩成人av中文字幕在线观看| 韩国av在线不卡| 伊人久久国产一区二区| 成人综合一区亚洲| 亚洲欧美成人精品一区二区| 在线播放无遮挡| 国产高清不卡午夜福利| 一区二区三区精品91| 中国三级夫妇交换| 国产黄片视频在线免费观看| 亚洲国产精品成人久久小说| 亚洲av在线观看美女高潮| 亚洲无线观看免费| 亚洲av日韩在线播放| 欧美bdsm另类| 91久久精品国产一区二区三区| 性色avwww在线观看| 男人狂女人下面高潮的视频| 日韩电影二区| 大陆偷拍与自拍| 日韩精品有码人妻一区| 五月天丁香电影| 国产在线男女| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 人人妻人人添人人爽欧美一区卜| 国产欧美日韩一区二区三区在线 | 亚洲综合色惰| 一级黄片播放器| 免费看光身美女| 少妇人妻 视频| 精品久久久精品久久久| kizo精华| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 日韩精品免费视频一区二区三区 | 国产毛片在线视频| 久久久久久久久大av| 老司机亚洲免费影院| 午夜免费男女啪啪视频观看| 免费观看a级毛片全部| 免费观看无遮挡的男女| av在线老鸭窝| 久久人妻熟女aⅴ| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美视频二区| h日本视频在线播放| 18禁裸乳无遮挡动漫免费视频| 国产精品一区www在线观看| 97超碰精品成人国产| av免费观看日本| 18禁在线无遮挡免费观看视频| 一个人免费看片子| 亚洲欧美精品专区久久| 久久国产亚洲av麻豆专区| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区大全| 视频中文字幕在线观看| 久久久a久久爽久久v久久| av网站免费在线观看视频| 少妇裸体淫交视频免费看高清| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在| 一级片'在线观看视频| 建设人人有责人人尽责人人享有的| 亚洲欧美日韩东京热| 视频区图区小说| 免费观看无遮挡的男女| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 91精品伊人久久大香线蕉| 欧美一级a爱片免费观看看| 久久久午夜欧美精品| 免费观看无遮挡的男女| 国产av一区二区精品久久| 亚洲天堂av无毛| 性色avwww在线观看| 国产av一区二区精品久久| av免费观看日本| 中文字幕精品免费在线观看视频 | 亚洲第一av免费看| 在线观看免费日韩欧美大片 | 日日啪夜夜爽| 亚洲真实伦在线观看| 久久韩国三级中文字幕| 夜夜爽夜夜爽视频| 少妇丰满av| 在线 av 中文字幕| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 熟妇人妻不卡中文字幕| 久久久午夜欧美精品| 午夜福利视频精品| 日日摸夜夜添夜夜添av毛片| 亚洲精品色激情综合| 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 深夜a级毛片| 亚洲国产最新在线播放| 在线精品无人区一区二区三| 日韩av免费高清视频| 超碰97精品在线观看| 国产熟女欧美一区二区| 天美传媒精品一区二区| 午夜免费观看性视频| 精品久久久久久久久亚洲| 99久国产av精品国产电影| 麻豆成人av视频| 亚洲av.av天堂| 午夜激情福利司机影院| 人体艺术视频欧美日本| 18禁在线播放成人免费| 国产日韩欧美在线精品| 少妇人妻一区二区三区视频| 水蜜桃什么品种好| 女性生殖器流出的白浆| 久久综合国产亚洲精品| 精品久久久噜噜| 国产真实伦视频高清在线观看| 一区二区三区乱码不卡18| 日韩成人伦理影院| 有码 亚洲区| 免费黄网站久久成人精品| 美女大奶头黄色视频| 午夜福利视频精品| 欧美高清成人免费视频www| 草草在线视频免费看| 久久久久精品性色| 欧美激情极品国产一区二区三区 | 久久久久久久久大av| 三级国产精品片| 高清午夜精品一区二区三区| 在线观看免费高清a一片| 久久这里有精品视频免费| 免费播放大片免费观看视频在线观看| 国产视频内射| 男女免费视频国产| videossex国产| 亚洲无线观看免费| 欧美另类一区| 成人综合一区亚洲| 日韩av在线免费看完整版不卡| 国产男女内射视频| 久久午夜福利片| 中文字幕亚洲精品专区| 黄色一级大片看看| 汤姆久久久久久久影院中文字幕| 狂野欧美激情性xxxx在线观看| 国产日韩欧美视频二区| 99re6热这里在线精品视频| 日韩中字成人| 六月丁香七月| 国产色爽女视频免费观看| 永久网站在线| 国产精品三级大全| 天堂俺去俺来也www色官网| 尾随美女入室| 日本午夜av视频| 亚洲婷婷狠狠爱综合网| 国产亚洲av片在线观看秒播厂| 你懂的网址亚洲精品在线观看| 国产男女内射视频| 国产高清三级在线| 精品久久久久久电影网| 久久久久久久国产电影| 少妇人妻一区二区三区视频| 国产精品国产三级国产专区5o| 日本免费在线观看一区| 精品少妇内射三级| 国产精品一区二区三区四区免费观看| 久久综合国产亚洲精品| 国产精品人妻久久久久久| 久久久久视频综合| 中文字幕人妻熟人妻熟丝袜美| 成人黄色视频免费在线看| 亚洲人与动物交配视频| 永久免费av网站大全| 99久久综合免费| 国产伦在线观看视频一区| 国产男人的电影天堂91| 97在线人人人人妻| 26uuu在线亚洲综合色| 免费在线观看成人毛片| 日本黄大片高清| 亚洲成人手机| 不卡视频在线观看欧美| 一级二级三级毛片免费看| 精品视频人人做人人爽| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线 | 丰满迷人的少妇在线观看| 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 在线亚洲精品国产二区图片欧美 | 青青草视频在线视频观看| 丝袜在线中文字幕| 国产午夜精品久久久久久一区二区三区| 男人和女人高潮做爰伦理| 黄色一级大片看看| 亚洲欧美日韩卡通动漫| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 成人特级av手机在线观看| 久久久久久久亚洲中文字幕| 色吧在线观看| 日本91视频免费播放| 日本午夜av视频| 国产乱来视频区| 人妻夜夜爽99麻豆av| 99九九在线精品视频 | 国内精品宾馆在线| 在线天堂最新版资源| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 欧美高清成人免费视频www| 国产精品免费大片| 日韩精品免费视频一区二区三区 | 在线看a的网站| 精品国产国语对白av| 日本黄色日本黄色录像| 黄色怎么调成土黄色| kizo精华| 一级二级三级毛片免费看| 国产在线男女| 国产视频首页在线观看| 国产精品国产av在线观看| 久久久国产一区二区| tube8黄色片| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品古装| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 插逼视频在线观看| 我要看黄色一级片免费的| 久久国产精品大桥未久av | 久久99一区二区三区| 亚洲va在线va天堂va国产| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| 18禁在线播放成人免费| 人人妻人人爽人人添夜夜欢视频 | 青春草视频在线免费观看| 一级毛片 在线播放| 黑人巨大精品欧美一区二区蜜桃 | 自拍偷自拍亚洲精品老妇| 少妇人妻精品综合一区二区| 亚洲av中文av极速乱| 简卡轻食公司| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说| 免费观看av网站的网址| 在线 av 中文字幕| 中文天堂在线官网| a 毛片基地| 91久久精品电影网| 久久久久国产精品人妻一区二区| 午夜日本视频在线| 麻豆精品久久久久久蜜桃| 男人舔奶头视频| 国产美女午夜福利| 免费高清在线观看视频在线观看| 建设人人有责人人尽责人人享有的| 这个男人来自地球电影免费观看 | 熟女av电影| 久久影院123| 另类亚洲欧美激情| 国产精品欧美亚洲77777| 黄色欧美视频在线观看| 男女边吃奶边做爰视频| 午夜免费男女啪啪视频观看| 一级二级三级毛片免费看| 午夜福利,免费看| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 观看美女的网站| 国产毛片在线视频| av在线播放精品| 黄色配什么色好看| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 男男h啪啪无遮挡| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| 夜夜看夜夜爽夜夜摸| 一本久久精品| 我的老师免费观看完整版| av女优亚洲男人天堂| 边亲边吃奶的免费视频| 国产中年淑女户外野战色| 免费高清在线观看视频在线观看| 久热久热在线精品观看| 成人国产麻豆网| 高清毛片免费看| 国产一区二区在线观看av| 精品亚洲成a人片在线观看| 18禁裸乳无遮挡动漫免费视频| 99热这里只有是精品50| 夫妻午夜视频| 高清视频免费观看一区二区| 高清不卡的av网站| 99视频精品全部免费 在线| 我要看黄色一级片免费的| 日本黄大片高清| 丝袜脚勾引网站| 精品人妻偷拍中文字幕| 在线观看www视频免费| 亚洲天堂av无毛| 中文字幕免费在线视频6| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 亚洲一级一片aⅴ在线观看| 国产色婷婷99| 国产精品一区二区在线不卡| 成年人免费黄色播放视频 | 尾随美女入室| 嫩草影院新地址| 岛国毛片在线播放| videossex国产| 亚洲电影在线观看av| av不卡在线播放| 欧美精品一区二区大全| 天堂俺去俺来也www色官网| 久久国产乱子免费精品| 国产乱人偷精品视频| 亚州av有码| av专区在线播放| 中国国产av一级| 国产成人freesex在线| 国产免费视频播放在线视频| 国产精品久久久久久久电影| av女优亚洲男人天堂| 这个男人来自地球电影免费观看 | www.av在线官网国产| 亚洲高清免费不卡视频| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产| 国产午夜精品久久久久久一区二区三区| 特大巨黑吊av在线直播| 日本午夜av视频| 久久久久久久久久久丰满| 国产精品国产三级国产av玫瑰| 中文字幕久久专区| 9色porny在线观看| 少妇高潮的动态图| 春色校园在线视频观看| 亚洲一区二区三区欧美精品| 女的被弄到高潮叫床怎么办| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩精品一区二区| 天堂8中文在线网| 性高湖久久久久久久久免费观看| 免费观看的影片在线观看| 久久热精品热| 丝袜在线中文字幕| 成人国产av品久久久| av天堂中文字幕网| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 亚洲精品国产av蜜桃| 国产伦精品一区二区三区视频9| 国产一区有黄有色的免费视频| 多毛熟女@视频| 亚洲久久久国产精品| 美女内射精品一级片tv| 国产女主播在线喷水免费视频网站| 久久韩国三级中文字幕| 日本免费在线观看一区| 免费在线观看成人毛片| 精品国产一区二区久久| 亚洲成色77777| av不卡在线播放| 亚洲av中文av极速乱| 欧美日韩亚洲高清精品| 亚洲精品色激情综合| 国产精品国产av在线观看| 日本猛色少妇xxxxx猛交久久| 一级爰片在线观看| 亚洲精品国产成人久久av| 国产成人freesex在线| 免费大片18禁| 国产精品99久久久久久久久| 少妇猛男粗大的猛烈进出视频| 久久久久久久久久人人人人人人| 99久国产av精品国产电影| 2022亚洲国产成人精品| 久久久久久久久久久丰满| 少妇的逼好多水| 在线精品无人区一区二区三| 亚洲综合精品二区| 日产精品乱码卡一卡2卡三| 内地一区二区视频在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产免费视频播放在线视频| 成人毛片60女人毛片免费| 欧美丝袜亚洲另类| 日韩大片免费观看网站| 国产精品不卡视频一区二区| 一区二区三区免费毛片| 国产永久视频网站| 如何舔出高潮| 大码成人一级视频| 在线精品无人区一区二区三| 高清欧美精品videossex| 亚洲精品久久久久久婷婷小说| 久久久久久人妻| 国产国拍精品亚洲av在线观看| 国产伦在线观看视频一区| 欧美日韩国产mv在线观看视频| 日韩人妻高清精品专区| 久久久久久久国产电影| 高清av免费在线| 免费看光身美女| 久久国内精品自在自线图片| 亚洲精品久久久久久婷婷小说| 久久精品国产亚洲av天美| 国产亚洲午夜精品一区二区久久| 五月开心婷婷网| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 精品视频人人做人人爽| 中文字幕av电影在线播放| 在线看a的网站| 国产精品伦人一区二区| 国产男人的电影天堂91| 免费看光身美女| 国内精品宾馆在线| 欧美日韩视频精品一区| 欧美一级a爱片免费观看看| 色视频在线一区二区三区| 久久人妻熟女aⅴ| 热re99久久精品国产66热6| 中国三级夫妇交换| 欧美人与善性xxx| 我要看黄色一级片免费的| 日本与韩国留学比较| 久久久国产欧美日韩av| 青青草视频在线视频观看| 夜夜看夜夜爽夜夜摸| 日本黄色片子视频| 国产欧美另类精品又又久久亚洲欧美| 内射极品少妇av片p| 高清欧美精品videossex| 亚洲美女黄色视频免费看| tube8黄色片| 观看美女的网站| 国产免费福利视频在线观看| 欧美 日韩 精品 国产| 中文精品一卡2卡3卡4更新| 国产在线视频一区二区| 下体分泌物呈黄色| 视频区图区小说| 国产在线男女| 能在线免费看毛片的网站| 亚洲精品久久久久久婷婷小说| 国产日韩欧美亚洲二区| 一级毛片久久久久久久久女| 制服丝袜香蕉在线| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| 亚洲成色77777| 韩国av在线不卡| 丰满人妻一区二区三区视频av| 色5月婷婷丁香| 2021少妇久久久久久久久久久| 街头女战士在线观看网站| 免费少妇av软件| 啦啦啦视频在线资源免费观看| 久久热精品热| 极品少妇高潮喷水抽搐| 在线观看美女被高潮喷水网站| 亚洲欧美一区二区三区黑人 | 午夜激情久久久久久久| 亚洲中文av在线| 少妇人妻精品综合一区二区| 桃花免费在线播放| 午夜福利,免费看| 日韩亚洲欧美综合| 3wmmmm亚洲av在线观看| av视频免费观看在线观看| 能在线免费看毛片的网站| 亚洲美女黄色视频免费看| 青春草视频在线免费观看| 毛片一级片免费看久久久久| 免费高清在线观看视频在线观看| 一级爰片在线观看| 一二三四中文在线观看免费高清| 一级,二级,三级黄色视频| 丁香六月天网| 日本av手机在线免费观看| 欧美精品人与动牲交sv欧美| 精品亚洲乱码少妇综合久久| 亚洲情色 制服丝袜| 我的老师免费观看完整版| 九九爱精品视频在线观看| 国产亚洲最大av| 你懂的网址亚洲精品在线观看| 欧美成人精品欧美一级黄| 国产精品欧美亚洲77777| 插逼视频在线观看| 特大巨黑吊av在线直播| av一本久久久久| 全区人妻精品视频| 在线亚洲精品国产二区图片欧美 | 国产亚洲一区二区精品| 久久久国产一区二区| 黑丝袜美女国产一区| 国产一级毛片在线| 一级毛片电影观看| 肉色欧美久久久久久久蜜桃| 国产欧美日韩一区二区三区在线 | 妹子高潮喷水视频| 有码 亚洲区| 高清午夜精品一区二区三区| 18禁动态无遮挡网站| 噜噜噜噜噜久久久久久91| 寂寞人妻少妇视频99o| 高清毛片免费看| 一级毛片久久久久久久久女| 久久久久久久久久久久大奶| 精品亚洲乱码少妇综合久久| 亚洲精品久久午夜乱码|