• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vacuum-gap-based lumped element Josephson parametric amplifier

    2022-01-23 06:34:24SishiWu吳思詩(shī)DengkeZhang張登科RuiWang王銳YulongLiu劉玉龍
    Chinese Physics B 2022年1期
    關(guān)鍵詞:王銳登科玉龍

    Sishi Wu(吳思詩(shī)) Dengke Zhang(張登科) Rui Wang(王銳) Yulong Liu(劉玉龍)

    Shuai-Peng Wang(王帥鵬)1, Qichun Liu(劉其春)4, J S Tsai(蔡兆申)2,3, and Tiefu Li(李鐵夫)4,5,?

    1Quantum Physics and Quantum Information Division,Beijing Computational Science Research Center,Beijing 100193,China

    2Department of Physics,Tokyo University of Science,Kagurazaka,Shinjuku-ku,Tokyo 162-8601,Japan

    3RIKEN Center for Quantum Computing(RQC),2-1 Hirosawa,Wako,Saitama 351-0198,Japan

    4Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    5School of Integrated Circuits,and Frontier Science Center for Quantum Information,Tsinghua University,Beijing 100084,China

    Keywords: Josephson parametric amplifier,vacuum gap,quantum-limit noise

    1. Introduction

    Parametric amplifiers are mostly pumped nonlinear oscillators, among which Josephson parametric amplifier (JPA) is a primary candidate for superconducting circuits.[1-6]Josephson junctions provide not only lossless non-linearity but also the flexibility of working points.In the last decades,Josephson junctions have been employed to realize the quantum-limited parametric amplifier, which plays quite important roles in,e.g., single-shot readout,[7-9]quantum state squeezing,[10,11]and quantum jump trajectory.[12]With the emerging of noisy intermediate-scale superconducting quantum technology (NISQ),[13-15]wide bandwidth amplifiers with quasi quantum-limit noise are quite in demand for fault-tolerant quantum computing.

    The mainstream of existing wide bandwidth JPA can be sorted into traveling-wave-based and lumped-element-based types. On the aspect of gain response, traveling wave parametric amplifiers(TWPAs)[16-18]typically provide gain above 10 dB with bandwidth of several-Gigahertz,while lumped element Josephson parametric amplifiers (LJPAs)[19-22]commonly have 100-MHz bandwidth accompanied with gain of 20 dB. On the fabrication aspect, TWPAs need reliable fabrication for series of thousands of Josephson junctions, and LJPAs are composed by superconducting quantum interference device (SQUID) and lumped capacitor, like interdigitated capacitor,[22]and parallel-plate capacitor.[23-25]It is worth noting that,to preserve working region,capacitors with small parasitic inductance,such as parallel-plate capacitor and vacuum-gap-based capacitor, are preferred. While parallelplate capacitor lowers parasitic inductance of the interdigitated capacitor,its multi-layer structure introduces fabrication complexity and amorphous heterogeneous interface, where surface defects are most likely to be found. Although most JPA devices have declared quasi quantum-limit noise, further decreasing defects makes a considerable difference on qubit readout fidelity,which is a key limitation for current scalability of quantum computing.

    Typical wideband LJPA design takes comparatively large lumped element capacitance, and skips coupling capacitors to the environment. These lead to wider spectral linewidth, but smaller impedance, due to the limitation of characteristic frequency. To lower impedance mismatch at the signal reflection interface, impedance transformers becomes a common choice, among which, coplanar waveguide (CPW) based one is a primary candidate for its simple designable structure.[26-29]Commonly used CPWbased impedance transformers are composed of a quarterwavelength CPW section (with main characteristic parameters including resonant frequencyωqand impedanceZq) and a half-wavelength CPW section (withωhandZh). According to transmission line theory, input impedance of a load can be transformed via CPW section,which can be expressed asZin(ωs) =Zcpw{ZL+ iZcpwtan(2πˉνωs/ωcpw)}/{Zcpw+iZLtan(2πˉνωs/ωcpw)}. The variables labeled with ‘cpw’refer to parameters of the CPW section,ZLrefers to load impedance,andωsrefers to probe signal frequency.[26]Therefore, forωs≈ωcpw, quarter-wavelength CPW section (withˉν=1/4)edits the real part of the input impedance,and halfwavelength CPW section (with ˉν=1/2) balances the imaginary part. Introduction of auxiliary impedance engineering helps break gain-bandwidth product limitation of LJPA to be several-hundred-Megahertz bandwidth accompanied with gain about 20 dB.[23,30,31]

    In this paper, we propose an LJPA with vacuum-gapbased capacitor. Aluminum-based microelectronic processing is adopted, which means the design can be integrated for Josephson-junction-based on-chip superconducting quantum computing system. The lumped capacitor using vacuumgap-based structure results in lower parasitic inductance and smaller amorphous heterogeneous interface.[32]The separated superconducting pads are patterned via photo lithography,while the quasi-floating one requires extra evaporation and wet etching. Multi-material fabrication,including amorphous silicon,[21,23,31]silicon nitride,[31]or silicon oxide[30]to form capacitor gaps are avoided. Pad size is designed comparatively larger, in order to certificate structural ductility and process reliability of the vacuum-gap-based capacitor. Additionally, the device is strongly coupled to the environment via a CPW-based impedance transformer to increase gain bandwidth.[26,27]

    2. Theory

    In the perspective of theoretical analysis, the Josephson junctions embedded circuit can be treated as nonlinear cavity.With external pump,circuit Hamiltonian can be mapped onto a parametric amplifier.[4,5,33,34]For typical wide-band weak signal gain usage, to avoid pump tone interfering, JPAs are pumped around twice the frequency of its eigen-mode,which refers to the so called three-wave mixing. Three wave mentioned here are named as pump tone (ωd), probe tone (ωs),and idler tone (ωi), with serial characteristic frequencies satisfyingωd=ωs+ωi(See Fig. 1). The Hamiltonian can be written as

    Combination of quantum Langevin equation and inputoutput theory gives the photon number gain of the probe toneG[ωs],which is indeed the square of modulus of the reflection coefficient:[16,35]

    whereχ11is an element of system susceptibility matrixχ[ωs],which arises from [as,ai]T=χ[ωs][as,in,ai,in]T. Andκis the effective damping rate, dependent by both the JPA intrinsic damping rate and the impedance difference of it from the environment. While the former factor is determined by the vacuum-gap-based capacitor and the SQUID,the latter can be lowered by impedance engineering,and thus broadens the JPA gain bandwidth.

    Fig.1.Illustration of components for the LJPA device,including CPW-based impedance transformer, vacuum-gap-based lumped capacitor and SQUID.During the three wave mixing process, annihilation of a pump tone photon comes with creation of a probe tone photon and an idler tone photon,and vice versa.

    For the specific circuit presented in this work(see Fig.2),with auxiliary CPW-based impedance transformer, effective damping rate can be approximated into 1/(2CvgbRt),when the probe tone is slightly detuned fromωd/2. The transformed environment resistance is ofRt=Z2q/R, whereZq=40.9 Ω is impedance of the quarter-wavelength CPW transformer, a partial auxiliary impedance engineering part, andR=50 Ω is resistance of the input channel. Resonant frequencies of quarter-wavelength CPW transformer and half-wavelength CPW transformer are designed to beωq=ωh= 5.6 GHz,which is mainly determined by the length of the waveguides.Besides,Zqis designed to be 58.0 Ω.Impedance of the waveguides is mainly determined by the width of the centerline and gap. Accordingly, the system susceptibility matrixχ[ωs] can be expressed as[21,27]

    whereΔs=ωd/2-ωs,Gmax= 1+16κ2λ2/{κ2-4λ2+4(ωr-ωd/2)2}2, andΓBW=κ/(2G1/4max). Such broadened lineshape comes as higher order approximation of Taylor expansion for Eq.(2),due to the enlargedκ/2π=0.49 GHz.

    Fig.2. Photos of the vacuum-gap-based lumped element Josephson parametric amplifier. (a) An optical image of the whole structure, which is characterized in this paper. The circuit components are individually colored and labeled. Port 1 is made for microwave signal,including probe tone and direct pump tone.Port 2 is made for both microwave signal and direct current input,thus allowing flux pump and on-chip bias. (b) A SEM image of the whole vacuum-gap-based structure and SQUID.The lighter larger rounds are standing contacts to support the floating pad. The darker small holes are made for removing the sacrifice layer during fabrication. (c)A SEM image of partial lumped capacitor,which serves as a proof of the quasi-floating condition. (d)A SEM image of the fabricated SQUID.

    3. Design and fabrication

    The structure of our LJPA is composed of lumped element part,CPW-based impedance transforming part,and control line. The lumped element part is composed of vacuumgap-based capacitor and SQUID.The control line is designed to allow both microwave pump and flux bias.

    Fabrication process[32,36]is illustrated in Fig.3. On-chip lumped capacitor pad,control line and impedance engineering part are firstly patterned via photo lithography and dry etching from a niobium sputtered silicon substrate. Standing contacts of the lumped capacitor are separated from the on-chip ground by concentric ring gaps. CPW-based impedance transformer and SQUID are directly connected to the quasi-floating pad through standing contacts. Then we use e-beam lithography followed with double angle evaporation and in-chamber oxidation to fabricate the Josephson junctions. Another round of photo lithography is applied to reserve standing contacts between the on-chip ground and the quasi-floating capacitor pad.The photon resist(thickness about 3μm)used here serves as sacrifice layer.The quasi-floating capacitor pad is then formed by aluminum evaporation, and is separated from the on-chip one by initially etched gaps. Wet etching after third round of photo lithography is taken, to remove photon resist sacrifice layer and unwanted aluminum part. Both standing contacts and top layer etched holes are designed as regular hexagon nested array.

    Fig. 3. Fabrication process for the vacuum-gap-based JPA. The circuit element sizes are distortedly plotted for illustrations. Material types are marked by different colors and annotated.

    4. Measurement and results

    Our characterization measurement is taken at 25 mK in a dilution refrigerator. Weak probe tone with characteristic frequency ofωs,is injected by the network analyzer through port 1. It experiences attenuation before reaching to the cryogenic environment. A circulator is placed in front of port 1. The pump tone is applied by signal generator through port 2. Mixing process transfer energy from the strong pump tone to the weak probe tone. The amplified probe tone then comes out,together with the idler tone and noise, through the circulator.The flux bias on the SQUID loop is controlled by global coil inside the magnetic shield,which can be replaced by flux input through on-chip control line, together with flux pump, using bias-tee. Spectrum analyzer is added into the output channel,to analyze the device noise performance.

    Firstly,we modulate JPA characteristic frequency by applying flux to the SQUID loop through an external coil. Flexibility of circuit characteristic frequency allows Gigahertzrange operational bandwidth. As is illustrated in Fig. 4, gain region is not restrict to the frequency of CPW transformer,because its coupling to both environment and JPA is strong.However, expansion of gain bandwidth for signal dispersive fromωauxis weakened.

    Fig. 4. Bias-dependent reflection spectrum. (a) Unpumped phase spectrum for varied bias. Orange dash line is the characteristic frequency fitting of the CPW transformer dressed JPA circuit. Φ0 refers to flux quanta. Three biased points are marked in blue, green, and purple. Their accordingly three wave mixing stimulated gain spectrum is plotted below. (b)The blue spectrum is pumped at 11 GHz,and biased at-0.293Φ0. The green spectrum is pumped at 12.18 GHz, and biased at 0.404Φ0. The purple spectrum is pumped at 13 GHz,and biased at-0.292Φ0.

    We then focus on bias at 0.404Φ0, to characterize performance of the device. Under the pump tone with frequency of 12.18 GHz and power of-108 dBm, we obtain over 20-dB gain with 162-MHz bandwidth. The corresponding 1-dB compression is about-123 dBm. Measurement results indicate the capability for simultaneous multi-qubit readout.Note that all amplitudes of input signals are described in the amount before reaching sample box. Dynamic range and gain bandwidth of the device can be optimized by adjusting size of the vacuum-gap-based capacitor.[37]If size of the vacuumgap-based capacitor is halved, which results in halvedCvgb,similar to the JPAs with dielectric layer based parallel-plate capacitor,[31]gain bandwidth should be broadened beyond 300 MHz. Meanwhile, dynamic range should be decreased for the same nonlinear cavity frequency targeted design.[33]

    We then compare the spectrum analyzer detected signal to noise ratio (SNR) under pumped and unpumped cases, for which subplot in Fig.5(d)serves as an example. With accordance to the characterized input channel attenuation and gain response(exactly the blue line in Fig.5(c)),this gives the JPA noise.

    Fig. 5. LJPA performance characterization under pump condition of 12.18 GHz,-108 dBm. (a)Gain response evolution toward saturation along growing probe tone amplitude,for series probe frequencies. Probe frequency dependent 1-dB compression is plotted as gray dash line. (b)Detailed plot of the left one, for probe frequency at 6.09 GHz, with marked 1-dB compression at -123 dBm. (c) Gain response for probe power at -146 dBm (blue line)and-123 dBm(red line). Gray dash line represents gain response lineshape fitting. (d)Measured JPA noise(dots),with 1.2-dB insertion loss error colored in gray, and orange dash line indicating quantum limit. Frequencydependent noise photon number is transferred into noise temperature viaˉhω/kB.Processing of SNR,at input signal frequency of 6.04 GHz,is taken as an example(circled in pink). Its original data(Qout[τ]=∫1/2τ-1/2τP[Δps]dΔps)zoomed in 5 kHz span is presented in the subplot,where the pink area refers to integration period τ (1/3.75 kHz),and Δps refers to frequency difference between probe tone and swept signal tone. T is the sufficiently settled integration period for wideband fast Fourier transformation that covers the JPA gain bandwidth (1/100 kHz). Red line refers to the pumped spectrum, and purple line refers to the unpumped spectrum. SNR is thus concluded from Qout[τ](T-τ)/{τ(Ntot[T]-Qout[τ])},where Ntot[T]=∫1/2T-1/2T P[Δps]dΔps.

    To be specific, we can have a system noise in unit of quanta defined as

    where footlabel‘in(out)’onQ[τ]refers to signal photon number input(output)during an integration period ofτ,and SNR represents signal to noise ratio detected by the frequency spectrum analyzer. It is worth-noting that integration period influence little on the noise calculation, because it is contained both in numerator and denominator of SNR. When JPA is not pumped,

    This thermal calibration source free method well matched the widely taken approximation method,where the noise is expressed asTJPA[ω]=Ttot[ω](1/ηSNR[ω]-1/G[ω]).[22]In this formula,Ttot(JPA)means the total(JPA)added noise in the temperature scale,ηSNRmeans SNR improvement, andGmeans JPA gain.Noise measurement results confirm that the vacuumgap-based structure reaches quasi quantum-limit.

    5. Conclusion

    For rounds of cooling, robustness of the vacuum-gapbased geometric structure has been verified.We also varied the gap design to test their room temperature capacitance, which turns to have parallel-plate-capacitor-equivalent linear dependency on size. This confirms designability of the electrical parameters.

    In summary, we have proposed a vacuum-gap-based capacitance structure for fabricating low-noise lumped element JPA, with single material evaporation method. Our JPA achieves over 20-dB gain with 162-MHz bandwidth, with added noise about 1 quanta. The circuit can be further optimized by finite impedance engineering and smaller capacitor.Our device offers application in single-shot readout of multiqubit system,which emerges with the coming NISQ era.

    Toward future integrated superconducting quantum circuits, air-bridge is becoming an essential component. Due to the fabrication compatibility, our vacuum-gap-based LJPA can be a strong candidate for hardware-efficient on-chip amplification. The vacuum-gap-based structure also inspires 3D-architectures of superconducting circuits. Furthermore,such capacitor with low parasitic inductance can play roles in lumped element circuit to tailor local electric field distribution,which offers flexibility on designing characteristic frequency and coupling strength.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301200),the National Natural Science Foundation of China (Grant Nos.62074091,12004044,and U1930402),the Science Challenge Project(Grant No.TZ2018003),the Fund from the New Energy and Industrial Technology Development Organization(Grant No. JPNP16007), and Japan Science and Technology Agency (Moonshot R&D, Grant No. JPMJMS2067 and CREST,Grant No.JPMJCR1676).

    猜你喜歡
    王銳登科玉龍
    從此蜀道不再難
    紅山玉龍
    ——中華第一玉龍
    家教世界(2023年28期)2023-11-14 10:08:18
    紅山玉龍
    Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
    Core structure and Peierls stress of the 90?dislocation and the 60?dislocation in aluminum investigated by the fully discrete Peierls model
    競(jìng)技足球比賽技術(shù)制勝因素研究
    Optical scheme to demonstrate state-independent quantum contextuality
    趙樹(shù)理“折磨”年輕人
    Equivalence—based Translation theories
    Effect of CO Combustion Promoters on Combustion Air Partition in FCC under Nearly Complete Combustion*
    www.自偷自拍.com| 免费观看人在逋| 亚洲国产欧美一区二区综合| 欧美中文日本在线观看视频| 国产在线精品亚洲第一网站| 国产精品一区二区精品视频观看| 国内少妇人妻偷人精品xxx网站 | 狠狠狠狠99中文字幕| 国产成人精品无人区| 国产高清激情床上av| av在线播放免费不卡| 好男人电影高清在线观看| 欧美一区二区精品小视频在线| 国产精品1区2区在线观看.| 看片在线看免费视频| 91麻豆av在线| 亚洲一区高清亚洲精品| 久久久国产精品麻豆| 欧美av亚洲av综合av国产av| 国产精品亚洲一级av第二区| 窝窝影院91人妻| 最新在线观看一区二区三区| 国产麻豆成人av免费视频| 亚洲成人精品中文字幕电影| 亚洲片人在线观看| 欧美在线一区亚洲| 亚洲人成伊人成综合网2020| 真人做人爱边吃奶动态| 国产精品免费视频内射| 久久精品夜夜夜夜夜久久蜜豆 | 蜜桃久久精品国产亚洲av| 亚洲精品av麻豆狂野| 国产黄片美女视频| 国产成人系列免费观看| 欧美一区二区国产精品久久精品 | 国产熟女xx| 黑人巨大精品欧美一区二区mp4| 2021天堂中文幕一二区在线观| 免费在线观看完整版高清| 欧美日韩乱码在线| 狂野欧美激情性xxxx| 欧美最黄视频在线播放免费| 免费观看精品视频网站| 免费看日本二区| 最新美女视频免费是黄的| 日日摸夜夜添夜夜添小说| 99国产精品一区二区三区| 日本黄大片高清| 国产精品久久久久久亚洲av鲁大| 亚洲精品中文字幕在线视频| 手机成人av网站| 欧美精品亚洲一区二区| 亚洲午夜精品一区,二区,三区| 三级男女做爰猛烈吃奶摸视频| 麻豆久久精品国产亚洲av| 午夜福利在线在线| 在线观看一区二区三区| 天堂动漫精品| 久久人妻福利社区极品人妻图片| 搡老妇女老女人老熟妇| av超薄肉色丝袜交足视频| 欧美色视频一区免费| 狂野欧美激情性xxxx| 国产熟女xx| 亚洲真实伦在线观看| 波多野结衣高清作品| 日本一二三区视频观看| 男女那种视频在线观看| 久久婷婷成人综合色麻豆| 国产欧美日韩一区二区三| 亚洲精品中文字幕一二三四区| 午夜激情福利司机影院| 日韩欧美在线乱码| 一区二区三区高清视频在线| 黄色视频不卡| 国产成人一区二区三区免费视频网站| 成人一区二区视频在线观看| 妹子高潮喷水视频| 天堂√8在线中文| 一本久久中文字幕| 亚洲人成网站高清观看| 久久久久久人人人人人| 亚洲中文av在线| 久久精品91无色码中文字幕| 日本三级黄在线观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲真实伦在线观看| 国产午夜精品久久久久久| 久久久久九九精品影院| 两个人看的免费小视频| 熟女电影av网| 精品乱码久久久久久99久播| 成人手机av| 亚洲欧洲精品一区二区精品久久久| 手机成人av网站| 亚洲美女黄片视频| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 女同久久另类99精品国产91| 久久久久久久久久黄片| 午夜精品在线福利| 一级毛片精品| 老司机靠b影院| 日本精品一区二区三区蜜桃| 午夜福利视频1000在线观看| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 在线永久观看黄色视频| 精品欧美国产一区二区三| 久久久久久久久免费视频了| 国产精品久久久久久亚洲av鲁大| 亚洲一码二码三码区别大吗| 丰满人妻熟妇乱又伦精品不卡| 在线a可以看的网站| 一进一出好大好爽视频| 国产真实乱freesex| 亚洲精品av麻豆狂野| av天堂在线播放| videosex国产| 99热这里只有精品一区 | 动漫黄色视频在线观看| 视频区欧美日本亚洲| 美女 人体艺术 gogo| 亚洲国产日韩欧美精品在线观看 | 悠悠久久av| 久久精品影院6| tocl精华| 国产亚洲精品综合一区在线观看 | 国产激情久久老熟女| 麻豆成人av在线观看| 美女高潮喷水抽搐中文字幕| av片东京热男人的天堂| 日本成人三级电影网站| 欧美性猛交黑人性爽| 最新在线观看一区二区三区| 亚洲中文字幕日韩| 久久香蕉国产精品| 成人亚洲精品av一区二区| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 欧美3d第一页| 国产精品久久久久久久电影 | 国产真人三级小视频在线观看| 啪啪无遮挡十八禁网站| 午夜福利免费观看在线| 麻豆国产av国片精品| 国产探花在线观看一区二区| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 国产精品精品国产色婷婷| 免费人成视频x8x8入口观看| 69av精品久久久久久| 丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片| 97超级碰碰碰精品色视频在线观看| 99热这里只有是精品50| 成人永久免费在线观看视频| 国产亚洲精品久久久久久毛片| 美女大奶头视频| 琪琪午夜伦伦电影理论片6080| 母亲3免费完整高清在线观看| 欧美色欧美亚洲另类二区| 黑人欧美特级aaaaaa片| 白带黄色成豆腐渣| 午夜免费成人在线视频| 精品乱码久久久久久99久播| 国产精华一区二区三区| 久久久久国产一级毛片高清牌| 久久久精品大字幕| 中文资源天堂在线| 久久久久久免费高清国产稀缺| 国产精品久久久av美女十八| 女生性感内裤真人,穿戴方法视频| 母亲3免费完整高清在线观看| bbb黄色大片| 久久热在线av| 香蕉久久夜色| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 欧美成人午夜精品| 国产爱豆传媒在线观看 | 99久久精品国产亚洲精品| 国产激情偷乱视频一区二区| 成人特级黄色片久久久久久久| 欧美av亚洲av综合av国产av| 久久久久久国产a免费观看| a在线观看视频网站| 桃色一区二区三区在线观看| 国产精品一区二区免费欧美| 国内精品一区二区在线观看| 人妻夜夜爽99麻豆av| 国产在线观看jvid| АⅤ资源中文在线天堂| 老鸭窝网址在线观看| 热99re8久久精品国产| 91老司机精品| 中文字幕高清在线视频| 欧美乱码精品一区二区三区| xxx96com| 一本久久中文字幕| 国产高清有码在线观看视频 | 在线播放国产精品三级| 欧美乱色亚洲激情| 精品电影一区二区在线| 久久中文看片网| 夜夜爽天天搞| 亚洲免费av在线视频| 欧美一级a爱片免费观看看 | 中国美女看黄片| 久久久久国产一级毛片高清牌| 搡老熟女国产l中国老女人| 女人爽到高潮嗷嗷叫在线视频| 亚洲全国av大片| 九色成人免费人妻av| 毛片女人毛片| 成年免费大片在线观看| 精品第一国产精品| 欧美性长视频在线观看| 国产精品久久久久久亚洲av鲁大| 五月玫瑰六月丁香| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 两性午夜刺激爽爽歪歪视频在线观看 | 久99久视频精品免费| 亚洲第一欧美日韩一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 欧美黑人精品巨大| 男女之事视频高清在线观看| 久久这里只有精品19| 50天的宝宝边吃奶边哭怎么回事| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| 亚洲男人天堂网一区| 国产三级黄色录像| 午夜精品久久久久久毛片777| 国产成人欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久久99热这里只有精品18| 老鸭窝网址在线观看| 可以免费在线观看a视频的电影网站| 亚洲天堂国产精品一区在线| 国产精品乱码一区二三区的特点| www日本在线高清视频| 欧美日本亚洲视频在线播放| 一个人免费在线观看电影 | 欧美黄色淫秽网站| 亚洲一区中文字幕在线| 中文字幕人成人乱码亚洲影| 亚洲av熟女| 久久伊人香网站| 久久香蕉精品热| 波多野结衣高清作品| 日韩有码中文字幕| 国产亚洲精品av在线| 久久久国产欧美日韩av| 午夜老司机福利片| 中文亚洲av片在线观看爽| 亚洲无线在线观看| 中文在线观看免费www的网站 | 校园春色视频在线观看| 97碰自拍视频| 色播亚洲综合网| 日日夜夜操网爽| 国产一区二区在线观看日韩 | 亚洲男人天堂网一区| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 三级毛片av免费| 亚洲精品在线美女| 免费看十八禁软件| 国产黄片美女视频| 在线观看美女被高潮喷水网站 | 国产高清激情床上av| bbb黄色大片| 成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 日韩欧美三级三区| 久久午夜综合久久蜜桃| 婷婷六月久久综合丁香| 午夜福利成人在线免费观看| 亚洲精品一区av在线观看| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址| 99riav亚洲国产免费| 超碰成人久久| 久久中文字幕人妻熟女| 一区二区三区国产精品乱码| 女生性感内裤真人,穿戴方法视频| 天堂影院成人在线观看| 亚洲片人在线观看| 亚洲avbb在线观看| 国产三级在线视频| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 国产av又大| 麻豆成人av在线观看| 国产成人精品久久二区二区91| 91九色精品人成在线观看| 国产av不卡久久| 中文字幕最新亚洲高清| 久久精品国产亚洲av香蕉五月| 国产视频内射| 人人妻,人人澡人人爽秒播| 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 久久久久久久精品吃奶| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 一级毛片女人18水好多| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 久久久国产成人免费| 在线观看舔阴道视频| 欧美日韩黄片免| 老熟妇仑乱视频hdxx| 黄色视频不卡| 免费在线观看亚洲国产| 免费观看精品视频网站| 久久久国产欧美日韩av| 成人午夜高清在线视频| 日本在线视频免费播放| 精品一区二区三区视频在线观看免费| 久久中文字幕一级| 久久人妻av系列| 99re在线观看精品视频| 欧美zozozo另类| 50天的宝宝边吃奶边哭怎么回事| 亚洲 国产 在线| 日韩av在线大香蕉| 九色国产91popny在线| 人人妻,人人澡人人爽秒播| 久久精品成人免费网站| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 一个人免费在线观看电影 | 可以免费在线观看a视频的电影网站| av福利片在线观看| 国内毛片毛片毛片毛片毛片| 夜夜躁狠狠躁天天躁| 一a级毛片在线观看| 欧美色欧美亚洲另类二区| 午夜两性在线视频| 舔av片在线| 久久热在线av| 日韩精品中文字幕看吧| 五月伊人婷婷丁香| 女生性感内裤真人,穿戴方法视频| 操出白浆在线播放| 国产av麻豆久久久久久久| 天天躁夜夜躁狠狠躁躁| 亚洲精品中文字幕一二三四区| 50天的宝宝边吃奶边哭怎么回事| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 757午夜福利合集在线观看| 日韩欧美三级三区| 欧美一级毛片孕妇| 欧美成人午夜精品| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 2021天堂中文幕一二区在线观| 国产成人影院久久av| 亚洲专区字幕在线| 久久精品国产清高在天天线| 成人手机av| 91九色精品人成在线观看| av国产免费在线观看| 在线观看日韩欧美| 免费在线观看视频国产中文字幕亚洲| 午夜免费观看网址| 欧美乱妇无乱码| 国产精品野战在线观看| 国产av在哪里看| 美女高潮喷水抽搐中文字幕| 国模一区二区三区四区视频 | 一进一出抽搐动态| 在线国产一区二区在线| 欧美黑人精品巨大| 国内精品久久久久久久电影| 国产精品1区2区在线观看.| 精品久久久久久久毛片微露脸| 午夜久久久久精精品| 成人国产一区最新在线观看| 国产高清有码在线观看视频 | xxx96com| 麻豆成人av在线观看| 黄片小视频在线播放| 亚洲色图 男人天堂 中文字幕| 天堂av国产一区二区熟女人妻 | 又大又爽又粗| 亚洲午夜理论影院| 两个人免费观看高清视频| 青草久久国产| 成人一区二区视频在线观看| 国产成人系列免费观看| 午夜福利视频1000在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 窝窝影院91人妻| 国产高清videossex| 女人高潮潮喷娇喘18禁视频| 精品欧美国产一区二区三| 亚洲色图av天堂| 久久中文字幕人妻熟女| 日韩大尺度精品在线看网址| av欧美777| 国产97色在线日韩免费| 亚洲人成网站在线播放欧美日韩| 在线观看美女被高潮喷水网站 | 一级毛片女人18水好多| av欧美777| 欧美成人性av电影在线观看| 岛国视频午夜一区免费看| 亚洲男人的天堂狠狠| 欧美又色又爽又黄视频| 亚洲精品中文字幕一二三四区| 国产片内射在线| 12—13女人毛片做爰片一| 俺也久久电影网| 白带黄色成豆腐渣| 黄色视频不卡| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 精品第一国产精品| 国产精品久久久av美女十八| 女警被强在线播放| 久久久久久免费高清国产稀缺| 国产成人精品无人区| 亚洲av片天天在线观看| 哪里可以看免费的av片| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐gif免费好疼| 中亚洲国语对白在线视频| 超碰成人久久| 亚洲性夜色夜夜综合| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 高清在线国产一区| 午夜福利18| 在线观看免费日韩欧美大片| 国产伦在线观看视频一区| 久久这里只有精品中国| av超薄肉色丝袜交足视频| 丰满人妻熟妇乱又伦精品不卡| 好看av亚洲va欧美ⅴa在| 哪里可以看免费的av片| 日日夜夜操网爽| 亚洲男人天堂网一区| 成人18禁在线播放| 丁香欧美五月| 老司机午夜十八禁免费视频| 不卡一级毛片| 免费搜索国产男女视频| 又紧又爽又黄一区二区| cao死你这个sao货| 日韩国内少妇激情av| 久久久精品欧美日韩精品| 黄色毛片三级朝国网站| 国产91精品成人一区二区三区| 欧美极品一区二区三区四区| 好男人电影高清在线观看| 最近在线观看免费完整版| 免费无遮挡裸体视频| 日本 欧美在线| 不卡av一区二区三区| 淫秽高清视频在线观看| 少妇人妻一区二区三区视频| 午夜福利视频1000在线观看| 日本成人三级电影网站| 最近最新免费中文字幕在线| 特级一级黄色大片| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美性猛交╳xxx乱大交人| 怎么达到女性高潮| www.999成人在线观看| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| 97人妻精品一区二区三区麻豆| aaaaa片日本免费| 久久精品人妻少妇| 亚洲成人久久爱视频| 国内少妇人妻偷人精品xxx网站 | 免费看美女性在线毛片视频| 男男h啪啪无遮挡| 亚洲精品粉嫩美女一区| 国内精品久久久久精免费| 五月玫瑰六月丁香| 99热这里只有是精品50| 在线免费观看的www视频| 在线播放国产精品三级| 草草在线视频免费看| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 欧美丝袜亚洲另类 | 国产伦一二天堂av在线观看| 丝袜美腿诱惑在线| 超碰成人久久| 最近最新中文字幕大全免费视频| 特级一级黄色大片| 在线观看免费日韩欧美大片| 2021天堂中文幕一二区在线观| 欧美国产日韩亚洲一区| 天堂√8在线中文| 搡老熟女国产l中国老女人| 久久精品91无色码中文字幕| www.自偷自拍.com| 99热这里只有精品一区 | 一个人免费在线观看电影 | 88av欧美| 无限看片的www在线观看| a在线观看视频网站| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| 村上凉子中文字幕在线| 首页视频小说图片口味搜索| 欧美日韩瑟瑟在线播放| 亚洲专区中文字幕在线| 一进一出抽搐动态| 18禁观看日本| 精品无人区乱码1区二区| 国产av在哪里看| 夜夜夜夜夜久久久久| 亚洲 欧美 日韩 在线 免费| 两性夫妻黄色片| 国内少妇人妻偷人精品xxx网站 | 欧美日韩一级在线毛片| 亚洲成人免费电影在线观看| 久久久久九九精品影院| 999精品在线视频| 香蕉国产在线看| 午夜福利高清视频| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播| 很黄的视频免费| 99热只有精品国产| 精品日产1卡2卡| 午夜福利在线在线| 精品欧美国产一区二区三| 国产精品98久久久久久宅男小说| 国产成人精品无人区| 国产黄片美女视频| 久久久久九九精品影院| 12—13女人毛片做爰片一| 黄色片一级片一级黄色片| 精品国产亚洲在线| 日韩欧美免费精品| 欧美激情久久久久久爽电影| 免费人成视频x8x8入口观看| 一级黄色大片毛片| 一本一本综合久久| 老司机靠b影院| 午夜老司机福利片| 一级a爱片免费观看的视频| 欧美一级毛片孕妇| 欧美又色又爽又黄视频| 国产真人三级小视频在线观看| 欧美在线一区亚洲| 男男h啪啪无遮挡| 亚洲国产精品合色在线| 国产不卡一卡二| 深夜精品福利| 精品久久久久久久久久久久久| 国产精品久久久久久亚洲av鲁大| 成人av一区二区三区在线看| 亚洲成av人片免费观看| 动漫黄色视频在线观看| 午夜精品在线福利| 欧美+亚洲+日韩+国产| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 一级作爱视频免费观看| 伊人久久大香线蕉亚洲五| 好男人在线观看高清免费视频| 999精品在线视频| 国产成人av教育| 女人高潮潮喷娇喘18禁视频| 欧美中文日本在线观看视频| av欧美777| 亚洲av成人精品一区久久| 欧美日韩中文字幕国产精品一区二区三区| 欧美乱码精品一区二区三区| 精品免费久久久久久久清纯| 亚洲欧美精品综合一区二区三区| 桃红色精品国产亚洲av| 免费在线观看影片大全网站| 亚洲欧美激情综合另类| 99re在线观看精品视频| 精品第一国产精品| 色综合站精品国产| 亚洲欧美日韩东京热| 日韩高清综合在线| 日本免费一区二区三区高清不卡| e午夜精品久久久久久久| 99re在线观看精品视频| 观看免费一级毛片| 久久久久久大精品| 色老头精品视频在线观看| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看| 特大巨黑吊av在线直播| 国产精品,欧美在线| 国产精品野战在线观看| 国产黄色小视频在线观看| 女同久久另类99精品国产91| 别揉我奶头~嗯~啊~动态视频| 日韩欧美精品v在线| 中文在线观看免费www的网站 | 特大巨黑吊av在线直播| av有码第一页|