• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study

    2023-10-11 07:56:08WeijieWei魏偉杰Weifeng呂偉鋒YingHan韓穎CaiyunZhang張彩云andDengkeChen諶登科
    Chinese Physics B 2023年9期
    關(guān)鍵詞:登科彩云

    Weijie Wei(魏偉杰), Weifeng Lü(呂偉鋒), Ying Han(韓穎), Caiyun Zhang(張彩云), and Dengke Chen(諶登科)

    School of Microelectronics,Hangzhou Dianzi University,Hangzhou 310018,China

    Keywords: negative capacitance (NC), gate-all-around (GAA), silicon-germanium heterojunction, gate-tosource overlap(SOL)

    1.Introduction

    Currently, reducing the power consumption of complementary metal–oxide semiconductor (CMOS) integrated circuits is an urgent problem that needs to be solved.One way to achieve this is to design CMOS devices with good switching characteristics that are defined by sub-threshold swing (SS).[1]TheSSof a conventional metal–oxide–semiconductor field-effect transistor (MOSFET) cannot be lower than 60 mV/decade due to the Boltzmann limit defined by its conduction mechanism.[2,3]A negative capacitance field-effect transistor (NCFET) can meet this requirement because of the negative capacitance(NC)effect of ferroelectric materials.[4]Due to the NC effect,an NCFET can amplify the surface potential of the channel to increase the channel current.[5]Another promising solution to the aforementioned problem could be to use a tunneling field-effect transistor(TFET),which generates the current by injecting charge carriers from the source into the channel via band-to-band tunneling.[6]TFETs can easily obtain a sub-60 mV/decadeSS.However, the TFETs have a low off-state current (IOFF)and on-state current (ION), which results in poor driving capability.[7]To overcome this limitation,materials with a narrow band gap and high carrier mobility, such as germanium(Ge) and indium arsenide (InAs), could be used to form a heterojunction.A heterojunction can improve the band-toband tunneling rate, thus increasing the channel current.[8,9]For sub-3-nm node devices,replacing the fin-type field-effect transistor with a gate-all-around (GAA) structure can further suppress the short-channel effect because of the improved gate control ability.[10–12]

    In previous studies, NCGAA-TFETs were created by connecting a ferroelectric capacitor in series with a metal gate of a GAA-TFET.[13,14]Similarly, other studies used MATLAB simulations to combine the Landau–Khalatnikov equation with a GAA-TFET device model.[15]These techniques make the NCGAA-TFET ideal because they cannot reflect the ferroelectric material deposition on the oxide layer well.In addition, while depositing several materials between the oxide layer and the gate metal can improve device performance,it can also increase the fabrication complexity.[16]Furthermore,the vertical tunneling rate and tunneling area of an NCTFET can be improved by partially moving the gate to the source,thus increasing the channel current.[17–20]In addition,the gate-to-drain extension can improve the bipolar effect of a double-gate tunneling field-effect transistor.[21]Moreover,the inner gate, outer gate, and gate–source overlap can be used to improve the electrical performance of a device, but this makes its structure complex.[22]Moreover,applying the gatesource overlap to a line TFET can also improve the analog performance.[23]However, many of the TFET structures designed to enhance the channel current use compounds in heterojunctions,which increase the CMOS process complexity.

    In this work,a GAA-TFET is combined with the NC effect, silicon–germanium (SiGe) heterojunction, and gate-tosource overlap(SOL),and a comprehensive investigation and analysis are conducted on the proposed NCGAA-SOL-TFET structure.The proposed structure can effectively increase the driving current and improve electrical performance.In addition,the electrical performance of the device can be easily optimized by adjusting the SOL length(LSOL)and the thickness of the ferroelectric layer(TFE).

    2.Proposed structure design and simulations

    A schematic of an NCGAA-SOL-TFET is presented in Fig.1(a), where the thicknesses of HfO2(TOX) and the ferroelectric layer (TFE) are 1 nm and 4 nm, respectively; the channel length(LG)is 15 nm;the source length(LS)and drain length(LD)are 20 nm;the radii(R)of the source,channel,and drain are 5 nm; and the gate-to-source overlap length (LSOL)is 3 nm.The GAA-TFET is selected as a baseline device and used for performance comparison; its schematic is presented in Fig.1(b).Germanium with a band gap of 0.66 eV is used as the source material,and silicon with a band gap of 1.12 eV is used as the construction material of the channel and drain;thus, a heterojunction is formed between the source and the channel.The doping concentrations of the source, channel,and drain are 1×1020cm-3,1×1015cm-3,and 2×1019cm-3,respectively.The device structural parameters and process parameters are in accordance with the IRDS More Moore 2021 version for a 3-nm node.[24]

    Fig.1.(a) The NCGAA-SOL-TFET with SiGe heterojunction, SOL,and ferroelectric layer;(b)the GAA-TFET as a baseline device.

    Excellent capacitance matching can be achieved whenCtotal?CMOS, and this condition should be considered in device design and optimization.As shown in Fig.2,Ctotalis larger thanCMOS,and peak capacitance occurs at a smallerVGS.This indicates that the ferroelectric layer has exhibited a hysteresis-free NC effect.However,whenVGSis larger thanVDS,Ctotalis less thanCMOS,indicating that the capacitanceCFEdoes not matchCMOS.

    Fig.2.The total capacitance for TFE=4 nm and TFE=0 at TOX=1 nm.

    The channel current in the TFET is mostly generated by the band-to-band tunneling of carriers,which mainly occurs at the heterojunction formed at the interface between the source and the channel.When the conduction band in the channel is lower than the valence band in the source, the probability of carrier tunneling is increased.Thus, carrier tunneling mainly occurs in the region between the valence band of the source and the conduction band of the channel.Under the condition of a uniform electric field,GBTBTdenotes the band-to-band tunneling rate of the carrier, which is derived from the Kane model[30,31]as follows:

    whereAk,Bk, andθare the tunneling parameters of the material;AkandBkare 4×1014cm-3·s-1and 1.9×107V/cm for silicon and 9.1×1016cm-3·s-1and 4.9×106V/cm for germanium, respectively;Eis the electric field intensity under the current tunnel volume; andEgis the band gap.In the technology computer-aided design (TCAD) simulations,the Fermi–Dirac distribution model is used for a high doping concentration, and the hydrodynamic model is employed for nanodevices.The other models used in the TCAD simulations include the carrier high electric field velocity saturation model, the scattering model, the band gap narrowing model under high doping concentration,the SRH recombination model,the Auger recombination model,and the Landau–Khalatnikov ferroelectric equation.In addition, the nonlocal band-to-band tunneling model is used to judge the tunneling area based on the local variation in the energy band.The application of the listed physical models makes simulations conducted in this study more accurate and reliable.In addition,as shown in Fig.3,the simulated transfer characteristics(IDS–VGScurve) of the GAA-TFET are calibrated using previous experimental data.[32]

    Fig.3.Calibration of the IDS–VGS curve using the experimental data.

    3.Results,analysis and discussion

    3.1.Source overlap effect on device performance

    The energy band diagrams of the GAA-TFET in the off state (VGS=0,VDS=0.8 V) are presented in Fig.4(a).In this state,the valence band of the source is lower than the conduction band of the channel.Therefore,the band-to-band tunneling rate is low, and only a few electrons will tunnel into the channel to form the off-state current (IOFF).The energy band in the on state (VGS=1.0 V,VDS=0.8 V), where the valence band of the source is higher than the conduction band of the channel, is presented in Fig.4(b).Thus, a large number of electrons will tunnel into the channel to form the onstate current (ION).The transfer characteristics of the GAASOL-TFET are presented in Fig.5(a), where it can be seen that whenLSOLincreases,IONalso increases.WhenLSOLis larger than 1 nm, the sub-threshold current of the GAASOL-TFET is smaller than that of its GAA-TFET counterpart.However,asLSOLincreases,the increase in the saturation current is reduced.Furthermore, when the gate extends toward the source, the electric field on the left side of the heterojunction increases, as shown in Fig.5(b).Moreover, the energy bands of the source–channel interface and the left side of the source–channel interface bend,which improves the bandto-band tunneling area and tunneling rate, increasing the current.WhenLSOLincreases to 5 nm,the current almost reaches the saturation level.As shown in Fig.6, with the increases inLSOL, the electric field is mainly concentrated on the gate corner edge,which decreases the electric field intensity at the heterojunction center.As a result, the tunneling area and the area of the region with a high tunneling rate stop increasing whenLSOL>5 nm.The band-to-band tunneling generation rate and tunneling area along the central section of the GAASOL-TFET are presented in Fig.7.As shown in Fig.7,due to the effect of the electric field edge, whenLSOLincreases, the area with a high band-to-band tunneling rate is gradually concentrated on the heterojunction surface.This reduces the bandto-band tunneling rate at the heterojunction center so that the channel current stops increasing gradually.In addition, with the energy band bending on the left side of the source–channel interface,the width of the depletion region of the heterojunction increases, thus increasing the total capacitance (CMOS),as shown in Fig.8.The tunneling junction is equivalent to a reverse-biased diode.When the gate voltage is large enough,a large number of carriers will accumulate in the channel,and theCMOSwill be dominated by these carriers.However, the carriers that dominate the current are those that tunnel from the source to the channel.[9]

    Fig.4.Band diagrams of the GAA-TFET and GAA-SOL-TFET:(a)off state;(b)on state.

    Fig.5.(a)Transfer characteristics of the GAA-SOL-TFET at different LSOL values; (b)variations in the electric field intensity of the GAASOL-TFET at different LSOL values.

    Fig.7.The band-to-band generation tunneling and tunneling area of the GAA-SOL-TFET at different LSOL values.

    Therefore,CMOSand channel current are not dominated by the same group of carriers, which is the main difference between the TFET and the MOSFET.As shown in Fig.9,whenLSOLincreases, although theSSof the device gradually increases,it still remains below 60 mV/decade.A steeperIDS–VGScurve indicates a faster device switching speed,indicating a smallerSS.In Fig.5(a), it can be observed that theIDS–VGScurves atLSOL=1 nm andLSOL=2 nm are steeper than that ofLSOL=0.However, atLSOL>2 nm, theIDS–VGScurve becomes flatter than that atLSOL=0.Therefore,atLSOL=1 nm andLSOL=2 nm, theSSis smaller than atLSOL=0, but it becomes larger whenLSOL>2 nm.In addition,the threshold voltage(Vth)increases whenLSOLis less than 4 nm but decreases whenLSOLis larger than 4 nm while still staying lower than that of the baseline device.ConsideringVth,ION/IOFF, andSS, the GAA-SOL-TFET achieves its optimal performance atLSOL=3 nm.

    Fig.8.The total capacitance of the GAA-SOL-TFET versus LSOL.

    Fig.9.The SS value versus LSOL value; when LSOL increases, the SS of the GAA-SOL-TFET increases but remains below 60 mV/decade.The Vth of the GAA-SOL-TFET fluctuates in a small range as LSOL increases.

    3.2.NCGAA-SOL-TFET design optimization

    The variations in the channel surface potential at differentTFEvalues are presented in Fig.10.As shown in Fig.10,the surface potential in the NCGAA-SOL-TFET channel is amplified compared to that of the GAA-SOL-TFET.[33]The total capacitance increases due to the increase inLSOL, which makes the capacitance-matching process more complex.As presented in Fig.10,the potential amplification of the channel surface is almost the same atTFE<4 nm.This indicates that in the NCGAA-SOL-TFET,a largerTFEamplifies the channel surface potential obviously.

    TheIDS–VGScurves of the NCGAA-SOL-TFET at differentTFEvalues are presented in Fig.11(a).As shown in Fig.11(a), in the subthreshold region, theIOFFgradually improves with the increase inTFE,except forTFE=1 nm.However, asTFEincreases, the variation trend of the saturation current becomes non-monotonic withVGSwhenVGS>VDS.WhenTFE<3 nm, the saturation current increases slightly withVGS, while it decreases atTFE=5 nm.AtTFE=4 nm,the saturation current increases monotonically and obviously.The main reason for this can be found using Fig.11(b)and formula(1).WhenVGSis small,the change ofCtotalatTFE=1 nm fluctuates, indicating that the capacitance matching becomes poor.WhenVGSis larger thanVDS, atTFE>2 nm, theCtotalof the NCGAA-SOL-TFET is smaller than that of the GAATFET,which indicates poor capacitance matching.As shown in Fig.12(a),for the NCGAA-SOL-TFET,the changes in theSSandVthvalues show opposite trends whenTFEincreases;namely,theSSfirst decreases and then increases,whereas theVthfirst increases and then decreases.The reason for this change can be observed in Fig.11(a).The results indicate that theIDS–VGScurve is the steepest atTFE=0, so theSSis the smallest atTFE=0.Moreover, theIDS–VGScurves atTFE=1 nm andTFE=5 nm are almost the flattest among all the curves.

    Fig.10.Variations in channel surface potential in the NCGAA-SOLTFET under different TFE values.

    As shown in Fig.12(b), bothIONand the peaktransconductance of the NCGAA-SOL-TFET are improved compared to the other devices,and the peak-transconductance appears at a lower gate voltage.The electrical characteristics in Table 1 show thatIONand the peak-transconductance of the NCGAA-SOL-TFET are 2.32 times and 2.11 times larger than those of the other devices,respectively.In addition,Vthdrops from 0.39 V to 0.31 V.It should be noted that both the NC effect and the SOL can enhance the driving capability,but theSSof the NCGAA-SOL-TFET is slightly larger than that of the GAA-TFET, resulting in a reducedION/IOFF.Therefore,different optimized designs should be used for different performance requirements.The GAA-SOL-TFET is suitable for devices with good switching performance,whereas the NCGAASOL-TFET is suitable for devices with a high driving current and a low threshold voltage.

    Fig.11.(a)The IDS of the NCGAA-SOL-TFET versus VGS under different TFE values;(b)Ctotal–VGS characteristics of the NCGAA-SOL-TFET at LSOL of 3 nm and TFE of 0,1 nm,2 nm,3 nm,4 nm,and 5 nm.

    Fig.12.(a)Changing trends of the SS and Vth at different TFE values;(b)IDS–VGS and Gm–VGS curves of the GAA-TFET,GAA-SOL-TFET,NCGAA-TFET,and NCGAA-SOL-TFET.

    Table 1.Electrical performance comparison results of different devices.

    4.Conclusion

    This study proposes the NCGAA-SOL-TFET structure and performs a comprehensive investigation of the proposed structure via TCAD simulations.The results indicate that the NC effect on the silicon–germanium heterojunction and the gate-to-source overlap increase the band-to-band tunneling rate and tunneling area of the source–channel interface,increasing the device current.Thus,in the proposed structure,the problem of the insufficient driving capability of the TFET is effectively solved.In the NCGAA-SOL-TFET structure,changing the gate-to-source overlap length will affect the NC matching and dynamic response characteristics.Therefore,the SOL length and the ferroelectric layer thickness should be considered in the device design.In addition, the proposed structure can improve the driving ability of the GAA-TFET by design optimization.However,the improvement in driving ability may be at the cost of sub-threshold leakage, although the sub-threshold swing of the NCGAA-SOL-TFET is still less than 60 mV/decade.In summary,the proposed NCGAASOL-TFET can achieve both high driving ability and low subthreshold swing,which makes it suitable for future low-power circuit applications.

    Acknowledgements

    The research presented in this work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY22F040001), the National Natural Science Foundation of China(Grant No.62071160),and the Graduate Scientific Research Foundation of Hangzhou Dianzi University.

    猜你喜歡
    登科彩云
    Single flow treatment degradation of antibiotics in water using fallingfilm dielectric barrier discharge
    曹陸軍攝影作品
    大眾文藝(2022年19期)2022-10-19 08:18:16
    競技足球比賽技術(shù)制勝因素研究
    彩云之南
    Optical scheme to demonstrate state-independent quantum contextuality
    一路彩云奔小康
    香格里拉(2021年2期)2021-07-28 06:50:48
    當(dāng)時明月在,曾照彩云歸
    海峽姐妹(2020年5期)2020-06-22 08:26:08
    彩云問
    民族音樂(2019年3期)2019-08-14 01:05:16
    趙樹理“折磨”年輕人
    彩云飛
    寶藏(2017年7期)2017-08-09 08:15:17
    美国免费a级毛片| 免费无遮挡裸体视频| 国产精品电影一区二区三区| 可以在线观看毛片的网站| 亚洲一区高清亚洲精品| 国产片内射在线| 香蕉国产在线看| 国产亚洲精品av在线| 国产成人av激情在线播放| 国产欧美日韩综合在线一区二区| 操出白浆在线播放| 亚洲第一欧美日韩一区二区三区| 老司机午夜福利在线观看视频| x7x7x7水蜜桃| 久久久久国内视频| 男人的好看免费观看在线视频 | 日韩大尺度精品在线看网址 | 久久精品人人爽人人爽视色| 淫秽高清视频在线观看| 日韩视频一区二区在线观看| 亚洲人成77777在线视频| 两个人视频免费观看高清| 久久中文字幕人妻熟女| 丝袜美腿诱惑在线| 国产精品爽爽va在线观看网站 | 亚洲第一青青草原| 男女床上黄色一级片免费看| 久久久久久久午夜电影| 久久精品人人爽人人爽视色| 国产精品av久久久久免费| 精品国产乱码久久久久久男人| 99riav亚洲国产免费| 法律面前人人平等表现在哪些方面| 亚洲专区字幕在线| 日本 av在线| 免费人成视频x8x8入口观看| 日韩欧美在线二视频| 欧美激情久久久久久爽电影 | 日韩欧美国产在线观看| 身体一侧抽搐| 国产一区二区在线av高清观看| 91av网站免费观看| 久久精品91无色码中文字幕| 桃红色精品国产亚洲av| 三级毛片av免费| 亚洲成a人片在线一区二区| 亚洲av电影不卡..在线观看| 成熟少妇高潮喷水视频| 免费久久久久久久精品成人欧美视频| 亚洲国产精品久久男人天堂| 久久热在线av| 亚洲中文日韩欧美视频| 午夜福利影视在线免费观看| av免费在线观看网站| av天堂久久9| 波多野结衣巨乳人妻| 在线十欧美十亚洲十日本专区| 日本五十路高清| 91成年电影在线观看| 精品一区二区三区四区五区乱码| 久久精品亚洲熟妇少妇任你| 精品国产美女av久久久久小说| 午夜福利在线观看吧| svipshipincom国产片| 免费无遮挡裸体视频| 在线观看免费视频网站a站| 亚洲黑人精品在线| 天堂影院成人在线观看| 每晚都被弄得嗷嗷叫到高潮| 嫩草影院精品99| 最新在线观看一区二区三区| 岛国在线观看网站| 国产欧美日韩一区二区三| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 精品电影一区二区在线| 欧美激情高清一区二区三区| 久久伊人香网站| 亚洲欧美精品综合一区二区三区| www.999成人在线观看| 两性夫妻黄色片| 91老司机精品| 午夜福利高清视频| 日韩欧美免费精品| 多毛熟女@视频| 麻豆成人av在线观看| 亚洲成人国产一区在线观看| 91国产中文字幕| 国产高清videossex| 欧美成人午夜精品| 美女高潮到喷水免费观看| 国产麻豆成人av免费视频| 9191精品国产免费久久| 国产又色又爽无遮挡免费看| 国产精华一区二区三区| 久久久久久久久中文| 99国产极品粉嫩在线观看| 亚洲熟妇熟女久久| 亚洲黑人精品在线| 麻豆国产av国片精品| 欧美日韩福利视频一区二区| 欧美丝袜亚洲另类 | 人人妻人人澡人人看| 国产亚洲欧美精品永久| 免费观看精品视频网站| 欧美乱色亚洲激情| 黄色 视频免费看| 少妇被粗大的猛进出69影院| 成在线人永久免费视频| 亚洲人成伊人成综合网2020| 免费无遮挡裸体视频| 丰满的人妻完整版| 一进一出抽搐动态| 欧美日韩精品网址| 国产午夜精品久久久久久| 一进一出抽搐动态| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 久久午夜亚洲精品久久| 又黄又粗又硬又大视频| 国产一区在线观看成人免费| 两性夫妻黄色片| 一级毛片高清免费大全| 午夜a级毛片| 成人手机av| 亚洲精品av麻豆狂野| 涩涩av久久男人的天堂| 亚洲精品久久国产高清桃花| 黑人操中国人逼视频| 国产在线观看jvid| 午夜精品在线福利| 免费在线观看视频国产中文字幕亚洲| 亚洲精品久久成人aⅴ小说| av超薄肉色丝袜交足视频| 夜夜夜夜夜久久久久| 成人18禁在线播放| netflix在线观看网站| 亚洲一区二区三区色噜噜| 国产一区在线观看成人免费| 黑丝袜美女国产一区| 午夜精品在线福利| www.熟女人妻精品国产| 天天一区二区日本电影三级 | 国内精品久久久久久久电影| 午夜免费鲁丝| 亚洲欧美激情在线| 两个人免费观看高清视频| 精品国产乱码久久久久久男人| 老司机午夜十八禁免费视频| 欧美色欧美亚洲另类二区 | 久久九九热精品免费| 非洲黑人性xxxx精品又粗又长| 欧美久久黑人一区二区| 亚洲欧美激情在线| 久久精品国产亚洲av香蕉五月| 久久精品国产亚洲av高清一级| 亚洲人成伊人成综合网2020| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 国产一卡二卡三卡精品| 成人免费观看视频高清| 欧美成狂野欧美在线观看| 国产片内射在线| 中文字幕精品免费在线观看视频| 国产精品影院久久| 欧美激情极品国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| 国产亚洲欧美98| 黄片播放在线免费| av免费在线观看网站| 亚洲成人精品中文字幕电影| 国产成年人精品一区二区| 国产亚洲欧美在线一区二区| 一级片免费观看大全| 国产极品粉嫩免费观看在线| 欧美大码av| 老熟妇乱子伦视频在线观看| 99re在线观看精品视频| 亚洲av电影在线进入| 在线观看午夜福利视频| 国产97色在线日韩免费| 久久人妻av系列| 欧美精品啪啪一区二区三区| 亚洲国产高清在线一区二区三 | 看黄色毛片网站| 一二三四在线观看免费中文在| 丁香欧美五月| 亚洲熟妇熟女久久| 免费看十八禁软件| 可以免费在线观看a视频的电影网站| 久久 成人 亚洲| 999久久久精品免费观看国产| 国产国语露脸激情在线看| 波多野结衣巨乳人妻| 久久人人97超碰香蕉20202| 国产一区二区三区综合在线观看| 午夜精品在线福利| 国内精品久久久久精免费| 亚洲中文字幕一区二区三区有码在线看 | 欧美日本亚洲视频在线播放| 大陆偷拍与自拍| 最新在线观看一区二区三区| 国产激情欧美一区二区| 两个人免费观看高清视频| 女警被强在线播放| 麻豆成人av在线观看| 成在线人永久免费视频| av天堂久久9| 最好的美女福利视频网| 欧美人与性动交α欧美精品济南到| 国产伦一二天堂av在线观看| 欧美激情极品国产一区二区三区| 91大片在线观看| 国产亚洲精品第一综合不卡| 精品欧美国产一区二区三| 又黄又粗又硬又大视频| 成人亚洲精品一区在线观看| 高清在线国产一区| 日本欧美视频一区| 97超级碰碰碰精品色视频在线观看| 在线观看免费视频日本深夜| 18禁美女被吸乳视频| 免费观看精品视频网站| 国产一卡二卡三卡精品| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣高清无吗| 久久久久国内视频| www日本在线高清视频| 一级a爱片免费观看的视频| 成人亚洲精品一区在线观看| 国产麻豆成人av免费视频| 精品国产乱子伦一区二区三区| 身体一侧抽搐| 国产一区二区在线av高清观看| 人人妻人人澡人人看| 搡老熟女国产l中国老女人| 精品人妻1区二区| 黄频高清免费视频| 色av中文字幕| 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 18美女黄网站色大片免费观看| 国产片内射在线| 亚洲精品在线美女| videosex国产| 欧美黄色淫秽网站| 岛国在线观看网站| 欧美老熟妇乱子伦牲交| 欧美另类亚洲清纯唯美| 亚洲国产精品999在线| tocl精华| 亚洲电影在线观看av| 国产亚洲精品久久久久5区| 久久青草综合色| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 久久久久久人人人人人| 91国产中文字幕| 在线十欧美十亚洲十日本专区| 国产精品九九99| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 91麻豆av在线| 亚洲国产精品999在线| 如日韩欧美国产精品一区二区三区| 可以在线观看毛片的网站| 亚洲精品一区av在线观看| 亚洲第一青青草原| 男人的好看免费观看在线视频 | 男女下面插进去视频免费观看| 校园春色视频在线观看| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 女人精品久久久久毛片| 精品福利观看| 亚洲,欧美精品.| 国产欧美日韩综合在线一区二区| 国产熟女xx| 亚洲第一av免费看| 中国美女看黄片| 国产精品野战在线观看| 欧美黑人欧美精品刺激| 最新美女视频免费是黄的| 97人妻精品一区二区三区麻豆 | 午夜久久久在线观看| 日本五十路高清| 99香蕉大伊视频| 国产视频一区二区在线看| 男女下面插进去视频免费观看| 亚洲午夜理论影院| 琪琪午夜伦伦电影理论片6080| 精品第一国产精品| 1024香蕉在线观看| 亚洲天堂国产精品一区在线| 国产高清激情床上av| 欧美中文日本在线观看视频| 人人妻人人澡欧美一区二区 | 日韩 欧美 亚洲 中文字幕| 精品国产一区二区久久| 国产欧美日韩一区二区三区在线| av福利片在线| 欧美一区二区精品小视频在线| 嫁个100分男人电影在线观看| 美女国产高潮福利片在线看| 两个人视频免费观看高清| 久久精品国产综合久久久| 久久久水蜜桃国产精品网| 亚洲天堂国产精品一区在线| 午夜免费观看网址| 高清在线国产一区| 免费av毛片视频| 亚洲男人的天堂狠狠| 波多野结衣av一区二区av| 精品无人区乱码1区二区| 丝袜在线中文字幕| 欧美色视频一区免费| 亚洲成人免费电影在线观看| 在线观看午夜福利视频| 欧美成人午夜精品| 国产精华一区二区三区| 精品国产超薄肉色丝袜足j| 麻豆av在线久日| 亚洲色图av天堂| 99国产精品免费福利视频| 免费不卡黄色视频| www日本在线高清视频| 男女床上黄色一级片免费看| 国产亚洲欧美98| 在线观看免费视频日本深夜| 视频区欧美日本亚洲| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 欧美 日韩 在线 免费| 黑丝袜美女国产一区| 国产高清videossex| 国产精品久久久久久亚洲av鲁大| 母亲3免费完整高清在线观看| 精品国内亚洲2022精品成人| 亚洲国产毛片av蜜桃av| 一级片免费观看大全| 国产1区2区3区精品| 亚洲国产看品久久| 可以在线观看的亚洲视频| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品无人区| 欧美精品啪啪一区二区三区| 人成视频在线观看免费观看| 国产精品免费视频内射| 十八禁人妻一区二区| 在线十欧美十亚洲十日本专区| 久久人妻熟女aⅴ| 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 99国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产成人精品久久二区二区免费| or卡值多少钱| 欧美乱色亚洲激情| 高清黄色对白视频在线免费看| 欧美绝顶高潮抽搐喷水| 搡老妇女老女人老熟妇| 韩国av一区二区三区四区| 久久久精品欧美日韩精品| 国产成人精品久久二区二区免费| 俄罗斯特黄特色一大片| 天天一区二区日本电影三级 | 国产视频一区二区在线看| 18美女黄网站色大片免费观看| 变态另类成人亚洲欧美熟女 | 老熟妇仑乱视频hdxx| 99在线视频只有这里精品首页| 色哟哟哟哟哟哟| 国产av又大| 欧美日韩黄片免| 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| 亚洲成a人片在线一区二区| 亚洲少妇的诱惑av| 99久久精品国产亚洲精品| 国产三级在线视频| 久久精品国产99精品国产亚洲性色 | 美女高潮到喷水免费观看| 久久 成人 亚洲| 久久久国产精品麻豆| 亚洲av成人一区二区三| 搡老妇女老女人老熟妇| 国产精品99久久99久久久不卡| 久久精品91无色码中文字幕| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 午夜视频精品福利| 一区二区三区精品91| 熟妇人妻久久中文字幕3abv| 深夜精品福利| 老司机午夜十八禁免费视频| 亚洲少妇的诱惑av| 精品午夜福利视频在线观看一区| 日本欧美视频一区| 国产片内射在线| 亚洲第一青青草原| 一级毛片精品| 成人亚洲精品一区在线观看| 亚洲专区字幕在线| 母亲3免费完整高清在线观看| 久热爱精品视频在线9| 麻豆av在线久日| 精品少妇一区二区三区视频日本电影| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 香蕉国产在线看| ponron亚洲| 很黄的视频免费| 国产亚洲精品第一综合不卡| 亚洲精品国产一区二区精华液| 在线永久观看黄色视频| 中文字幕久久专区| 国产精品自产拍在线观看55亚洲| 久久久久国产精品人妻aⅴ院| 亚洲黑人精品在线| 动漫黄色视频在线观看| bbb黄色大片| 国产野战对白在线观看| 法律面前人人平等表现在哪些方面| 亚洲视频免费观看视频| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 色尼玛亚洲综合影院| 最好的美女福利视频网| 免费在线观看黄色视频的| 日韩精品青青久久久久久| 三级毛片av免费| 波多野结衣av一区二区av| 亚洲男人的天堂狠狠| 91麻豆精品激情在线观看国产| av天堂久久9| 88av欧美| 9191精品国产免费久久| 色播亚洲综合网| 亚洲专区国产一区二区| 在线观看免费日韩欧美大片| www.自偷自拍.com| 成人三级做爰电影| 国产一卡二卡三卡精品| 真人做人爱边吃奶动态| 国产免费男女视频| 夜夜爽天天搞| 老汉色∧v一级毛片| 久久久精品国产亚洲av高清涩受| 99国产极品粉嫩在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产高清激情床上av| 两个人看的免费小视频| 精品久久久久久久毛片微露脸| 免费在线观看视频国产中文字幕亚洲| 久久精品91无色码中文字幕| 国产高清视频在线播放一区| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 黄片播放在线免费| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看 | 亚洲aⅴ乱码一区二区在线播放 | 少妇 在线观看| 一区在线观看完整版| 久久精品91蜜桃| 免费看十八禁软件| 国产精品99久久99久久久不卡| 两个人视频免费观看高清| 精品少妇一区二区三区视频日本电影| 在线观看免费午夜福利视频| 日本欧美视频一区| 精品久久久久久久久久免费视频| 极品教师在线免费播放| 黄色成人免费大全| 免费在线观看黄色视频的| 在线视频色国产色| 国产日韩一区二区三区精品不卡| videosex国产| 成年版毛片免费区| 午夜精品久久久久久毛片777| 亚洲少妇的诱惑av| 国产片内射在线| 国产一区二区激情短视频| 超碰成人久久| 国产色视频综合| 国产av在哪里看| 亚洲国产精品久久男人天堂| 国产午夜精品久久久久久| 老司机深夜福利视频在线观看| 亚洲国产欧美一区二区综合| 亚洲国产欧美日韩在线播放| 可以免费在线观看a视频的电影网站| 午夜免费观看网址| 精品卡一卡二卡四卡免费| 亚洲黑人精品在线| 纯流量卡能插随身wifi吗| 久久久久国产一级毛片高清牌| 久久精品国产清高在天天线| 99久久99久久久精品蜜桃| 电影成人av| ponron亚洲| 老司机福利观看| 99国产精品免费福利视频| 香蕉久久夜色| 在线观看午夜福利视频| 国产精品久久久久久亚洲av鲁大| 国产精品 欧美亚洲| 女生性感内裤真人,穿戴方法视频| 国产精品亚洲美女久久久| 丝袜人妻中文字幕| 女人高潮潮喷娇喘18禁视频| 黄色丝袜av网址大全| 久久久久久国产a免费观看| 日韩精品中文字幕看吧| 久久香蕉激情| 国产一区在线观看成人免费| 久久青草综合色| 亚洲七黄色美女视频| 国产一级毛片七仙女欲春2 | 欧美 亚洲 国产 日韩一| 午夜福利视频1000在线观看 | 精品国产一区二区久久| 久久久久亚洲av毛片大全| 操美女的视频在线观看| 欧美av亚洲av综合av国产av| 国产单亲对白刺激| 亚洲国产毛片av蜜桃av| www国产在线视频色| 免费少妇av软件| 亚洲精品国产一区二区精华液| 精品一品国产午夜福利视频| 黄色丝袜av网址大全| 99热只有精品国产| 无限看片的www在线观看| 黄片大片在线免费观看| 亚洲自拍偷在线| 久久国产精品人妻蜜桃| 制服丝袜大香蕉在线| 国产99白浆流出| 国产97色在线日韩免费| 国产成年人精品一区二区| 亚洲自偷自拍图片 自拍| 久久九九热精品免费| 国产在线观看jvid| 国产精品电影一区二区三区| 久久亚洲真实| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品国产欧美久久久| 国产成人精品在线电影| 久久香蕉精品热| 亚洲免费av在线视频| 在线免费观看的www视频| 国产免费男女视频| 欧美人与性动交α欧美精品济南到| 美女午夜性视频免费| 日日摸夜夜添夜夜添小说| 男女午夜视频在线观看| 两个人看的免费小视频| 51午夜福利影视在线观看| 少妇粗大呻吟视频| 多毛熟女@视频| 久久久精品欧美日韩精品| 日韩中文字幕欧美一区二区| 久久草成人影院| АⅤ资源中文在线天堂| 老熟妇乱子伦视频在线观看| 美女 人体艺术 gogo| av视频免费观看在线观看| 搡老熟女国产l中国老女人| 欧美成狂野欧美在线观看| 国产又色又爽无遮挡免费看| 精品高清国产在线一区| 午夜免费激情av| 97人妻精品一区二区三区麻豆 | 欧美精品啪啪一区二区三区| 国产精品美女特级片免费视频播放器 | 欧美色欧美亚洲另类二区 | 好看av亚洲va欧美ⅴa在| 亚洲成av人片免费观看| 国产又色又爽无遮挡免费看| 久久久久久久久中文| 黄片大片在线免费观看| 啦啦啦免费观看视频1| 成人精品一区二区免费| a在线观看视频网站| 国产精品久久久av美女十八| 丁香六月欧美| 一级,二级,三级黄色视频| 久久人人精品亚洲av| 淫妇啪啪啪对白视频| 免费搜索国产男女视频| 免费看a级黄色片| 怎么达到女性高潮| 色精品久久人妻99蜜桃| 久久久国产欧美日韩av| 国产精品电影一区二区三区| 欧美成人一区二区免费高清观看 | av天堂久久9| а√天堂www在线а√下载| 久久人人97超碰香蕉20202| 国产日韩一区二区三区精品不卡| 欧美成人性av电影在线观看| 自线自在国产av| 亚洲情色 制服丝袜| 亚洲国产精品成人综合色| 此物有八面人人有两片| 淫妇啪啪啪对白视频| 国产精品 国内视频| 无遮挡黄片免费观看| 国产成人免费无遮挡视频| 18美女黄网站色大片免费观看| 在线视频色国产色| 麻豆一二三区av精品| 男人的好看免费观看在线视频 | 日日爽夜夜爽网站| 亚洲三区欧美一区|