• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study

    2023-10-11 07:56:08WeijieWei魏偉杰Weifeng呂偉鋒YingHan韓穎CaiyunZhang張彩云andDengkeChen諶登科
    Chinese Physics B 2023年9期
    關(guān)鍵詞:登科彩云

    Weijie Wei(魏偉杰), Weifeng Lü(呂偉鋒), Ying Han(韓穎), Caiyun Zhang(張彩云), and Dengke Chen(諶登科)

    School of Microelectronics,Hangzhou Dianzi University,Hangzhou 310018,China

    Keywords: negative capacitance (NC), gate-all-around (GAA), silicon-germanium heterojunction, gate-tosource overlap(SOL)

    1.Introduction

    Currently, reducing the power consumption of complementary metal–oxide semiconductor (CMOS) integrated circuits is an urgent problem that needs to be solved.One way to achieve this is to design CMOS devices with good switching characteristics that are defined by sub-threshold swing (SS).[1]TheSSof a conventional metal–oxide–semiconductor field-effect transistor (MOSFET) cannot be lower than 60 mV/decade due to the Boltzmann limit defined by its conduction mechanism.[2,3]A negative capacitance field-effect transistor (NCFET) can meet this requirement because of the negative capacitance(NC)effect of ferroelectric materials.[4]Due to the NC effect,an NCFET can amplify the surface potential of the channel to increase the channel current.[5]Another promising solution to the aforementioned problem could be to use a tunneling field-effect transistor(TFET),which generates the current by injecting charge carriers from the source into the channel via band-to-band tunneling.[6]TFETs can easily obtain a sub-60 mV/decadeSS.However, the TFETs have a low off-state current (IOFF)and on-state current (ION), which results in poor driving capability.[7]To overcome this limitation,materials with a narrow band gap and high carrier mobility, such as germanium(Ge) and indium arsenide (InAs), could be used to form a heterojunction.A heterojunction can improve the band-toband tunneling rate, thus increasing the channel current.[8,9]For sub-3-nm node devices,replacing the fin-type field-effect transistor with a gate-all-around (GAA) structure can further suppress the short-channel effect because of the improved gate control ability.[10–12]

    In previous studies, NCGAA-TFETs were created by connecting a ferroelectric capacitor in series with a metal gate of a GAA-TFET.[13,14]Similarly, other studies used MATLAB simulations to combine the Landau–Khalatnikov equation with a GAA-TFET device model.[15]These techniques make the NCGAA-TFET ideal because they cannot reflect the ferroelectric material deposition on the oxide layer well.In addition, while depositing several materials between the oxide layer and the gate metal can improve device performance,it can also increase the fabrication complexity.[16]Furthermore,the vertical tunneling rate and tunneling area of an NCTFET can be improved by partially moving the gate to the source,thus increasing the channel current.[17–20]In addition,the gate-to-drain extension can improve the bipolar effect of a double-gate tunneling field-effect transistor.[21]Moreover,the inner gate, outer gate, and gate–source overlap can be used to improve the electrical performance of a device, but this makes its structure complex.[22]Moreover,applying the gatesource overlap to a line TFET can also improve the analog performance.[23]However, many of the TFET structures designed to enhance the channel current use compounds in heterojunctions,which increase the CMOS process complexity.

    In this work,a GAA-TFET is combined with the NC effect, silicon–germanium (SiGe) heterojunction, and gate-tosource overlap(SOL),and a comprehensive investigation and analysis are conducted on the proposed NCGAA-SOL-TFET structure.The proposed structure can effectively increase the driving current and improve electrical performance.In addition,the electrical performance of the device can be easily optimized by adjusting the SOL length(LSOL)and the thickness of the ferroelectric layer(TFE).

    2.Proposed structure design and simulations

    A schematic of an NCGAA-SOL-TFET is presented in Fig.1(a), where the thicknesses of HfO2(TOX) and the ferroelectric layer (TFE) are 1 nm and 4 nm, respectively; the channel length(LG)is 15 nm;the source length(LS)and drain length(LD)are 20 nm;the radii(R)of the source,channel,and drain are 5 nm; and the gate-to-source overlap length (LSOL)is 3 nm.The GAA-TFET is selected as a baseline device and used for performance comparison; its schematic is presented in Fig.1(b).Germanium with a band gap of 0.66 eV is used as the source material,and silicon with a band gap of 1.12 eV is used as the construction material of the channel and drain;thus, a heterojunction is formed between the source and the channel.The doping concentrations of the source, channel,and drain are 1×1020cm-3,1×1015cm-3,and 2×1019cm-3,respectively.The device structural parameters and process parameters are in accordance with the IRDS More Moore 2021 version for a 3-nm node.[24]

    Fig.1.(a) The NCGAA-SOL-TFET with SiGe heterojunction, SOL,and ferroelectric layer;(b)the GAA-TFET as a baseline device.

    Excellent capacitance matching can be achieved whenCtotal?CMOS, and this condition should be considered in device design and optimization.As shown in Fig.2,Ctotalis larger thanCMOS,and peak capacitance occurs at a smallerVGS.This indicates that the ferroelectric layer has exhibited a hysteresis-free NC effect.However,whenVGSis larger thanVDS,Ctotalis less thanCMOS,indicating that the capacitanceCFEdoes not matchCMOS.

    Fig.2.The total capacitance for TFE=4 nm and TFE=0 at TOX=1 nm.

    The channel current in the TFET is mostly generated by the band-to-band tunneling of carriers,which mainly occurs at the heterojunction formed at the interface between the source and the channel.When the conduction band in the channel is lower than the valence band in the source, the probability of carrier tunneling is increased.Thus, carrier tunneling mainly occurs in the region between the valence band of the source and the conduction band of the channel.Under the condition of a uniform electric field,GBTBTdenotes the band-to-band tunneling rate of the carrier, which is derived from the Kane model[30,31]as follows:

    whereAk,Bk, andθare the tunneling parameters of the material;AkandBkare 4×1014cm-3·s-1and 1.9×107V/cm for silicon and 9.1×1016cm-3·s-1and 4.9×106V/cm for germanium, respectively;Eis the electric field intensity under the current tunnel volume; andEgis the band gap.In the technology computer-aided design (TCAD) simulations,the Fermi–Dirac distribution model is used for a high doping concentration, and the hydrodynamic model is employed for nanodevices.The other models used in the TCAD simulations include the carrier high electric field velocity saturation model, the scattering model, the band gap narrowing model under high doping concentration,the SRH recombination model,the Auger recombination model,and the Landau–Khalatnikov ferroelectric equation.In addition, the nonlocal band-to-band tunneling model is used to judge the tunneling area based on the local variation in the energy band.The application of the listed physical models makes simulations conducted in this study more accurate and reliable.In addition,as shown in Fig.3,the simulated transfer characteristics(IDS–VGScurve) of the GAA-TFET are calibrated using previous experimental data.[32]

    Fig.3.Calibration of the IDS–VGS curve using the experimental data.

    3.Results,analysis and discussion

    3.1.Source overlap effect on device performance

    The energy band diagrams of the GAA-TFET in the off state (VGS=0,VDS=0.8 V) are presented in Fig.4(a).In this state,the valence band of the source is lower than the conduction band of the channel.Therefore,the band-to-band tunneling rate is low, and only a few electrons will tunnel into the channel to form the off-state current (IOFF).The energy band in the on state (VGS=1.0 V,VDS=0.8 V), where the valence band of the source is higher than the conduction band of the channel, is presented in Fig.4(b).Thus, a large number of electrons will tunnel into the channel to form the onstate current (ION).The transfer characteristics of the GAASOL-TFET are presented in Fig.5(a), where it can be seen that whenLSOLincreases,IONalso increases.WhenLSOLis larger than 1 nm, the sub-threshold current of the GAASOL-TFET is smaller than that of its GAA-TFET counterpart.However,asLSOLincreases,the increase in the saturation current is reduced.Furthermore, when the gate extends toward the source, the electric field on the left side of the heterojunction increases, as shown in Fig.5(b).Moreover, the energy bands of the source–channel interface and the left side of the source–channel interface bend,which improves the bandto-band tunneling area and tunneling rate, increasing the current.WhenLSOLincreases to 5 nm,the current almost reaches the saturation level.As shown in Fig.6, with the increases inLSOL, the electric field is mainly concentrated on the gate corner edge,which decreases the electric field intensity at the heterojunction center.As a result, the tunneling area and the area of the region with a high tunneling rate stop increasing whenLSOL>5 nm.The band-to-band tunneling generation rate and tunneling area along the central section of the GAASOL-TFET are presented in Fig.7.As shown in Fig.7,due to the effect of the electric field edge, whenLSOLincreases, the area with a high band-to-band tunneling rate is gradually concentrated on the heterojunction surface.This reduces the bandto-band tunneling rate at the heterojunction center so that the channel current stops increasing gradually.In addition, with the energy band bending on the left side of the source–channel interface,the width of the depletion region of the heterojunction increases, thus increasing the total capacitance (CMOS),as shown in Fig.8.The tunneling junction is equivalent to a reverse-biased diode.When the gate voltage is large enough,a large number of carriers will accumulate in the channel,and theCMOSwill be dominated by these carriers.However, the carriers that dominate the current are those that tunnel from the source to the channel.[9]

    Fig.4.Band diagrams of the GAA-TFET and GAA-SOL-TFET:(a)off state;(b)on state.

    Fig.5.(a)Transfer characteristics of the GAA-SOL-TFET at different LSOL values; (b)variations in the electric field intensity of the GAASOL-TFET at different LSOL values.

    Fig.7.The band-to-band generation tunneling and tunneling area of the GAA-SOL-TFET at different LSOL values.

    Therefore,CMOSand channel current are not dominated by the same group of carriers, which is the main difference between the TFET and the MOSFET.As shown in Fig.9,whenLSOLincreases, although theSSof the device gradually increases,it still remains below 60 mV/decade.A steeperIDS–VGScurve indicates a faster device switching speed,indicating a smallerSS.In Fig.5(a), it can be observed that theIDS–VGScurves atLSOL=1 nm andLSOL=2 nm are steeper than that ofLSOL=0.However, atLSOL>2 nm, theIDS–VGScurve becomes flatter than that atLSOL=0.Therefore,atLSOL=1 nm andLSOL=2 nm, theSSis smaller than atLSOL=0, but it becomes larger whenLSOL>2 nm.In addition,the threshold voltage(Vth)increases whenLSOLis less than 4 nm but decreases whenLSOLis larger than 4 nm while still staying lower than that of the baseline device.ConsideringVth,ION/IOFF, andSS, the GAA-SOL-TFET achieves its optimal performance atLSOL=3 nm.

    Fig.8.The total capacitance of the GAA-SOL-TFET versus LSOL.

    Fig.9.The SS value versus LSOL value; when LSOL increases, the SS of the GAA-SOL-TFET increases but remains below 60 mV/decade.The Vth of the GAA-SOL-TFET fluctuates in a small range as LSOL increases.

    3.2.NCGAA-SOL-TFET design optimization

    The variations in the channel surface potential at differentTFEvalues are presented in Fig.10.As shown in Fig.10,the surface potential in the NCGAA-SOL-TFET channel is amplified compared to that of the GAA-SOL-TFET.[33]The total capacitance increases due to the increase inLSOL, which makes the capacitance-matching process more complex.As presented in Fig.10,the potential amplification of the channel surface is almost the same atTFE<4 nm.This indicates that in the NCGAA-SOL-TFET,a largerTFEamplifies the channel surface potential obviously.

    TheIDS–VGScurves of the NCGAA-SOL-TFET at differentTFEvalues are presented in Fig.11(a).As shown in Fig.11(a), in the subthreshold region, theIOFFgradually improves with the increase inTFE,except forTFE=1 nm.However, asTFEincreases, the variation trend of the saturation current becomes non-monotonic withVGSwhenVGS>VDS.WhenTFE<3 nm, the saturation current increases slightly withVGS, while it decreases atTFE=5 nm.AtTFE=4 nm,the saturation current increases monotonically and obviously.The main reason for this can be found using Fig.11(b)and formula(1).WhenVGSis small,the change ofCtotalatTFE=1 nm fluctuates, indicating that the capacitance matching becomes poor.WhenVGSis larger thanVDS, atTFE>2 nm, theCtotalof the NCGAA-SOL-TFET is smaller than that of the GAATFET,which indicates poor capacitance matching.As shown in Fig.12(a),for the NCGAA-SOL-TFET,the changes in theSSandVthvalues show opposite trends whenTFEincreases;namely,theSSfirst decreases and then increases,whereas theVthfirst increases and then decreases.The reason for this change can be observed in Fig.11(a).The results indicate that theIDS–VGScurve is the steepest atTFE=0, so theSSis the smallest atTFE=0.Moreover, theIDS–VGScurves atTFE=1 nm andTFE=5 nm are almost the flattest among all the curves.

    Fig.10.Variations in channel surface potential in the NCGAA-SOLTFET under different TFE values.

    As shown in Fig.12(b), bothIONand the peaktransconductance of the NCGAA-SOL-TFET are improved compared to the other devices,and the peak-transconductance appears at a lower gate voltage.The electrical characteristics in Table 1 show thatIONand the peak-transconductance of the NCGAA-SOL-TFET are 2.32 times and 2.11 times larger than those of the other devices,respectively.In addition,Vthdrops from 0.39 V to 0.31 V.It should be noted that both the NC effect and the SOL can enhance the driving capability,but theSSof the NCGAA-SOL-TFET is slightly larger than that of the GAA-TFET, resulting in a reducedION/IOFF.Therefore,different optimized designs should be used for different performance requirements.The GAA-SOL-TFET is suitable for devices with good switching performance,whereas the NCGAASOL-TFET is suitable for devices with a high driving current and a low threshold voltage.

    Fig.11.(a)The IDS of the NCGAA-SOL-TFET versus VGS under different TFE values;(b)Ctotal–VGS characteristics of the NCGAA-SOL-TFET at LSOL of 3 nm and TFE of 0,1 nm,2 nm,3 nm,4 nm,and 5 nm.

    Fig.12.(a)Changing trends of the SS and Vth at different TFE values;(b)IDS–VGS and Gm–VGS curves of the GAA-TFET,GAA-SOL-TFET,NCGAA-TFET,and NCGAA-SOL-TFET.

    Table 1.Electrical performance comparison results of different devices.

    4.Conclusion

    This study proposes the NCGAA-SOL-TFET structure and performs a comprehensive investigation of the proposed structure via TCAD simulations.The results indicate that the NC effect on the silicon–germanium heterojunction and the gate-to-source overlap increase the band-to-band tunneling rate and tunneling area of the source–channel interface,increasing the device current.Thus,in the proposed structure,the problem of the insufficient driving capability of the TFET is effectively solved.In the NCGAA-SOL-TFET structure,changing the gate-to-source overlap length will affect the NC matching and dynamic response characteristics.Therefore,the SOL length and the ferroelectric layer thickness should be considered in the device design.In addition, the proposed structure can improve the driving ability of the GAA-TFET by design optimization.However,the improvement in driving ability may be at the cost of sub-threshold leakage, although the sub-threshold swing of the NCGAA-SOL-TFET is still less than 60 mV/decade.In summary,the proposed NCGAASOL-TFET can achieve both high driving ability and low subthreshold swing,which makes it suitable for future low-power circuit applications.

    Acknowledgements

    The research presented in this work was supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY22F040001), the National Natural Science Foundation of China(Grant No.62071160),and the Graduate Scientific Research Foundation of Hangzhou Dianzi University.

    猜你喜歡
    登科彩云
    Single flow treatment degradation of antibiotics in water using fallingfilm dielectric barrier discharge
    曹陸軍攝影作品
    大眾文藝(2022年19期)2022-10-19 08:18:16
    競技足球比賽技術(shù)制勝因素研究
    彩云之南
    Optical scheme to demonstrate state-independent quantum contextuality
    一路彩云奔小康
    香格里拉(2021年2期)2021-07-28 06:50:48
    當(dāng)時明月在,曾照彩云歸
    海峽姐妹(2020年5期)2020-06-22 08:26:08
    彩云問
    民族音樂(2019年3期)2019-08-14 01:05:16
    趙樹理“折磨”年輕人
    彩云飛
    寶藏(2017年7期)2017-08-09 08:15:17
    91大片在线观看| 一区二区三区激情视频| 国产蜜桃级精品一区二区三区| or卡值多少钱| 久99久视频精品免费| 丰满人妻熟妇乱又伦精品不卡| 超碰成人久久| 最好的美女福利视频网| 久久中文字幕人妻熟女| 桃色一区二区三区在线观看| 国产亚洲精品一区二区www| 在线观看www视频免费| 亚洲精品在线观看二区| 露出奶头的视频| 波多野结衣一区麻豆| 欧美另类亚洲清纯唯美| 亚洲午夜理论影院| 国产av在哪里看| 国产精品九九99| 久久性视频一级片| 久久国产精品人妻蜜桃| 国产午夜福利久久久久久| 国产精品久久久av美女十八| 午夜亚洲福利在线播放| 免费不卡黄色视频| 成人永久免费在线观看视频| 国产成人系列免费观看| 亚洲av熟女| 欧美黄色淫秽网站| 天天一区二区日本电影三级 | 亚洲七黄色美女视频| 非洲黑人性xxxx精品又粗又长| 脱女人内裤的视频| 成人av一区二区三区在线看| 亚洲男人天堂网一区| 一级,二级,三级黄色视频| 精品日产1卡2卡| 国产精品亚洲美女久久久| 神马国产精品三级电影在线观看 | 丰满的人妻完整版| 一个人观看的视频www高清免费观看 | 别揉我奶头~嗯~啊~动态视频| 天堂影院成人在线观看| 久久国产亚洲av麻豆专区| 麻豆成人av在线观看| 悠悠久久av| 亚洲国产看品久久| 日本 欧美在线| 校园春色视频在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久成人aⅴ小说| av视频在线观看入口| 国产精品亚洲av一区麻豆| 国产亚洲精品av在线| 亚洲 国产 在线| 欧美激情极品国产一区二区三区| 老司机午夜十八禁免费视频| 丁香六月欧美| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 性少妇av在线| 成人国产综合亚洲| 国产免费av片在线观看野外av| 精品国产乱码久久久久久男人| 国产成人欧美在线观看| 手机成人av网站| 巨乳人妻的诱惑在线观看| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 久久久久亚洲av毛片大全| 黄色视频不卡| 亚洲成a人片在线一区二区| 亚洲av成人一区二区三| 成人三级黄色视频| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 欧美精品亚洲一区二区| 中文字幕人成人乱码亚洲影| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 亚洲一区二区三区色噜噜| 国产又色又爽无遮挡免费看| 免费搜索国产男女视频| 欧美久久黑人一区二区| 久久人人97超碰香蕉20202| 女性生殖器流出的白浆| www国产在线视频色| 免费在线观看视频国产中文字幕亚洲| 欧美在线黄色| 久久久久久久久久久久大奶| 欧美一级a爱片免费观看看 | 国产高清视频在线播放一区| 俄罗斯特黄特色一大片| 欧美人与性动交α欧美精品济南到| 最新美女视频免费是黄的| 一区二区三区激情视频| 97人妻精品一区二区三区麻豆 | 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区| 身体一侧抽搐| 久久精品人人爽人人爽视色| 自拍欧美九色日韩亚洲蝌蚪91| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 午夜福利视频1000在线观看 | 国产一区二区在线av高清观看| 久99久视频精品免费| 亚洲av成人一区二区三| av在线播放免费不卡| 国产一区二区三区综合在线观看| 中文字幕人妻熟女乱码| 国产亚洲精品一区二区www| 午夜视频精品福利| 国产av精品麻豆| 欧美中文日本在线观看视频| 国产精品1区2区在线观看.| 午夜免费观看网址| 黄色片一级片一级黄色片| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| av网站免费在线观看视频| 国产精品永久免费网站| 日本免费一区二区三区高清不卡 | 国产精品1区2区在线观看.| 久久中文看片网| 久99久视频精品免费| 搡老熟女国产l中国老女人| 国产精品久久久av美女十八| 亚洲成av人片免费观看| 91在线观看av| 美女免费视频网站| 午夜福利视频1000在线观看 | 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 在线观看66精品国产| 亚洲,欧美精品.| 午夜精品在线福利| 在线十欧美十亚洲十日本专区| 男女做爰动态图高潮gif福利片 | 黑人巨大精品欧美一区二区mp4| 亚洲av成人av| 日本撒尿小便嘘嘘汇集6| 亚洲自偷自拍图片 自拍| 久久国产精品男人的天堂亚洲| 久久久久久久久久久久大奶| 中文字幕高清在线视频| 久久婷婷人人爽人人干人人爱 | 亚洲 国产 在线| 精品免费久久久久久久清纯| 我的亚洲天堂| 成人三级黄色视频| 欧美色视频一区免费| 亚洲av成人一区二区三| 亚洲成人国产一区在线观看| 国产精品秋霞免费鲁丝片| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人av| 亚洲国产中文字幕在线视频| 亚洲成人久久性| 天天添夜夜摸| 亚洲精品国产一区二区精华液| 亚洲熟女毛片儿| 国产午夜精品久久久久久| e午夜精品久久久久久久| 美女国产高潮福利片在线看| 欧美激情极品国产一区二区三区| 亚洲成国产人片在线观看| av免费在线观看网站| 精品乱码久久久久久99久播| 女人被狂操c到高潮| 久久国产精品影院| 嫩草影院精品99| 校园春色视频在线观看| 久久久久亚洲av毛片大全| 国产成人精品无人区| 精品第一国产精品| 亚洲国产毛片av蜜桃av| 国产欧美日韩一区二区精品| 国产精品国产高清国产av| 免费在线观看完整版高清| 中文字幕人妻熟女乱码| 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 成人国语在线视频| 在线观看www视频免费| 久久中文字幕人妻熟女| 精品国内亚洲2022精品成人| 久久人人精品亚洲av| 麻豆av在线久日| 可以在线观看毛片的网站| 女人高潮潮喷娇喘18禁视频| 好男人在线观看高清免费视频 | 美女大奶头视频| 一本久久中文字幕| 天天一区二区日本电影三级 | 韩国av一区二区三区四区| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 亚洲最大成人中文| АⅤ资源中文在线天堂| 亚洲精品国产一区二区精华液| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 天堂影院成人在线观看| 亚洲国产精品999在线| 麻豆av在线久日| 亚洲av片天天在线观看| 99精品欧美一区二区三区四区| 非洲黑人性xxxx精品又粗又长| 亚洲专区国产一区二区| 91成年电影在线观看| 国产成人啪精品午夜网站| 免费在线观看影片大全网站| 国产精品 国内视频| 可以在线观看毛片的网站| 丁香欧美五月| 黄色片一级片一级黄色片| 午夜激情av网站| 国产黄a三级三级三级人| www国产在线视频色| 身体一侧抽搐| 日韩高清综合在线| 欧美乱色亚洲激情| 日韩三级视频一区二区三区| 国产片内射在线| 此物有八面人人有两片| 欧美成人一区二区免费高清观看 | 日本a在线网址| 黄片播放在线免费| av视频免费观看在线观看| 18禁黄网站禁片午夜丰满| 亚洲专区国产一区二区| 满18在线观看网站| 国产亚洲精品综合一区在线观看 | 久久久国产欧美日韩av| av福利片在线| 999久久久精品免费观看国产| 91av网站免费观看| 亚洲精品av麻豆狂野| 啦啦啦免费观看视频1| 99在线视频只有这里精品首页| 50天的宝宝边吃奶边哭怎么回事| avwww免费| 国产国语露脸激情在线看| 国产乱人伦免费视频| 国产一区二区三区在线臀色熟女| 午夜免费鲁丝| 在线免费观看的www视频| 亚洲一区高清亚洲精品| 不卡一级毛片| 在线观看午夜福利视频| 美国免费a级毛片| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 亚洲精品国产区一区二| 18美女黄网站色大片免费观看| netflix在线观看网站| 88av欧美| 国产av一区在线观看免费| 精品人妻1区二区| 精品欧美国产一区二区三| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 九色国产91popny在线| 亚洲欧美日韩无卡精品| x7x7x7水蜜桃| 一进一出抽搐gif免费好疼| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 99精品欧美一区二区三区四区| 熟女少妇亚洲综合色aaa.| 国产男靠女视频免费网站| 1024视频免费在线观看| 9热在线视频观看99| 90打野战视频偷拍视频| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 女警被强在线播放| 身体一侧抽搐| 国产色视频综合| 欧美精品啪啪一区二区三区| 制服丝袜大香蕉在线| 一级毛片高清免费大全| 精品乱码久久久久久99久播| 国产人伦9x9x在线观看| 亚洲精品久久成人aⅴ小说| 最新在线观看一区二区三区| 此物有八面人人有两片| 国产熟女午夜一区二区三区| 999精品在线视频| 老鸭窝网址在线观看| 咕卡用的链子| 日韩视频一区二区在线观看| 99国产精品99久久久久| 免费在线观看完整版高清| 国产成人啪精品午夜网站| 午夜福利18| 99久久国产精品久久久| 亚洲成人久久性| 18禁裸乳无遮挡免费网站照片 | 久久香蕉精品热| 一夜夜www| 一级毛片高清免费大全| 女性生殖器流出的白浆| 国产成人免费无遮挡视频| 午夜免费观看网址| 成人18禁在线播放| 国产免费av片在线观看野外av| 亚洲欧美精品综合久久99| 日韩精品青青久久久久久| 国产欧美日韩一区二区精品| 激情视频va一区二区三区| 久久天躁狠狠躁夜夜2o2o| 中文字幕精品免费在线观看视频| 少妇裸体淫交视频免费看高清 | 日本撒尿小便嘘嘘汇集6| 国产精品综合久久久久久久免费 | 午夜激情av网站| 欧美成人性av电影在线观看| 精品久久久精品久久久| 久久久精品欧美日韩精品| 日韩大尺度精品在线看网址 | 99精品在免费线老司机午夜| 日本精品一区二区三区蜜桃| √禁漫天堂资源中文www| 精品久久久久久,| 性少妇av在线| 国产亚洲精品第一综合不卡| 免费不卡黄色视频| 村上凉子中文字幕在线| 久久精品国产99精品国产亚洲性色 | 老汉色av国产亚洲站长工具| 欧美最黄视频在线播放免费| 国产av一区二区精品久久| 91麻豆av在线| 免费少妇av软件| 成人国语在线视频| 美女免费视频网站| 亚洲av电影不卡..在线观看| 精品国产一区二区三区四区第35| 欧美黄色淫秽网站| 一级a爱片免费观看的视频| 亚洲免费av在线视频| av天堂在线播放| 精品国产一区二区久久| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| 午夜福利高清视频| 女警被强在线播放| 亚洲伊人色综图| 国内精品久久久久久久电影| 国产精品影院久久| 在线av久久热| 成人三级黄色视频| 精品久久久久久成人av| 日韩精品免费视频一区二区三区| 成人亚洲精品av一区二区| 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 国产av一区二区精品久久| 午夜成年电影在线免费观看| 亚洲激情在线av| 天堂影院成人在线观看| 欧美黑人欧美精品刺激| 精品国产乱子伦一区二区三区| 亚洲成av片中文字幕在线观看| 最近最新中文字幕大全电影3 | 久久香蕉国产精品| 在线国产一区二区在线| 一个人免费在线观看的高清视频| 黄色丝袜av网址大全| 精品电影一区二区在线| 国产成人av教育| 激情在线观看视频在线高清| 亚洲无线在线观看| 9191精品国产免费久久| 丝袜美腿诱惑在线| 国产亚洲精品av在线| av在线天堂中文字幕| 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 久久精品成人免费网站| 精品不卡国产一区二区三区| 日韩大码丰满熟妇| 老司机靠b影院| 久99久视频精品免费| 好男人电影高清在线观看| 日本一区二区免费在线视频| 国产精品久久久久久亚洲av鲁大| 首页视频小说图片口味搜索| 一级a爱片免费观看的视频| 色综合欧美亚洲国产小说| 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 黄片播放在线免费| 国产亚洲欧美在线一区二区| 丝袜美足系列| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 高清黄色对白视频在线免费看| 无限看片的www在线观看| 免费观看人在逋| 欧美精品啪啪一区二区三区| 免费看十八禁软件| 老司机靠b影院| 黄色片一级片一级黄色片| 精品人妻1区二区| 国产单亲对白刺激| 久久婷婷人人爽人人干人人爱 | 国产一区二区三区在线臀色熟女| 99国产精品一区二区三区| 亚洲性夜色夜夜综合| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 久久香蕉精品热| 后天国语完整版免费观看| 国产欧美日韩一区二区三区在线| 亚洲人成伊人成综合网2020| 国产一区在线观看成人免费| svipshipincom国产片| 国产精品久久久久久精品电影 | 欧美乱码精品一区二区三区| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 久久亚洲真实| 在线观看免费视频日本深夜| 最近最新免费中文字幕在线| 九色亚洲精品在线播放| tocl精华| 人人妻人人澡欧美一区二区 | 国产精品一区二区三区四区久久 | 欧美性长视频在线观看| 一个人观看的视频www高清免费观看 | 国产真人三级小视频在线观看| 色综合欧美亚洲国产小说| 日韩欧美一区视频在线观看| 国产日韩一区二区三区精品不卡| 日本精品一区二区三区蜜桃| 久久影院123| 老汉色av国产亚洲站长工具| 99国产精品99久久久久| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 黄色丝袜av网址大全| 国产一区在线观看成人免费| 久久热在线av| 美女高潮到喷水免费观看| 91九色精品人成在线观看| 黄频高清免费视频| 九色亚洲精品在线播放| 欧美乱妇无乱码| 12—13女人毛片做爰片一| 女警被强在线播放| 久久国产精品男人的天堂亚洲| 日本三级黄在线观看| 天堂动漫精品| 国产亚洲精品一区二区www| cao死你这个sao货| 成人特级黄色片久久久久久久| 女警被强在线播放| 美女午夜性视频免费| 在线播放国产精品三级| 99国产精品免费福利视频| 一级毛片高清免费大全| 99国产精品一区二区蜜桃av| 亚洲精品国产区一区二| 日本撒尿小便嘘嘘汇集6| 男人舔女人下体高潮全视频| 高潮久久久久久久久久久不卡| 国产精品自产拍在线观看55亚洲| 亚洲va日本ⅴa欧美va伊人久久| 久久精品成人免费网站| 男人舔女人的私密视频| 欧美日韩亚洲国产一区二区在线观看| 欧美老熟妇乱子伦牲交| 国产亚洲精品综合一区在线观看 | 国产av精品麻豆| 老司机在亚洲福利影院| 国产成人影院久久av| 91字幕亚洲| 狂野欧美激情性xxxx| 午夜免费观看网址| 午夜日韩欧美国产| 99国产精品一区二区蜜桃av| 久久婷婷成人综合色麻豆| 女人精品久久久久毛片| 一区二区日韩欧美中文字幕| 怎么达到女性高潮| 男女之事视频高清在线观看| 久久精品91蜜桃| 性少妇av在线| 黄色女人牲交| 看黄色毛片网站| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| aaaaa片日本免费| 中文字幕人妻丝袜一区二区| 国产成人一区二区三区免费视频网站| 在线观看免费视频网站a站| 人妻丰满熟妇av一区二区三区| 欧美日韩亚洲综合一区二区三区_| 久久国产精品影院| 非洲黑人性xxxx精品又粗又长| 在线观看免费视频网站a站| 免费在线观看日本一区| 国产一区二区三区在线臀色熟女| 国产精品1区2区在线观看.| 欧美日韩福利视频一区二区| 亚洲国产精品999在线| xxx96com| 午夜亚洲福利在线播放| 激情视频va一区二区三区| av片东京热男人的天堂| 国产91精品成人一区二区三区| 在线国产一区二区在线| 18美女黄网站色大片免费观看| 好男人电影高清在线观看| 亚洲男人的天堂狠狠| 国产黄a三级三级三级人| 久久久久国产精品人妻aⅴ院| 黄片大片在线免费观看| 波多野结衣高清无吗| svipshipincom国产片| 久久久久久久午夜电影| 亚洲最大成人中文| 久久久国产成人免费| 国产真人三级小视频在线观看| 午夜免费鲁丝| av在线天堂中文字幕| 欧美绝顶高潮抽搐喷水| 狠狠狠狠99中文字幕| 夜夜看夜夜爽夜夜摸| 女警被强在线播放| 男女午夜视频在线观看| 性欧美人与动物交配| 国产高清激情床上av| 一级毛片高清免费大全| 色播亚洲综合网| 午夜福利高清视频| 亚洲国产精品久久男人天堂| 国产成人精品在线电影| 欧美成人午夜精品| 欧美黄色淫秽网站| 两个人免费观看高清视频| 久久 成人 亚洲| a级毛片在线看网站| 999久久久国产精品视频| 日韩欧美在线二视频| 91精品三级在线观看| 又黄又爽又免费观看的视频| 国产欧美日韩综合在线一区二区| 两个人免费观看高清视频| 精品卡一卡二卡四卡免费| 这个男人来自地球电影免费观看| 国产亚洲精品第一综合不卡| 精品一区二区三区av网在线观看| 日韩视频一区二区在线观看| 亚洲国产高清在线一区二区三 | 女人被狂操c到高潮| 亚洲成av片中文字幕在线观看| 欧美精品啪啪一区二区三区| 日本一区二区免费在线视频| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清在线视频| 亚洲七黄色美女视频| 久久久久久人人人人人| 久久精品国产99精品国产亚洲性色 | 午夜精品在线福利| 日韩 欧美 亚洲 中文字幕| 日日摸夜夜添夜夜添小说| 极品教师在线免费播放| 中文亚洲av片在线观看爽| 国产单亲对白刺激| 国产黄a三级三级三级人| 国产精品98久久久久久宅男小说| 欧美色欧美亚洲另类二区 | 精品久久久精品久久久| 成年人黄色毛片网站| 一a级毛片在线观看| 窝窝影院91人妻| 午夜福利在线观看吧| 嫩草影视91久久| 成人18禁高潮啪啪吃奶动态图| 亚洲狠狠婷婷综合久久图片| 国产精品亚洲一级av第二区| 可以免费在线观看a视频的电影网站| 国产成年人精品一区二区| 欧美激情久久久久久爽电影 | 一区二区日韩欧美中文字幕| 欧美日本视频| 好男人在线观看高清免费视频 | www.www免费av| 美女大奶头视频| 真人做人爱边吃奶动态| 久久亚洲真实| 村上凉子中文字幕在线| 国产精品电影一区二区三区| 视频在线观看一区二区三区| 神马国产精品三级电影在线观看 | svipshipincom国产片| 久久中文字幕人妻熟女| 每晚都被弄得嗷嗷叫到高潮| www.熟女人妻精品国产| 国产成人精品在线电影| 亚洲中文字幕一区二区三区有码在线看 | 嫩草影视91久久| 欧美久久黑人一区二区| 人成视频在线观看免费观看| 女人高潮潮喷娇喘18禁视频| 脱女人内裤的视频| 视频在线观看一区二区三区| 一级a爱片免费观看的视频|