杜紅陽 李東寧 付海燕 包翠芬 秦書儉
Notch1(NICD)過表達(dá)真核載體構(gòu)建及對(duì)大鼠BMSCs增殖分化的影響
杜紅陽1李東寧1付海燕2△包翠芬3秦書儉3
目的 探討過表達(dá)Notch1(NICD)基因?qū)Υ笫蠊撬栝g充質(zhì)干細(xì)胞(BMSCs)增殖分化的影響。方法構(gòu)建Notch1(NICD)過表達(dá)真核載體,實(shí)驗(yàn)分正常對(duì)照組(CON組,不做轉(zhuǎn)染)、陽性對(duì)照組(空載體組,將質(zhì)粒pEGFP-N1轉(zhuǎn)染BMSCs)和轉(zhuǎn)染組(將重組質(zhì)粒pEGFP-N1-NICD轉(zhuǎn)染BMSCs)。轉(zhuǎn)染48 h后觀察細(xì)胞一般狀態(tài),Real-time PCR和Western blotting檢測(cè)神經(jīng)元特異性烯醇化酶(NSE)、膠質(zhì)纖維酸性蛋白(GFAP)和Notch1基因和蛋白表達(dá),流式檢測(cè)轉(zhuǎn)染后細(xì)胞凋亡、細(xì)胞周期,MTT檢測(cè)細(xì)胞增殖情況。結(jié)果重組質(zhì)粒pEGFP-N1-NICD編碼序列與設(shè)計(jì)完全一致。轉(zhuǎn)染組和空載體組BMSCs均可表達(dá)綠色熒光。轉(zhuǎn)染組GFAP、Notch1的基因和蛋白表達(dá)均高于CON組和空載體組(均P<0.05),空載體組與CON組差異無統(tǒng)計(jì)學(xué)意義;各組間NSE的基因和蛋白表達(dá)差異無統(tǒng)計(jì)學(xué)意義。轉(zhuǎn)染組存活細(xì)胞比率低于CON組和空載體組,早期細(xì)胞凋亡比率、晚期細(xì)胞凋亡比率均高于CON組和空載體組;空載體組晚期細(xì)胞凋亡比率高于CON組。轉(zhuǎn)染組細(xì)胞處于G1/G0期的比例高于CON組和空載體組,處于S期和G2/M期的比例低于CON組和空載體組(均P<0.05)。除轉(zhuǎn)染1 d時(shí)各組MTT A490值差異無統(tǒng)計(jì)學(xué)意義外,其余時(shí)點(diǎn)轉(zhuǎn)染組MTT A490值均低于CON組和空載體組(均P<0.05)。結(jié)論高表達(dá)Notch1(NICD)基因可能在一定程度上誘導(dǎo)BMSCs凋亡、抑制其增殖,且表現(xiàn)誘導(dǎo)向神經(jīng)膠質(zhì)樣細(xì)胞分化。
細(xì)胞增殖;細(xì)胞分化;轉(zhuǎn)染;神經(jīng)膠質(zhì)原纖維酸性蛋白質(zhì);磷酸丙酮酸水合酶;Notch信號(hào)通路;骨髓間充質(zhì)干細(xì)胞;誘導(dǎo);Notch1(NICD)
骨髓間充質(zhì)干細(xì)胞(bone mesenehymal stem cells,BMSCs)是一類來源于骨髓的非造血干細(xì)胞,目前BMSCs在皮膚病包括皮膚傷口愈合、銀屑病、系統(tǒng)性紅斑狼瘡(SLE)、放射性皮炎和硬皮病等方面的治療作用受到廣泛的關(guān)注[1]。近年來關(guān)于BMSCs增殖分化的分子機(jī)制的研究多集中在細(xì)胞信號(hào)通路上[2]。其中,Notch信號(hào)通路是一條保守而非常重要的細(xì)胞信號(hào)通路[3]。Notch信號(hào)通路由受體、配體、下游信號(hào)傳遞分子及調(diào)節(jié)分子等組成[4],在哺乳動(dòng)物中,目前已發(fā)現(xiàn)4種Notch受體(Notch1~4),5種配體(Delta 1,3,4和Jagged 1,2),其中Notch1為細(xì)胞表面跨膜蛋白,NICD(the intracellular domain of Notch)為其胞內(nèi)段且發(fā)揮重要的信號(hào)傳遞作用。本課題組前期研究發(fā)現(xiàn)正常擴(kuò)增的BMSCs其Notch1蛋白為相對(duì)高表達(dá),在促分化劑作用下Notch1 (NICD)蛋白表達(dá)降低[5],而本研究旨在探討過表達(dá)Notch1(NICD)基因?qū)MSCs增殖分化的影響。
1.1 材料
1.1.1 藥物與試劑 Notch1兔抗大鼠單克隆抗體購自Cell signaling公司,NICD一抗購自美國(guó)SANTA CRUZ公司,Hoechst33258購自Sigma公司,SDS購自Biomol公司,NheⅠ、AgeⅠ內(nèi)切酶購自NEB公司;AxyPrep凝膠回收試劑盒、AxyPrep質(zhì)粒小量提取試劑盒購自Axygen公司;Wide Range DNA Marker、RNA PCR kit(AMV)Ver 3.0、PMD18-T載體XGal、IPTG、T4DNA連接酶和大腸桿菌DH5α及克隆載體pMD18-T Vector、真核表達(dá)載體pEGFP-N1均購自TaKaRa公司;LipofectamineTM2000脂質(zhì)體轉(zhuǎn)染試劑盒購自Invitrogen公司。Triton X-100購自美國(guó)Amresco公司,TRITC標(biāo)記山羊抗兔IgG購自北京中杉金橋生物技術(shù)有限公司,其他試劑為進(jìn)口或國(guó)產(chǎn)分析純。
1.1.2 實(shí)驗(yàn)細(xì)胞 純化P5大鼠BMSCs由遼寧醫(yī)學(xué)院科學(xué)實(shí)驗(yàn)中心提供,經(jīng)細(xì)胞凍存復(fù)蘇后進(jìn)行傳代培養(yǎng)。當(dāng)細(xì)胞生長(zhǎng)融合達(dá)培養(yǎng)板/孔85%時(shí)應(yīng)用0.25%胰蛋白酶及0.02% EDTA混合消化液消化,1∶3比例轉(zhuǎn)入培養(yǎng)瓶?jī)?nèi)傳代。取P3~P5代細(xì)胞以1×105個(gè)/mL的密度接種于6孔板或以5× 106個(gè)/mL接種于25 cm2細(xì)胞培養(yǎng)瓶中培養(yǎng)。
1.1.3 儀器 EC250電泳儀(美國(guó)EC公司),細(xì)胞超聲粉碎儀VCX105(美國(guó)BIO-RAD公司);數(shù)控層析冷柜SL-Ⅲ(上海新諾);熒光分光光度計(jì)(天津拓普)。PCR儀(美國(guó)ABI公司),實(shí)時(shí)熒光定量PCR儀、核酸蛋白定量?jī)x(德國(guó)Eppendorf公司);全自動(dòng)凝膠成像分析系統(tǒng)(美國(guó)Syngene公司);倒置相差顯微鏡、熒光倒置顯微鏡IX70(日本Olympus公司),凝膠圖像分析系統(tǒng)(美國(guó)Kodak公司)等。
1.2 方法
1.2.1 引物設(shè)計(jì)及質(zhì)粒構(gòu)建 根據(jù)GenBank大鼠Notch1 cDNA序列號(hào)X57405,采用Primer Premier 5.0和Oligo 6.0軟件設(shè)計(jì)并擴(kuò)增Notch1胞內(nèi)段(NICD)編碼區(qū)的引物。并且在上游引物的5′端引入NheⅠ限制性核酸內(nèi)切酶位點(diǎn),在下游引物5′端引入AgeⅠ限制性核酸內(nèi)切酶位點(diǎn),引物序列如下:Notch1-F 5′-AGTCGCTAGCATGGTGCTGCTGTCCCGCAAGCGCA-3′;Notch1-R 5′-GTACCGGTGGCTTAAATGCCTCTGGAATGTGGGTG-3′,下劃線部分為酶切識(shí)別位點(diǎn)。經(jīng)Blast分析所選序列與大鼠其他基因序列無同源性。經(jīng)PCR擴(kuò)增酶切與載體質(zhì)粒連接,見圖1,質(zhì)粒提取試劑盒提取連接好的質(zhì)粒,送上海生工生物工程有限公司測(cè)序。測(cè)序正確后將構(gòu)建的重組表達(dá)質(zhì)粒命名為pEGFP-N1-NICD,保存于-20℃冰箱中,用于后續(xù)試驗(yàn)。
Fig.1 The pEGFP-N1 carrier vector and multiple clone site icon (MCS means multiple clone site)圖1 pEGFP-N1載體質(zhì)粒及多克隆位點(diǎn)圖譜(MCS為多克隆位點(diǎn))
1.2.2 細(xì)胞轉(zhuǎn)染及實(shí)驗(yàn)分組 采用質(zhì)粒小量抽提試劑盒抽提pEGFP-N1-NICD和pEGFP-N1,經(jīng)蛋白核酸分光光度計(jì)和電泳檢測(cè),A260/A280在1.8~2.0,且無任何降解的質(zhì)粒DNA用于轉(zhuǎn)染(pEGFP-N1-NICD濃度為200 mg/L,pEGFPN1濃度為200 mg/L)。實(shí)驗(yàn)分組:正常對(duì)照組(CON組):不做轉(zhuǎn)染的BMSCs;陽性對(duì)照組(空載體組):將質(zhì)粒pEGFP-N1轉(zhuǎn)染BMSCs;轉(zhuǎn)染組:將重組質(zhì)粒pEGFP-N1-NICD轉(zhuǎn)染BMSCs。使用6孔細(xì)胞培養(yǎng)板培養(yǎng)細(xì)胞,將每板細(xì)胞分為3組,每組2孔。參照LipofectamineTM2000脂質(zhì)體轉(zhuǎn)染試劑盒說明,將質(zhì)粒通過脂質(zhì)體轉(zhuǎn)染法導(dǎo)入各組純化培養(yǎng)的BMSCs。確保種植于6孔板中的BMSCs生長(zhǎng)超過80%;用無血清培養(yǎng)基DMEM來稀釋Lipofectamine 2000和質(zhì)粒,質(zhì)粒DNA(μg)與Lipofectamine 2000(μL)的混合比例1∶3,將轉(zhuǎn)染細(xì)胞置于37℃的5%CO2培養(yǎng)箱中孵育48 h,此時(shí)為瞬時(shí)表達(dá),每組收集2孔標(biāo)本用于后續(xù)檢測(cè)。
1.2.3 轉(zhuǎn)染后一般形態(tài)學(xué)觀察 轉(zhuǎn)染后每日倒置顯微鏡下觀察各組細(xì)胞形態(tài)變化。轉(zhuǎn)染48 h后計(jì)算轉(zhuǎn)染效率,隨機(jī)讀取3個(gè)非重疊高倍視野,計(jì)數(shù)發(fā)綠色熒光的細(xì)胞占所有細(xì)胞中的百分比,并計(jì)算平均值。
1.2.4 Real-time PCR檢測(cè)神經(jīng)元特異性烯醇化酶(NSE)、膠質(zhì)纖維酸性蛋白(GFAP)和Notch1基因表達(dá) 細(xì)胞總RNA的提取,按照Invitrogen公司的TRIzol Reagent使用說明書進(jìn)行操作,然后進(jìn)行總RNA的純度測(cè)定和質(zhì)量檢測(cè),制備反轉(zhuǎn)錄cDNA按照TaKaRa公司Prime Script RT reagent Kit With gDNA Eraser說明書操作進(jìn)行。最終進(jìn)行Realtime PCR反應(yīng),Realtime PCR引物由TaKaRa公司設(shè)計(jì)合成,引物序列如下:NSE基因上游5′-CAACAGCACCATCGCACCG-3′,下游5′-GGCAAAGCCGCCTTCATC-3′;GFAP基因上游5′-GATGTAGGAGTGGGTAGGGC-3′,下游5′-GGACTGAGCAACCAGGAATAG-3′;Notch1基因上游5′-GCCGCAAGAGGCTTGAGAT-3′,下游5′-GGGGTCCTGGCATCGCTGG-3′;內(nèi)參GAPDH基因上游5′-CCCACGGCAAGTTCAACGGCA-3′,下游5′-TGGCAGGTTTCTCCAGGCGGC-3′,利用Eppendorf公司的Realplex實(shí)時(shí)定量PCR儀進(jìn)行分析,GAPDH作內(nèi)參對(duì)每個(gè)基因進(jìn)行標(biāo)準(zhǔn)化,每個(gè)樣品同一個(gè)基因重復(fù)3次,并用去離子水取代模板作為陰性對(duì)照。反應(yīng)完成后,系統(tǒng)軟件將自動(dòng)計(jì)算出每個(gè)樣本擴(kuò)增的Threshold cycle(Ct)值,最終根據(jù)目的基因和管家基因的Ct值,計(jì)算出目的基因的相對(duì)表達(dá)量,用2-△△Ct表示。對(duì)照組各基因表達(dá)量設(shè)為1。
1.2.5 Western blotting檢測(cè)NSE、GFAP和NICD蛋白表達(dá)情況 收集轉(zhuǎn)染48 h后細(xì)胞,棄培養(yǎng)液后用溫的PBS沖洗3遍,Western blotting法檢測(cè)蛋白表達(dá),蛋白條帶圖像經(jīng)過凝膠成像照相及圖像分析系統(tǒng)測(cè)定其光密度,每個(gè)樣本重復(fù)3次,計(jì)算各個(gè)樣本積分光密度(條帶強(qiáng)度×條帶面積)與β-actin內(nèi)參對(duì)照的比值(IOD值),即相對(duì)IOD值,以表示目標(biāo)蛋白的相對(duì)表達(dá)量,從而反映各目的蛋白水平的變化情況。
1.2.6 轉(zhuǎn)染后BMSCs細(xì)胞凋亡和細(xì)胞周期檢測(cè) 轉(zhuǎn)染48 h后各組細(xì)胞,按照Calbiochem?Annexin V-FITC凋亡檢測(cè)試劑盒(購自美國(guó)EMD化學(xué)試劑公司)說明書操作用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡。同時(shí)收集轉(zhuǎn)染后各組細(xì)胞,加預(yù)冷70%乙醇固定,4℃,加PI 37℃避光30 min,檢測(cè)細(xì)胞周期,每組實(shí)驗(yàn)重復(fù)3次。
1.2.7 MTT檢測(cè)轉(zhuǎn)染后BMSCs增殖情況 轉(zhuǎn)染前1 d,BMSCs 以1×104個(gè)/孔接種于96孔板中,按上述分組進(jìn)行實(shí)驗(yàn),每組設(shè)7個(gè)復(fù)孔。轉(zhuǎn)染48 h后,加入完全培養(yǎng)基,從第2天起每隔24 h(分別為第1、2、3、4天)取7孔加入MTT溶液(5 g/L)20 μL,37℃繼續(xù)孵育3 h后終止培養(yǎng)。小心棄除孔內(nèi)培養(yǎng)液,每孔加入150 μL二甲基亞砜,低速振蕩15 min,使結(jié)晶物充分溶解。選擇490 nm波長(zhǎng),在酶聯(lián)免疫檢測(cè)儀上測(cè)定各孔光密度值(OD值),計(jì)算不同組別細(xì)胞活力,整個(gè)過程重復(fù)3次,取其均值,繪制細(xì)胞增殖曲線。
1.3 統(tǒng)計(jì)學(xué)方法 利用SPSS 17.0統(tǒng)計(jì)軟件,數(shù)據(jù)均采用±s表示,多組之間比較采用單因素方差分析,組間多重比較采用q檢驗(yàn),P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1 Notch1過表達(dá)真核質(zhì)粒鑒定 測(cè)序結(jié)果見圖2,重組質(zhì)粒pEGFP-N1-NICD編碼序列與設(shè)計(jì)完全一致。
2.2 Notch1(NICD)基因轉(zhuǎn)染后BMSCs形態(tài)學(xué)觀察及檢測(cè)
2.2.1 基因轉(zhuǎn)染后BMSCs一般形態(tài)學(xué)觀察 倒置顯微鏡下觀察,P3~P5代大鼠BMSCs形態(tài)均一,呈紡錘形、長(zhǎng)梭形為主。Notch1(NICD)基因轉(zhuǎn)染6 h后,細(xì)胞形態(tài)無顯著改變,24 h后少部分細(xì)胞胞漿向核略回縮,出現(xiàn)胞體伸出多數(shù)突起,分支數(shù)量逐漸增加,似神經(jīng)樣細(xì)胞形態(tài)改變。24~48 h神經(jīng)樣細(xì)胞數(shù)量逐漸增多,但轉(zhuǎn)染48 h后出現(xiàn)部分細(xì)胞死亡現(xiàn)象,隨著培養(yǎng)時(shí)間的延長(zhǎng),死亡細(xì)胞不再增加,而后穩(wěn)定生長(zhǎng)。至5 d神經(jīng)膠質(zhì)樣細(xì)胞不斷增多,但至7 d時(shí)因轉(zhuǎn)染細(xì)胞老化,而出現(xiàn)不斷死亡。CON組和空載體組細(xì)胞胞體較前略有收縮,2組均未見神經(jīng)樣細(xì)胞的出現(xiàn)。熒光顯微鏡觀察,轉(zhuǎn)染48 h后轉(zhuǎn)染組和空載體組的BMSCs均可以表達(dá)綠色熒光,且表達(dá)的部位無差異,轉(zhuǎn)染細(xì)胞的胞漿和細(xì)胞核中均有特異性綠色熒光蛋白的表達(dá)。CON組BMSCs沒有熒光表達(dá),見圖3。轉(zhuǎn)染48 h后,轉(zhuǎn)染組轉(zhuǎn)染效率可達(dá)到60%。
Fig.2 The gene sequencing results of pEGFP-N1-NICD eukaryotic expression vector圖2 pEGFP-N1-NICD真核表達(dá)載體的基因測(cè)序結(jié)果
Fig.3 The cell morphology after 48-hour transfection(×200)圖3 轉(zhuǎn)染48 h各組細(xì)胞形態(tài)(×200)
2.2.2 各組NES、GFAP、Notch1 mRNA表達(dá)情況比較 各組細(xì)胞提取總RNA的OD260/OD280比值均位于1.8~2.0,無蛋白質(zhì)和DNA污染;熔解曲線分析顯示各目的基因熔解曲線高尖,無其他基因非特異性擴(kuò)增的波峰,說明實(shí)驗(yàn)選擇的引物合適,無不擴(kuò)增現(xiàn)象。轉(zhuǎn)染48 h后,轉(zhuǎn)染組GFAP、Notch1基因相對(duì)表達(dá)量均明顯高于CON組和空載體組(均P<0.05),而各組間NSE基因表達(dá)差異無統(tǒng)計(jì)學(xué)意義??蛰d體組與CON組間各基因表達(dá)差異均無統(tǒng)計(jì)學(xué)意義,見圖4。
2.2.3 各組NSE、GFAP和Notch1(NICD)蛋白表達(dá)情況比較 轉(zhuǎn)染組GFAP、Notch1(NICD)蛋白表達(dá)均高于CON組和空載體組(均P<0.05),空載體組與CON組間GFAP、Notch1(NICD)蛋白表達(dá)差異均無統(tǒng)計(jì)學(xué)意義。各組間NSE蛋白表達(dá)差異無統(tǒng)計(jì)學(xué)意義,見圖5、6。
Fig.4 The NES,GFAP and Notch1 mRNA expressions detected by real-time PCR圖4 Real-time PCR檢測(cè)NES、GFAP、Notch1 mRNA表達(dá)情況
Fig.5 The protein expressions of NSE,GFAP and NICD in three groups圖5 3組NSE、GFAP和NICD蛋白表達(dá)
Fig.6 Comparison of IOD values of NSE,GFAP and NICD between three groups圖6 3組NSE、GFAP和Notch1(NICD)蛋白IOD值比較
2.2.4 基因轉(zhuǎn)染后BMSCs細(xì)胞凋亡和細(xì)胞周期變化情況 BMSCs轉(zhuǎn)染48 h后,轉(zhuǎn)染組存活細(xì)胞比率低于CON組和空載體組,早期細(xì)胞凋亡比率、晚期細(xì)胞凋亡比率均高于CON組和空載體組(均P<0.05);空載體組晚期細(xì)胞凋亡比率高于CON組(P<0.05),見圖7、表1。轉(zhuǎn)染組細(xì)胞處于G1/G0期的比例明顯高于CON組和空載體組,而處于S期和G2/M期的比例明顯低于CON組和空載體組(均P<0.05),見表2。
Fig.7 The apoptosis scatter diagram of BMSCs after transfection in three groups圖7 基因轉(zhuǎn)染后3組BMSCs細(xì)胞凋亡散點(diǎn)圖
Tab.1 Comparison of the cell apoptosis after transfection between three groups表1 基因轉(zhuǎn)染后3組細(xì)胞凋亡情況比較(n=3,%,±s)
Tab.1 Comparison of the cell apoptosis after transfection between three groups表1 基因轉(zhuǎn)染后3組細(xì)胞凋亡情況比較(n=3,%,±s)
*P<0.05,;a與CON組比較,b與空載體組比較,P<0.05
組別CON組空載體組轉(zhuǎn)染組F晚期細(xì)胞凋亡比率4.75±1.08 9.64±2.33a13.96±2.38ab385.27*存活細(xì)胞比率89.09±0.13 83.25±2.07 71.77±0.89ab57.18*早期細(xì)胞凋亡比率5.21±0.97 6.09±1.43 11.26±1.70ab189.14*
Tab.2 Comparison of the cell cycles after transfection between three groups表2 基因轉(zhuǎn)染后3組細(xì)胞周期情況比較(n=3,%,±s)
Tab.2 Comparison of the cell cycles after transfection between three groups表2 基因轉(zhuǎn)染后3組細(xì)胞周期情況比較(n=3,%,±s)
*P<0.05,;a與CON組比較,b與空載體組比較,P<0.05
組別CON組空載體組轉(zhuǎn)染組F G1/G0 62.11±0.01 63.25±0.15 81.56±1.23ab43.26*S 18.05±1.31 20.57±2.21 8.51±0.10ab116.98*G2/M 19.84±2.11 16.18±0.62 9.93±1.82ab273.62*
2.2.5 轉(zhuǎn)染后BMSCs增殖情況 除轉(zhuǎn)染1 d時(shí)各組MTT A490值差異無統(tǒng)計(jì)學(xué)意義外,之后其余時(shí)點(diǎn)轉(zhuǎn)染組MTT A490值均低于CON組和空載體組(均P<0.05),CON組與空載體組比較差異均無統(tǒng)計(jì)學(xué)意義,見圖8。
Fig.8 The cell proliferation after transfection in three groups圖8 基因轉(zhuǎn)染后3組細(xì)胞增殖情況
目前在基因轉(zhuǎn)染研究中應(yīng)用較多的是質(zhì)粒載體和病毒載體[6-7],本實(shí)驗(yàn)從經(jīng)濟(jì)與安全角度考慮,采用非病毒載體作為外源性基因的表達(dá)載體即攜帶有綠色熒光蛋白(green fluorescent protein,GFP)基因的質(zhì)粒用于轉(zhuǎn)染,基因測(cè)序結(jié)果顯示該序列正確插入質(zhì)粒載體pEGFP-N1中,構(gòu)建的質(zhì)粒符合實(shí)驗(yàn)設(shè)計(jì)標(biāo)準(zhǔn)。且行BMSCs瞬時(shí)轉(zhuǎn)染48 h后,轉(zhuǎn)染組轉(zhuǎn)染效率可達(dá)60%,認(rèn)定轉(zhuǎn)染比較成功。
本課題組前期研究發(fā)現(xiàn),BMSCs在誘導(dǎo)劑作用下向神經(jīng)樣細(xì)胞分化過程中影響Notch信號(hào)通路相關(guān)基因和蛋白的表達(dá)[5]。為研究在Notch信號(hào)通路中具有重要作用的Notch1蛋白在BMSCs增殖分化中的作用,筆者通過構(gòu)建Notch1(NICD)高表達(dá)質(zhì)粒,并轉(zhuǎn)染BMSCs從而達(dá)到Notch1胞內(nèi)段表達(dá)型增高,以探討這條信號(hào)通路起點(diǎn)的作用。結(jié)果發(fā)現(xiàn),轉(zhuǎn)染48 h后,轉(zhuǎn)染組Notch1、GFAP基因相對(duì)表達(dá)量均明顯高于CON組和空載體組,空載體組與CON組無明顯差異,且各組間NSE基因表達(dá)也無明顯差異;Western Blotting的結(jié)果也與此一致。提示轉(zhuǎn)染NICD基因的BMSCs可能具有向神經(jīng)膠質(zhì)細(xì)胞誘導(dǎo)分化的傾向,而不具有向神經(jīng)元誘導(dǎo)分化的傾向。已有研究發(fā)現(xiàn),高表達(dá)Notch信號(hào)具有向神經(jīng)膠質(zhì)化方向誘導(dǎo)的作用:(1)Notch的細(xì)胞內(nèi)結(jié)構(gòu)NICD片段能直接活化GFAP啟動(dòng)子[8]。(2)Notch蛋白通過Hes因子的作用間接或直接地促進(jìn)星形膠質(zhì)細(xì)胞的生成[9]。(3)活化型轉(zhuǎn)錄調(diào)節(jié)因子(Ngn1、Ngn2、Ngn3等)參與皮質(zhì)祖細(xì)胞向神經(jīng)元的特化,但其缺少將使皮質(zhì)祖細(xì)胞變?yōu)樾切文z質(zhì)細(xì)胞[10],而Notch蛋白的高表達(dá)具有抑制活化型轉(zhuǎn)錄調(diào)節(jié)因子的作用。以上研究推測(cè),Notch胞內(nèi)信號(hào)活化,NICD轉(zhuǎn)運(yùn)到細(xì)胞核與DNA結(jié)合蛋白CSL結(jié)合,可激活Hes基因表達(dá),Hes表達(dá)水平增高可使Mash和Ngns活性降低,從而促進(jìn)前體細(xì)胞向星形膠質(zhì)細(xì)胞分化。
BMSCs轉(zhuǎn)染48 h后,活細(xì)胞比率、早期凋亡率及晚期凋亡率與CON組和空載體組比較,轉(zhuǎn)染組存活細(xì)胞比率下降,早期細(xì)胞凋亡比率、晚期細(xì)胞凋亡比率均升高。MTT A490檢測(cè)發(fā)現(xiàn),轉(zhuǎn)染組細(xì)胞生長(zhǎng)曲線隨時(shí)間變化逐漸降低,而空載體組和CON組比較無明顯差異。同時(shí),細(xì)胞一般狀態(tài)觀察發(fā)現(xiàn)轉(zhuǎn)染后的BMSCs存在生存期較短的現(xiàn)象,這一方面可能由于轉(zhuǎn)染試劑的影響;另一方面可能由于存在高表達(dá)NICD使得Notch信號(hào)活化,有證據(jù)顯示,Notch信號(hào)活化可通過P53凋亡途徑誘導(dǎo)細(xì)胞的凋亡[11],同時(shí)外源性活化Notch信號(hào)可以促使骨髓間充質(zhì)干細(xì)胞提前衰老,抑制細(xì)胞的增殖能力[12]。筆者推測(cè)轉(zhuǎn)染組細(xì)胞處于分化狀態(tài),可能與Notch信號(hào)對(duì)多潛能干細(xì)胞的定向分化和自身復(fù)制具有決定性的調(diào)控作用有關(guān)。然而,目前這些研究多停留在神經(jīng)形態(tài)特征和神經(jīng)細(xì)胞標(biāo)志物水平上,而缺乏生物學(xué)功能特性相關(guān)的證據(jù),目前還沒有確切實(shí)驗(yàn)?zāi)軌蜃C明誘導(dǎo)后的神經(jīng)細(xì)胞具有神經(jīng)生理功能,因此許多學(xué)者將這類細(xì)胞稱為“神經(jīng)樣細(xì)胞”。
綜上所述,高表達(dá)Notch1(NICD)基因可以在一定程度上誘導(dǎo)BMSCs凋亡、抑制其增殖,且表現(xiàn)誘導(dǎo)向神經(jīng)膠質(zhì)樣細(xì)胞分化趨勢(shì)。
[1]Liu R,Yang Y,Yan X,et al.Abnormalities in cytokine secretion from mesenchymal stem cells in psoriatic skin lesions[J].Eur J Dermatol,2013,23(5):600-607.doi:10.1684/ejd.2013.2149.
[2]Crane JL,Cao X.Bone marrow mesenchymal stem cells and TGF-β signaling in bone remodeling[J].J Clin Invest,2014,124(2):466-472.doi:10.1172/JCI70050.
[3]Carvalho FL,Simons BW,Eberhart CG,et al.Notch signaling in prostate cancer:A moving target[J].Prostate,2014,74(9):933-945. doi:10.1002/pros.22811.
[4]Wang S,Kan Q,Sun Y,et al.Caveolin-1 regulates neural differentiation of rat bone mesenchymal stem cells into neurons by modulating Notch signaling[J].Int J Dev Neurosci,2013,31(1):30-35.doi: 10.1016/j.ijdevneu.2012.09.004.
[5]Du HY,Li DN,Fu HY,et al.Effect of rehmannia glutinosa polysaccharide on Notch signal pathway in rat bone marrow mesenchymal stem cells during differentiation into neuron-like cells in vitro[J]. Journal of Shandong University(Health Science),2013,51(12):1-6. doi:10.6040/j.issn.1671-7554.0.2013.402.[杜紅陽,李東寧,付海燕,等.地黃多糖誘導(dǎo)大鼠BMSCs向神經(jīng)樣細(xì)胞分化中對(duì)Notch信號(hào)通路的影響[J].山東大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2013,51(12):1-6.]
[6]Wu R,Tang Y,Zang W,et al.MicroRNA-128 regulates the differentiation of rat bone mesenchymal stem cells into neuron-like cells by Wnt signaling[J].Mol Cell Biochem,2014,387(1-2):151-158. doi:10.1007/s11010-013-1880-7.
[7]Cui H,Yi Q,Feng J,et al.Mechano growth factor E peptide regulates migration and differentiation of bone marrow mesenchymal stem cells[J].J Mol Endocrinol,2014,52(2):111-120.doi:10.1530/JME-13-0157.
[8]Muranishi Y,Terada K,Inoue T,et al.An essential role for RAX homeoprotein and NOTCH-HES signaling in Otx2 expression in embryonic retinal photoreceptor cell fate determination[J].J Neurosci, 2011,31(46):16792-16807.doi:10.1523/JNEUROSCI.3109-11.2011.
[9]Kim M,Park YK,Kang TW,et al.Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage[J].Hum Mol Genet,2014,23(3):657-667.doi:10.1093/hmg/ddt453.
[10]Ille F,Atanasoski S,Falk S,et al.Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord[J].Dev Biol,2007,304(1): 394-408.
[11]El Khatib M,Bozko P,Palagani V,et al.Activation of Notch signaling is required for cholangiocarcinoma progression and is enhanced by inactivation of p53 in vivo[J].PLoS One,2013,8(10):e77433.doi: 10.1371/journal.pone.0077433.
[12]Xie J,Wang W,Si JW,et al.Notch signaling regulates CXCR4 expression and the migration of mesenchymal stem cells[J].Cell Immunol,2013,281(1):68-75.doi:10.1016/j.cellimm.2013.02.001.
(2014-05-13收稿 2014-05-29修回)
(本文編輯 陳麗潔)
Construction of Notch1(NICD)Eukaryotic Expression Vector and Its Influence on the Proliferation and Differentiation of Rat Bone Marrow Mesenchymal Stem Cells in vitro
DU Hongyang1,LI Dongning1,F(xiàn)U Haiyan2△,BAO Cuifen3,QIN Shujian3
1 Department of Dermatology,2 ICU in the First Affiliated Hospital of Liaoning Medical University,3 Department of Anatomy, Liaoning Medical University,Jinzhou 121001,China△
E-mail:4197123@163.com
ObjectiveTo investigate the effect of construct the Notch1(NICD)eukaryotic expression vector on the proliferation and differentiation of rat bone marrow mesenchymal stem cells(BMSCs)in vitro.MethodsRat BMSCs were experimented as the object.NICD eukaryotic expression vector was constructed.pEGFP-N1-NICD expressing plasmids were used to transfect BMSCs.The study included control group(CON group),empty vector group(VEC group)and the transfection group(TRA group).After 48-hour transfection,BMSCs were observed for general morphology.The protein expressions of NSE,GFAP and Notch1 were detected by real-time PCR and Western blotting assay respectively.The apoptosis,cycle distribution and cell proliferation were evaluated by flow cytometry and MTT assay.ResultsThe DNA sequencing confirmed that the pEGFP-N1-NICD recombinant plasmid was successfully constructed,and both VEC group and TRA group expressed green fluorescence after 48-hour transfection.The relative expression levels of Notch1 and GFAP mRNA and protein were significantly higher in TRA group than those in VEC group and CON group(P<0.05),and there was no significant difference between VEC group and CON group.After 48-hour transfection,the ratio of living cells was significantly lower in TRA group than that of CON group and VEC group,and the early apoptotic rate and late apoptotic rate were significantly higher in TRA group than those of CON group and VEC group(P<0.05).The late apoptotic rate was significantly higher inVEC group than that of CON group.The proportion of G1/G0 cells was significantly higher in TRA group than that of CON group and VEC group,but S and G2/M cells were significantly lower(P<0.05).The value of growth curve was gradually decreased in TRA group than that of CON group and VEC group(P<0.05).ConclusionThe high expression of NICD gene might induce apoptosis of BMSCs,inhibit the proliferation in part,and induce into glial-like cell differentiation.
cell proliferation;cell differentiation;transfection;glial fibrillary acidic protein;phosphopyruvate hydratase;Notch signal pathway;bone mesenchymal stem cells;induction;Notch1(NICD)
R349.5
A
10.3969/j.issn.0253-9896.2014.09.009
國(guó)家自然科學(xué)基金面上項(xiàng)目(31170930);遼寧省科技廳自然科學(xué)基金計(jì)劃項(xiàng)目(2013022059);遼寧醫(yī)學(xué)院青年科技啟動(dòng)基金項(xiàng)目(Y2011Z010)
1遼寧醫(yī)學(xué)院附屬第一醫(yī)院皮膚科(郵編121001),2重癥醫(yī)學(xué)科;3遼寧醫(yī)學(xué)院解剖學(xué)教研室
△通訊作者 E-mail:4197123@163.com