• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于苯并噻二唑和硅芴的一系列紅光材料的載流子傳輸性質(zhì)及熒光性質(zhì)

    2014-06-23 06:50:22鄒陸一任愛(ài)民
    物理化學(xué)學(xué)報(bào) 2014年5期
    關(guān)鍵詞:噻二唑化工學(xué)院物理化學(xué)

    李 巖 鄒陸一 任愛(ài)民,*

    (1吉林大學(xué)理論化學(xué)研究所,理論與計(jì)算化學(xué)重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春130023;2吉林化工學(xué)院化學(xué)與制藥工程學(xué)院物理化學(xué)系,吉林吉林132022)

    1 Introduction

    Conjugated organic polymers have attracted significant attention because of their wide potential applications in polymer light-emitting diodes(PLEDs),1-5organic field effect transistors(OFETs),6-10and organic solar cells(OSCs)11-15etc.Red emission can be achieved by introducing narrow band gap on the main chain.Recently,Cao's group16,17reported a new type of red or green polymers synthesized by incorporating 4,7-di(4-hexyl-2-thienyl)-2,1,3-benzothiadiazole(DHTBT)and 2,1,3-benzothiadiazole(BT),respectively,to poly(2,7-silafluorene)(PSiF),in which the 9-carbon in fluorene ring is replaced by silicon to improve the spectral stability at thermal annealing of polyfluorene and the electronic transmission performance.Inspired by the experimental work above,we designed a series of red-light-emitting oligomers.The chemical structures are shown in Fig.1.

    In order to provide theoretical guidance for designing new polymer-based organic light-emitting diodes(OLEDs),the various properties of these oligomers,such as the highest occupied molecular orbitals(HOMOs),the lowest unoccupied molecular orbitals(LUMOs),HOMO-LUMO gaps(ΔEH-L,the energy difference between the HOMO and LUMO),ionization potentials(IPs),electron affinities(EAs),reorganization energies(λs),the lowest excitation energies(Eg),exciton binding energies(Eb),and fluorescence emission energies(EFlu)were calculated and discussed in detail in this work.All these parameters of the polymers were estimated through a linear extrapolation technique.18,19And the results were summarized by comparing the properties between polymer and oligomer as well as the properties of polymers with different proportions and coordination architectures of dithienyl-benzothiadiazole and silafluorene.We hope that it can predict how to change the hole/electron injection/transport abilities and the optical properties of polymers with the position of benzothiadiazole group on silafluorene group or the position of butyl group on thiophene group changes.

    2 Computational methods and theory

    2.1 Computational methods

    The geometries of the ground,ionic,and the lowest excited singlet states of all the considered oligomers were fully optimized without any symmetry constraints using density functional theory(DFT)20withBecke′sthree-parameter functional and the Lee-Yang-Parr functional(B3LYP)21methods and the configuration interaction with single-excitation(CIS)22-24levels,respectively,with 6-31g*basis set for all atoms.On the basis of the optimized ground-and excited-state geometries,the absorption and fluorescence properties were investigated using time-dependent DFT(TD-DFT)calculations.25-27The polarizable continuum model(PCM)was used in treating the solvent(chloroform)effect on the absorbance and emission spectra.The properties of the polymers were obtained through the extrapolation method:18,19

    where c is energy,c∞is the energy of the polymers,c1is slope.

    All calculations have been performed with the Gaussian 09 package.28

    2.2 Reorganization energy and carrier transport

    In OLEDs,holes and electrons must be injected from opposite electrodes,form excitons in an emission layer,and then the excitons decay to emit light.So the hole and electron injection/transport capabilities of the materials in a device must be taken into account for OLED fabrication.The intermolecular charge transport in disordered polymers can be regarded as a charge hopping process that can be represented as follows:M+/-+M=M+M+/-,where M+/-denotes the molecule in the cationic and hole(h)/electron(e)ionic states,M is the neutral molecule.According to theories of the Marcus and Hush,29-31the hole(or electron)transferrate(K)can be calculated by the following equation:

    Fig.1 Sketch map of the structures of the polymers studied

    whereTis the temperature,kBis the Boltzmann constant,his the Plank constant,λis the reorganization energy,andVis the electronic couplings between the two adjacent molecules in organic single crystal.Obviously,λandVare the two most important parameters for the charge-transfer rate.And meanwhile,Vin the amorphous materials can almost be regarded as a constant.32,33Thus we mainly investigate the internal reorganization energy for the studied polymers.The internal hole(or electron)reorganization energies can be obtained as follows:34

    where HEP is hole extraction potential and EEP is electron extraction potential.

    In view of equation(2),the reorganization energy can provide a useful link between the electronic structures and the transport properties.In OLEDs,low and close reorganization energies of the hole and the electron will be benefit to achieve highly efficient electroluminescence.The IPs and EAs can be either for vertical excitations(v,at the geometry of the neutral molecule)or adiabatic excitations(a,optimized structure for both the neutral and charged molecules).It is well known that the lower IP the hole transport layer(HTL),the easier it accepts a hole from anode.On the other hand,the higher EA the electron transport layer(ETL),the easier it snatches an electron from cathode.

    2.3 Exciton binding energy

    The exciton binding energy(Eb)is one of the key parameters for the electroluminescence quantum efficiency of OLEDs,35which can be determined by the following equation:EFlu.Excitons are created when the electrons and holes meet each other in the emission layer,then may decay radiatively and emit photons in the OLED devices.36,37SoEbis the energy of the Coulomb interactions between an electron and a hole.One electron is promoted from the HOMO into the LUMO and an exciton is formed.38Stable excitons will be formed only whenEb>>kBT(thermal energy).On the other hand,ifEbis less than or comparable tokBT(~25 meV,at room temperature),the bound excitons will decay into charged polaron pairs.39Generally,the process of electron-hole pair recombination in OLEDs is enhanced by the large exciton binding energy.40,41

    3 Results and discussion

    3.1 Geometric structures and frontier orbitals of singlet ground states

    The optimized structures of the ground states of all the oligomers change slightly with increasing the repeated unitsn(n=1-4)(shown in Table 1).With different proportions of SiF and DHTBT,there is almost no change in the structures of the oligomers for the ground states.C2―C3 bond of(SiF1-DHTBT-mBu1)4(butyl group at themeta-position on thiophene group)is longer,its C6―C7 bond is shorter,and its dihedral angle C5=C6―C7=C8 is closer to 180°but its dihedral angle C1=C2―C3=C4 is further away from 180°than those of(SiF1-DHTBToBu1)4(butyl group at theortho-position on thiophene group).In(SiF1-DHTBT1-o)n,thienyl and benzothiadiazole are located almost in the same plane,but SiF is approximately perpendicular to DHTBT.And(SiF1-DHTBT1-o)nis less coplanar compared to(SiF1-DHTBT1-m)nand(SiF1-DHTBT1-p)n.It will affect the charge carrier transport and optical properties of the oligomersandpolymers.

    Table 1 Selected important bond lengths(L),and dihedral angles(Φ)of all the oligomers in the ground state with B3LYP/6-31g*

    Fig.2 Plots of HOMO and LUMO of all the oligomers(n=1-4)by DFT//B3LYP/6-31g*

    In order to characterize the optical and electronic properties,it is significant to examine the HOMO and LUMO energy levels of the oligomers and polymers,and their delocalized electron density and energy gaps.The contour plots of HOMO and LUMO for all the oligomers(n=1-4)are shown in Fig.2,and the frontier molecular orbital compositions of the fragments(arranged from left to right in the order of Fig.2)for the oligomers(n=4)are given in Table 2.It can be seen from Fig.2 that with the increase ofn,for(SiF1-DHTBT1-o)n,the HOMOs gradually localize on the core DHTBT groups,the LUMOs gradually localize on one side benzothiadiazole group of the oligomers.In(SiF1-DHTBT1-p)n,the HOMO gradually localizes on one side DHTBT groups,the LUMOs gradually localize on the other side DHTBT groups of the oligomers,both HOMO and LUMO are more delocalized compared with(SiF1-DHTBT1-o)n.In(SiF1-DHTBTmBu1)n,(SiF1-DHTBToBu1)n,and(SiF1-DHTBT1-m)n,the HOMOs gradually delocalize on the core DHTBT and SiF groups,the LUMOs gradually localize on the core DHTBT groups of the oligomers.While in(SiF2-DHTBT1-m)n,the HOMOs and LUMOs gradually localize on the core DHTBT groups.The frontier molecular orbital compositions of the oligomers(n=4)in the ground state(seen in Table 2)also confirm this fact.Interestingly,in(SiF2-DHTBT1-m)4,the HOMOs and LUMOs are both centrosymmetric.All the analyses given above indicate that electronic charge transfer may take place easily when an electron is excited from the ground state to the first excited state in(SiF1-DHTBT1-o)nand(SiF1-DHTBT1-p)n.

    The HOMO and LUMO can be used to estimate the barrier height of injection hole and electron of polymers at ambient conditions.42,43The higher HOMO and LUMO energy levels,lead to the easier hole injection and the more difficult electron injection.The HOMO and LUMO levels as well as their energy gaps of all the oligomers(n=1-4)were computed and listed in Fig.3.As the repeat unitnincreasing,the separation energies between the frontier occupied or unoccupied molecular orbitals get gradually smaller,the HOMO energy levels increase,the LUMO energy levels decrease and thus their gaps get smaller(seen in Figs.3 and 4).For the isomers,the HOMO energy levels decrease from(SiF1-DHTBT1-m)nto(SiF1-DHTBT1-p)n,and then to(SiF1-DHTBT1-o)n;the LUMO energy levels decreasein the opposite trend,thus the energy gaps increase in the same order as the HOMO energy levels do(seen in Fig.5).That indicates that(SiF1-DHTBT1-m)nare favorable for accepting holes and electrons efficiently among the isomers,next are(SiF1-DHTBT1-p)n,and last are(SiF1-DHTBT1-o)n.Furthermore,their absorption wavelengths are gradually blue-shifted.The HOMO,LUMO energy levels and their energy gaps(ΔEH-L)of(SiF1-DHTBTmBu1)nare higher than those of(SiF1-DHTBT1-m)nby 0.06,0.03,and 0.09 eV,respectively,it indicates that butyl has only a slight effect on the hole and electron injection performance of polymers,while the position of butyl group on thiazole group significantly affects the HOMO and LUMO energy levels and their gaps in view of the results of(SiF1-DHTBTm-Bu1)nand(SiF1-DHTBToBu1)n.(SiF1-DHTBTmBu1)n(the dihedral angle between the SiF and DHTBTmBu is close to 180°)show better hole and electron injection performance than(SiF1-DHTBToBu1)n(the dihedral angle between the SiF and DHTBTmBu is about 130°)because the former have better conjugation between the electron accepter and donor groups.The large proportion of SiF group decreases the HOMO energy but increases the LUMO energy,and thus broadens the energy gap,which allows the hole and electron injection energy barriers to be increased and makes absorption wavelength blueshifted.It can be seen from Fig.6 that it is easy to inject hole from indium tin oxide(ITO)(~4.7 eV)(except(SiF1-DHTBT1-o)n)and inject electron from Ba(~2.7 eV)to the polymers.Therefore,in this sense,these polymers except for(SiF1-DHTBT1-o)nare strong candidates as good electroluminescent materials.

    Table 2 Molecular orbital compositions(%)of the fragments(arranged from left to right in the order of Fig.2)in the S0states for the oligomers(n=4)by B3LYP/6-31g*

    Fig.3 Diagram of the band gap region around the frontier molecular orbitals of all molecular monomers by B3LYP/6-31g*

    Fig.4 HOMO(a)and LUMO(b)energy levels(εHOMO,εLUMO),HOMO,LUMO energy gaps(ΔEH-L)(c)and the lowest singlet-singlet vertical transition energies(Eg)(d)of all the oligomers as a function of the reciprocal number of the repeated units

    Fig.5 Variation of ΔEH-Land the lowest singlet-singlet vertical transition energies(Eg)of all polymers

    3.2 Ionization potentials and electron affinities

    According to Eq.(2),for efficient OLEDs,the hole and electron reorganization energies need to be small and close to each other to achieve rapid and balanced carrier transport in emitter,leading to higher fluorescence quantum efficiency of the OLED.

    The IPs,EAs,HEPs,EEPs,and reorganization energies(λs)of the studied oligomers calculated by B3LYP/6-31g*are list-ed in Table 3.Through the extrapolation method,those of the polymers were obtained and depicted in Table 3.The order of the negative values of HOMO,LUMO energy levels,IP(a)and EA(a)for the polymers are shown in Fig.7.Even though the HOMO underestimates the ability of losing an electron but the LUMO overestimates the ability of capturing an electron for the polymers,the qualitative law is consistent with the IP and EA(Fig.7).It can be seen from Table 3 that polymers are favorable to injecting hole and electron from the opposite electrodes because of their lower IP and higher EA levels comparing to oligomers.For(SiF2-DHTBT1-m)n,(SiF1-DHTBT1-m)n,and(SiF1-DHTBTmBu1)n,they show relatively better hole and electron injection abilities than others in view of their lower IP and higher EA values.Increasing the proportion of SiF unit only changes the IP value but does not change the EA value,therefore,enhances the hole injection ability but has no effect on the electron injection ability.Compared to(SiF1-DHTBT1-m)n,the poorer hole and electron injection abilities of(SiF1-DHTBTmBu1)ncan be attributed to the steric congestion of butyl group.For(SiF1-DHTBToBu1)n,there is larger steric hindrance comparing to(SiF1-DHTBTmBu1)n,leading to its poorer hole and electron injection abilities.(SiF1-DHTBT1-o)nhave the highest IP and lowest EA values,implying its poorest hole and electron injection abilities,and followed by(SiF1-DHTBT1-p)n.

    Fig.6 HOMO and LUMO energy levels of the polymers and the electrode potentials of the anode and cathode

    Table 3 Ionization potentials,electron affinities,hole extraction potentials,electron extraction potentials,and reorganization energies for all the oligomers(n=1-4)and polymers(n=∞)

    continued Table 3

    Compared to PF,the most studied polymers in this work show favorable to injecting a hole and an electron in view of their smaller IP(v)and bigger EA(v)than PF(5.37 eV for IP(v)and 1.20 eV for EA(v)44),except for(SiF1-DHTBT1-o)n(5.54 eV for IP(v)).

    According to equation(2),the hole and electron transfer rates increase with decreasing the reorganization energy.As increasing repeat unitn,reorganization energy gets small(see Ta-ble 3),thus the polymers have good hole and electron transport properties and would be good emitting material with high efficiency due to their hole and electron reorganization energies not only extremely small but almost the same,except for(SiF1-DHTBT1-m)nand(SiF1-DHTBToBu1)n.Introducing SiF group into the backbone allows the electron-hole balance.

    Fig.7 Calculated negative value of HOMO,LUMO energy levels,IP(a),and EA(a)of the polymers

    3.3 Absorption spectra and fluorescent emission spectra

    The energy gaps(ΔEH-L)are not equal to the optical band gap(Eg)because of the neglect of inter electronic interaction upon the single one electron excitation,45-49and the lowest singlet-singlet transition is not only the electron promotion from HOMO to LUMO,but a combined transition of HOMO-xto LUMO+y(x,y=1,2,3,…),which will subsequently be disscussed(see Fig.5).

    The absorption and emission oscillator strengths of the oligomers increase when the repeat unit increases(see Tables 4,5 and Fig.8).The wavelengths of the maximum absorptions are 627.1,663.3,559.0,611.1,638.1,and 592.5 nm for(SiF2-DHTBT1-m)n,(SiF1-DHTBT1-m)n,(SiF1-DHTBT1-o)n,(SiF1-DHTBT1-p)n,(SiF1-DHTBTmBu1)n,and(SiF1-DHTBToBu1)n(see Table 4)respectively,which confirms the prediction from the energy gaps discussed above.The maximum absorption peaks of all monomers arise fromS0toS1,which are dominated by HOMO→LUMO.With increasing the conjugated length,the lowest optically allowed electronic transition is not mainly the promotion of the electron from HOMO to LUMO becauseof the nearly degenerated HOMOs and LUMOs,except for(SiF1-DHTBToBu1)n.

    Table 4 Calculated absorption spectral data of all the oligomers(n=1-4)and polymers(n=∞)

    Table 5 Fluorescent emissions of all the oligomers(n=1-3(4))and polymers(n=∞)

    continued Table 5

    Fig.8 Absorption of all the oligomers as a function of the reciprocal number of the repeated units

    The predicted emission spectra are located in near infrared light region(760 nm>λem>620 nm)(Table 5).The maximum emission peaks are all assigned toπ→π*electronic transitions,arising fromS1toS0,which are due to the electron transitions from LUMO to HOMO.

    Moreover,the exciton binding energies of all studied polymers are at least 14 times larger than 25 meV,which implies their room-temperature stimulated emission.The largerEbvalues(>600 meV)of(SiF1-DHTBToBu1)nand(SiF1-DHTBT1-o)nindicate that the OLEDs with them may have higher fluorescent quantum efficiency because they are easier to form an exciton in the OLEDs.

    4 Conclusions

    The electronic structures and photophysical properties of a series of red-emitting polymers based on benzothiadiazole and silafluorene were investigated in this work.The results show that(SiF1-DHTBT1-m)nare favorable for accepting a hole and an electron among the isomers,next are(SiF1-DHTBT1-p)n,and last are(SiF1-DHTBT1-o)n.The position of butyl group on thiazole group significantly affects the hole and electron injection abilities as well as the absorption and emission wavelengths.

    Overall,(SiF2-DHTBT1-m)nand(SiF1-DHTBTmBu1)ndemonstrate good hole and electron injection abilities as well as fast and balanced electron/hole transport performance.Meanwhile,theirEbvalues are at least 14 times larger thankBT(~25 meV,at room temperature).So they can be used as materials for high efficient OLEDs.(SiF1-DHTBT1-o)nare most unfavorable for being used as the hole and electron injection materials because their largest IP and smallest EA,but they may be good emitter layer materials because they are easier to form an exciton in OLEDs.

    The predicted emission spectra of polymers are located in red visible light region(652.2-676.6 nm)except for(SiF1-DHTBT1-o)n(609.4 nm).

    (1) Garcia,A.;Bakus,R.C.,II;Zalar,P.;Hoven,C.V.;Brzezinski,J.Z.;Nguyen,T.Q.J.Am.Chem.Soc.2011,133(8),2492.doi:10.1021/ja106268w

    (2) Pei,Q.;Yu,G.;Zhang,C.;Yang,Y.;Heeger,A.J.Science1995,269(5227),1086.doi:10.1126/science.269.5227.1086

    (3)Burn,P.L.;Holmes,A.B.;Kraft,A.;Bradley,D.D.C.;Brown,A.R.;Friend,R.H.;Gymer,R.W.Nature1992,356(6364),47.doi:10.1038/356047a0

    (4)Xu,X.;Han,B.;Chen,J.;Peng,J.;Wu,H.;Cao,Y.Macromolecules2011,44(11),4204.doi:10.1021/ma200191p

    (5) Park,M.J.;Lee,J.;Jung,I.H.;Park,J.H.;Wang,D.H.;Shim,H.K.Macromolecules2008,41(24),9643.doi:10.1021/ma802043q

    (6)Allard,S.;Forster,M.;Souharce,B.;Thiem,H.;Scherf,U.Angew.Chem.Int.Edit.2008,47(22),4070.

    (7) Dimitrakopoulos,C.D.;Malenfant,P.R.L.Adv.Mater.2002,14,99.

    (8) Bao,Z.;Lovinger,A.J.;Brown,J.J.Am.Chem.Soc.1998,120(1),207.doi:10.1021/ja9727629

    (9) Forrest,S.R.Chem.Rev.1997,97,1973.

    (10) Sirringhaus,H.Proc.IEEE2009,97(9),1570.doi:10.1109/JPROC.2009.2021680

    (11)Ho,C.L.;Wang,Q.;Lam,C.S.;Wong,W.Y.;Ma,D.;Wang,L.;Gao,Z.Q.;Chen,C.H.;Cheah,K.W.;Lin,Z.Chem.Asian J.2009,4(1),89.doi:10.1002/asia.v4:1

    (12) Cerezo,A.;Clifton,P.H.;Galtrey,M.J.;Humphreys,C.J.;Kelly,T.F.;Larson,D.J.;Lozano-Perez,S.;Marquis,E.A.;Oliver,R.A.;Sha,G.;Thompson,K.;Zandbergen,M.;Alvis,R.L.Mater.Today2007,10(12),36.doi:10.1016/S1369-7021(07)70306-1

    (13) Roncali,J.;Leriche,P.;Cravino,A.Adv.Mater.2007,19(16),2045.

    (14) Roncali,J.Accounts Chem.Res.2009,42(11),1719.doi:10.1021/ar900041b

    (15) Jorgensen,M.;Krebs,F.C.J.Org.Chem.2005,70(15),6004.doi:10.1021/jo0506783

    (16)Wang,E.;Li,C.;Zhuang,W.;Peng,J.;Cao,Y.J.Mater.Chem.2008,18(7),797.doi:10.1039/b716607a

    (17)Wang,E.;Wang,L.;Lan,L.;Luo,C.;Zhuang,W.;Peng,J.;Cao,Y.Appl.Phys.Lett.2008,92(3),033307.doi:10.1063/1.2836266

    (18) Kuhn,H.J.Chem.Phys.1949,17(12),1198.doi:10.1063/1.1747143

    (19) Lahti,P.M.;Obrzut,J.;Karasz,F.E.Macromolecules1987,20(8),2023.doi:10.1021/ma00174a056

    (20) Hohenberg,P.Phys.Rev.B1964,136(3B),864.

    (21) Becke,A.D.J.Chem.Phys.1993,98(7),5648.doi:10.1063/1.464913

    (22) Stanton,J.F.;Gauss,J.R.;Ishikawa,N.;Head-Gordon,M.J.Chem.Phys.1995,103(10),4160.doi:10.1063/1.469601

    (23) Foresman,J.B.;Head-Gordon,M.;Pople,J.A.;Frisch,M.J.J.Phys.Chem.1992,96(1),135.doi:10.1021/j100180a030

    (24)Walters,V.A.;Hadad,C.M.;Thiel,Y.;Colson,S.D.;Wiberg,K.B.;Johnson,P.M.;Foresman,J.B.J.Am.Chem.Soc.1991,113(13),4782.doi:10.1021/ja00013a011

    (25) Casida,M.E.;Jamorski,C.;Casida,K.C.;Salahub,D.R.J.Chem.Phys.1998,108(11),4439.doi:10.1063/1.475855

    (26) Stratmann,R.E.;Scuseria,G.E.;Frisch,M.J.J.Chem.Phys.1998,109(19),8218.doi:10.1063/1.477483

    (27) Matsuzawa,N.N.;Ishitani,A.;Dixon,D.A.;Uda,T.J.Phys.Chem.A2001,105(20),4953.doi:10.1021/jp003937v

    (28) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision B.01;Gaussian Inc.:Wallingford,CT,2009.

    (29) Marcus,R.Rev.Mod.Phys.1993,65(3),599.doi:10.1103/RevModPhys.65.599

    (30) Hush,N.S.J.Chem.Phys.1958,28(5),962.doi:10.1063/1.1744305

    (31) Marcus,R.A.J.Chem.Phys.1956,24(5),966.doi:10.1063/1.1742723

    (32) Nelsen,S.F.;Blomgren,F.J.Org.Chem.2001,66(20),6551.doi:10.1021/jo001705m

    (33) Nelsen,S.F.;Trieber,D.A.;Ismagilov,R.F.;Teki,Y.J.Am.Chem.Soc.2001,123(24),5684.doi:10.1021/ja003436n

    (34) Hutchison,G.R.;Ratner,M.A.;Marks,T.J.J.Am.Chem.Soc.2005,127(7),2339.doi:10.1021/ja0461421

    (35) Heeger,A.J.;Cao,Y.;Parker,I.D.;Yu,G.;Zhang,C.Nature1999,397(6718),414.doi:10.1038/17087

    (36) Karabunarliev,S.;Bittner,E.Phys.Rev.Lett.2003,90(5),057402.doi:10.1103/PhysRevLett.90.057402

    (37) Chen,L.;Zhu,L.;Shuai,Z.J.Phys.Chem.A2006,110(50),13349.doi:10.1021/jp0652998

    (38) Baldo,M.;Segal,M.Phys.Status Solidi A-Appl.Res.2004,201(6),1205.

    (39) Heeger,A.J.Nature of the Primary Photoexcitations in Poly(arylenevinylenes):Bound Neutral Excitons or Charged Polaron Pairs,in Primary Photoexcitations in Conjugated Polymers:Molecular Excitation Versus Semiconductor Band Model.Singapore and River Edge:NJ,1997;pp 20-47.

    (40) Seo,J.H.;Jin,Y.;Brzezinski,J.Z.;Walker,B.;Nguyen,T.Q.ChemPhysChem2009,10(7),1023.

    (41)Li,Y.;Zou,L.Y.;Ren,A.M.;Feng,J.K.Comput.Theor.Chem.2012,981,14.doi:10.1016/j.comptc.2011.11.021

    (42)Xu,X.;Zhu,E.;Bian,L.;Wang,Z.;Wang,J.;Zhuo,Z.;Wang,J.;Zhang,F.;Tang,W.Chin.Sci.Bull.2012,57(9),970.doi:10.1007/s11434-011-4964-3

    (43) Tang,W.;Hai,J.;Dai,Y.;Huang,Z.;Lu,B.;Yuan,F.;Tang,J.;Zhang,F.Sol.Energy Mater.Sol.Cells2010,94(12),1963.doi:10.1016/j.solmat.2010.07.003

    (44)Wang,J.F.;Feng,J.K.;Ren,A.M.;Liu,X.D.;Ma,Y.G.;Lu,P.;Zhang,H.X.Macromolecules2004,37(9),3451.doi:10.1021/ma035725c

    (45) Li,Q.;Yu,J.S.;Li,L.;Jiang,Y.D.;Suo,F.;Zhan,X.W.Acta Phys.-Chim.Sin.2008,24,133.[李 青,于軍勝,李 璐,蔣亞?wèn)|,鎖 釩,占肖衛(wèi),物理化學(xué)學(xué)報(bào),2008,24,133.]doi:10.3866/PKU.WHXB20080123

    (46) Hay,P.J.J.Phys.Chem.A2002,106(8),1634.doi:10.1021/jp013949w

    (47) Curioni,A.;Andreoni,W.;Treusch,R.;Himpsel,F.J.;Haskal,E.;Seidler,P.;Heske,C.;Kakar,S.;van Buuren,T.;Terminello,L.J.Appl.Phys.Lett.1998,72(13),1575.doi:10.1063/1.121119

    (48)Hong,S.Y.;Kim,D.Y.;Kim,C.Y.;Hoffmann,R.Macromolecules2001,34(18),6474.doi:10.1021/ma010254k

    (49)Liu,X.J.;Lin,T.;Gao,S.W.;Ma,R.;Zhang,J.Y.;Cai,X.C.;Yang,L.;Teng,F.Acta Phys.-Chim.Sin.2012,28,1337.[劉小君,林 濤,高少偉,馬 睿,張晉悅,蔡新晨,楊 磊,滕 楓.物理化學(xué)學(xué)報(bào),2012,28,1337.]doi:10.3866/PKU.WHXB201204092

    猜你喜歡
    噻二唑化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    1,3,4-噻二唑取代的氮唑類(lèi)化合物的合成及體外抗真菌活性
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    1,3,4-噻二唑類(lèi)衍生物在農(nóng)藥活性方面的研究進(jìn)展
    Chemical Concepts from Density Functional Theory
    1,3,4-噻二唑衍生物的合成與應(yīng)用
    《化工學(xué)報(bào)》贊助單位
    亚洲专区国产一区二区| 欧美大码av| 欧美一级毛片孕妇| 变态另类丝袜制服| 亚洲成人精品中文字幕电影| 日本免费一区二区三区高清不卡| 国产视频一区二区在线看| 精品国产亚洲在线| 一a级毛片在线观看| 亚洲av电影在线进入| 成年人黄色毛片网站| www.熟女人妻精品国产| 国产亚洲av高清不卡| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲免费av在线视频| 午夜日韩欧美国产| 神马国产精品三级电影在线观看 | 久久久国产精品麻豆| 欧美日韩乱码在线| 欧美zozozo另类| 69av精品久久久久久| 久久久久九九精品影院| 亚洲精品久久国产高清桃花| 青草久久国产| 国产精华一区二区三区| 青草久久国产| 婷婷亚洲欧美| 免费高清在线观看日韩| 婷婷精品国产亚洲av在线| 欧美三级亚洲精品| 成年女人毛片免费观看观看9| 精品久久久久久久久久免费视频| 手机成人av网站| 成人国产一区最新在线观看| 久久精品国产亚洲av香蕉五月| 在线免费观看的www视频| 美女大奶头视频| 神马国产精品三级电影在线观看 | 亚洲欧美日韩高清在线视频| 嫩草影院精品99| 国产高清激情床上av| 国产一区二区三区视频了| 看黄色毛片网站| 久久人妻av系列| 99热这里只有精品一区 | 中文在线观看免费www的网站 | 久久国产亚洲av麻豆专区| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 久久香蕉国产精品| aaaaa片日本免费| 国产成人精品久久二区二区免费| 韩国精品一区二区三区| 亚洲九九香蕉| 亚洲男人的天堂狠狠| 欧美不卡视频在线免费观看 | 日本 欧美在线| 国产激情久久老熟女| 亚洲av五月六月丁香网| 亚洲成人国产一区在线观看| 久9热在线精品视频| 午夜免费鲁丝| 自线自在国产av| 国产一区二区激情短视频| 一级作爱视频免费观看| av电影中文网址| 亚洲成人精品中文字幕电影| 午夜福利在线观看吧| √禁漫天堂资源中文www| 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 一本一本综合久久| 午夜日韩欧美国产| 波多野结衣av一区二区av| 黄频高清免费视频| 国产人伦9x9x在线观看| 麻豆久久精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 一本一本综合久久| 中文资源天堂在线| 两个人免费观看高清视频| 色精品久久人妻99蜜桃| 看免费av毛片| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| 亚洲成国产人片在线观看| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 国产精华一区二区三区| 亚洲国产日韩欧美精品在线观看 | 亚洲天堂国产精品一区在线| ponron亚洲| 露出奶头的视频| 亚洲欧美激情综合另类| 美女国产高潮福利片在线看| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 看免费av毛片| 国产精品久久久av美女十八| 精品久久久久久久末码| 淫妇啪啪啪对白视频| ponron亚洲| 亚洲狠狠婷婷综合久久图片| 99热这里只有精品一区 | 欧美黑人精品巨大| 黄色女人牲交| 免费在线观看完整版高清| 欧美黄色片欧美黄色片| 久久久精品欧美日韩精品| 欧美zozozo另类| 免费在线观看黄色视频的| 18禁黄网站禁片午夜丰满| 欧美人与性动交α欧美精品济南到| 成年免费大片在线观看| 欧美乱码精品一区二区三区| 久久精品aⅴ一区二区三区四区| 国产精品久久视频播放| 99国产精品99久久久久| 国产又色又爽无遮挡免费看| 大香蕉久久成人网| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 国产精品av久久久久免费| 亚洲av电影不卡..在线观看| 亚洲精品国产区一区二| 久久中文字幕一级| 国产人伦9x9x在线观看| 少妇粗大呻吟视频| 久久中文字幕人妻熟女| 日本在线视频免费播放| 嫩草影视91久久| 久久中文字幕一级| 久久国产精品人妻蜜桃| 色在线成人网| 又大又爽又粗| 中文资源天堂在线| 免费电影在线观看免费观看| 人人妻人人澡人人看| 亚洲国产欧美网| 成人三级黄色视频| 精品久久久久久久末码| 黑人操中国人逼视频| 午夜福利欧美成人| 91国产中文字幕| 国产精品野战在线观看| 99re在线观看精品视频| 亚洲人成电影免费在线| 中文字幕精品免费在线观看视频| 精品乱码久久久久久99久播| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 视频区欧美日本亚洲| 成人国语在线视频| 少妇 在线观看| 一二三四社区在线视频社区8| 三级毛片av免费| 日本熟妇午夜| 久久精品影院6| 欧美黄色淫秽网站| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 校园春色视频在线观看| 老汉色∧v一级毛片| 精品久久久久久久毛片微露脸| 国产v大片淫在线免费观看| 丰满的人妻完整版| 老鸭窝网址在线观看| 淫妇啪啪啪对白视频| 人人妻人人澡欧美一区二区| 桃红色精品国产亚洲av| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看 | 久久久国产成人免费| 欧美乱码精品一区二区三区| 色综合亚洲欧美另类图片| 亚洲成人久久爱视频| 亚洲自偷自拍图片 自拍| 国产av一区二区精品久久| 99精品久久久久人妻精品| 国产免费男女视频| 亚洲av成人av| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 满18在线观看网站| 免费一级毛片在线播放高清视频| 两个人免费观看高清视频| av福利片在线| 在线十欧美十亚洲十日本专区| 亚洲精品色激情综合| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 免费在线观看日本一区| 国产又爽黄色视频| 很黄的视频免费| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 国产精品免费一区二区三区在线| 欧美中文日本在线观看视频| 亚洲 国产 在线| 亚洲黑人精品在线| 一本综合久久免费| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 亚洲精品中文字幕在线视频| 亚洲黑人精品在线| 看黄色毛片网站| 久久99热这里只有精品18| 国产麻豆成人av免费视频| 中文字幕精品免费在线观看视频| 欧美又色又爽又黄视频| 成人手机av| 国产亚洲精品一区二区www| 一进一出好大好爽视频| 桃色一区二区三区在线观看| 少妇粗大呻吟视频| cao死你这个sao货| 欧美日本视频| 岛国视频午夜一区免费看| 国产视频内射| 久久久久久人人人人人| 日韩高清综合在线| www日本在线高清视频| 亚洲精品美女久久久久99蜜臀| 色综合欧美亚洲国产小说| 欧美日韩精品网址| 少妇被粗大的猛进出69影院| 日本 av在线| 法律面前人人平等表现在哪些方面| 欧美国产精品va在线观看不卡| 免费看a级黄色片| 国产精品av久久久久免费| 久久精品国产99精品国产亚洲性色| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 国产精品日韩av在线免费观看| 99riav亚洲国产免费| 国产成人欧美在线观看| 亚洲中文日韩欧美视频| 999精品在线视频| 国内揄拍国产精品人妻在线 | 精品欧美国产一区二区三| 亚洲一区二区三区不卡视频| 90打野战视频偷拍视频| 99精品在免费线老司机午夜| 日韩精品免费视频一区二区三区| 人人妻人人澡人人看| 熟女电影av网| 一级片免费观看大全| 人人妻人人看人人澡| 亚洲成人国产一区在线观看| 色尼玛亚洲综合影院| 国产亚洲精品第一综合不卡| 久久这里只有精品19| 中文亚洲av片在线观看爽| 国产精品精品国产色婷婷| 级片在线观看| av欧美777| 一本久久中文字幕| 波多野结衣巨乳人妻| 久久中文看片网| 亚洲人成电影免费在线| 亚洲av成人一区二区三| 变态另类丝袜制服| 高潮久久久久久久久久久不卡| 一区二区日韩欧美中文字幕| 国产v大片淫在线免费观看| 亚洲 国产 在线| 久久性视频一级片| 又紧又爽又黄一区二区| 男女视频在线观看网站免费 | 丁香欧美五月| 久久久精品国产亚洲av高清涩受| 日本免费一区二区三区高清不卡| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 一边摸一边抽搐一进一小说| 手机成人av网站| 亚洲九九香蕉| 韩国av一区二区三区四区| 老汉色av国产亚洲站长工具| 我的亚洲天堂| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| 成人三级黄色视频| 性欧美人与动物交配| 嫩草影视91久久| 1024手机看黄色片| 不卡一级毛片| 制服诱惑二区| av免费在线观看网站| 久久中文字幕一级| 美国免费a级毛片| 色综合站精品国产| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 国产成人av激情在线播放| 久久亚洲精品不卡| 国产成人啪精品午夜网站| 欧美av亚洲av综合av国产av| 夜夜夜夜夜久久久久| 日本免费一区二区三区高清不卡| 精品熟女少妇八av免费久了| 国产爱豆传媒在线观看 | 窝窝影院91人妻| 国产成年人精品一区二区| 高清在线国产一区| 婷婷六月久久综合丁香| 国产激情久久老熟女| 在线视频色国产色| 欧美丝袜亚洲另类 | 夜夜爽天天搞| 婷婷亚洲欧美| 夜夜爽天天搞| 一级a爱视频在线免费观看| 国产黄色小视频在线观看| 色播在线永久视频| 香蕉av资源在线| 免费在线观看黄色视频的| 欧美中文日本在线观看视频| 成熟少妇高潮喷水视频| 亚洲一区二区三区不卡视频| 色哟哟哟哟哟哟| 丰满的人妻完整版| 大型av网站在线播放| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三 | 在线观看免费午夜福利视频| 亚洲av电影在线进入| 亚洲av成人av| 欧美日韩亚洲国产一区二区在线观看| 午夜视频精品福利| 日韩欧美免费精品| 欧美一级a爱片免费观看看 | 男女做爰动态图高潮gif福利片| 久久久国产成人免费| 国产精品一区二区精品视频观看| 亚洲av日韩精品久久久久久密| 成人18禁在线播放| 此物有八面人人有两片| 成年人黄色毛片网站| 老司机在亚洲福利影院| 丝袜美腿诱惑在线| 一级毛片女人18水好多| 国产蜜桃级精品一区二区三区| 两人在一起打扑克的视频| 欧美亚洲日本最大视频资源| 国产黄色小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲电影在线观看av| 久久香蕉国产精品| 欧美中文综合在线视频| 久久久久久九九精品二区国产 | 亚洲av熟女| 人妻丰满熟妇av一区二区三区| 日本 av在线| 十分钟在线观看高清视频www| 成人特级黄色片久久久久久久| 国产黄色小视频在线观看| 怎么达到女性高潮| 久久精品国产清高在天天线| 欧美另类亚洲清纯唯美| 欧美日韩黄片免| 日本 欧美在线| 色综合婷婷激情| 免费在线观看完整版高清| 日本撒尿小便嘘嘘汇集6| 国产视频一区二区在线看| 中文字幕另类日韩欧美亚洲嫩草| 男女那种视频在线观看| 男人舔女人下体高潮全视频| 久久久国产成人免费| 在线观看66精品国产| 色综合站精品国产| 午夜久久久久精精品| 好男人电影高清在线观看| cao死你这个sao货| 亚洲成av人片免费观看| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区| 国产三级黄色录像| 97超级碰碰碰精品色视频在线观看| 男男h啪啪无遮挡| 亚洲美女黄片视频| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 久久久久久免费高清国产稀缺| www.999成人在线观看| bbb黄色大片| 又黄又粗又硬又大视频| 中文字幕人成人乱码亚洲影| 桃红色精品国产亚洲av| 亚洲精品在线美女| 国产麻豆成人av免费视频| 神马国产精品三级电影在线观看 | 色综合婷婷激情| 国产精品精品国产色婷婷| 亚洲专区字幕在线| 亚洲av熟女| 国产精品99久久99久久久不卡| 一边摸一边抽搐一进一小说| 久久婷婷成人综合色麻豆| 操出白浆在线播放| av天堂在线播放| www国产在线视频色| 国产不卡一卡二| 成人18禁在线播放| 亚洲av成人av| 中文资源天堂在线| 欧美在线一区亚洲| 一边摸一边做爽爽视频免费| 久久香蕉激情| 国产亚洲精品第一综合不卡| 亚洲国产中文字幕在线视频| 亚洲av美国av| 色播在线永久视频| 亚洲av熟女| 精品少妇一区二区三区视频日本电影| 桃红色精品国产亚洲av| 亚洲 国产 在线| 久久久久久亚洲精品国产蜜桃av| 欧美黑人精品巨大| 国内精品久久久久精免费| 女性生殖器流出的白浆| 两性午夜刺激爽爽歪歪视频在线观看 | 色在线成人网| svipshipincom国产片| 宅男免费午夜| 国产1区2区3区精品| 俄罗斯特黄特色一大片| 婷婷精品国产亚洲av| 日韩高清综合在线| 999久久久国产精品视频| 精品一区二区三区四区五区乱码| 欧美在线黄色| 成人18禁高潮啪啪吃奶动态图| 老汉色av国产亚洲站长工具| 国产亚洲精品一区二区www| 欧美在线一区亚洲| 国产99白浆流出| 热99re8久久精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 日本在线视频免费播放| 变态另类丝袜制服| 亚洲自偷自拍图片 自拍| 亚洲精华国产精华精| 国产一区二区三区视频了| 久久这里只有精品19| 美女免费视频网站| xxx96com| 嫩草影院精品99| 日韩精品中文字幕看吧| 一区二区三区精品91| 91字幕亚洲| 成年女人毛片免费观看观看9| 黄色女人牲交| 一级毛片精品| 国产高清有码在线观看视频 | 男男h啪啪无遮挡| 一区二区三区高清视频在线| 美女 人体艺术 gogo| www.自偷自拍.com| 色av中文字幕| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| 午夜亚洲福利在线播放| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 啦啦啦免费观看视频1| 国产人伦9x9x在线观看| 视频区欧美日本亚洲| 中文字幕精品免费在线观看视频| 久久精品91无色码中文字幕| 亚洲全国av大片| www国产在线视频色| 国产欧美日韩一区二区三| 日日摸夜夜添夜夜添小说| 搡老妇女老女人老熟妇| 亚洲国产高清在线一区二区三 | 国产乱人伦免费视频| 国产av又大| 国产野战对白在线观看| 午夜久久久久精精品| 欧美日韩中文字幕国产精品一区二区三区| 99国产精品一区二区三区| 俺也久久电影网| 日韩欧美国产一区二区入口| 日本三级黄在线观看| 日韩三级视频一区二区三区| 99国产精品一区二区三区| cao死你这个sao货| 国产精品98久久久久久宅男小说| 欧美黑人巨大hd| 黑人巨大精品欧美一区二区mp4| 51午夜福利影视在线观看| 一区二区三区精品91| 午夜免费鲁丝| 亚洲成人国产一区在线观看| 久久午夜综合久久蜜桃| 男女做爰动态图高潮gif福利片| 亚洲成a人片在线一区二区| 人人妻,人人澡人人爽秒播| 亚洲人成伊人成综合网2020| 亚洲精品在线观看二区| 日韩一卡2卡3卡4卡2021年| 日韩欧美国产一区二区入口| aaaaa片日本免费| 人人妻,人人澡人人爽秒播| 欧美色欧美亚洲另类二区| 国产精品久久久久久亚洲av鲁大| 很黄的视频免费| 女人高潮潮喷娇喘18禁视频| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观 | 熟女电影av网| 久久九九热精品免费| 丝袜在线中文字幕| 最近在线观看免费完整版| 国产精品综合久久久久久久免费| 操出白浆在线播放| 好男人电影高清在线观看| 国产日本99.免费观看| 亚洲欧美日韩无卡精品| 欧美日韩亚洲国产一区二区在线观看| 日本 av在线| 中文在线观看免费www的网站 | 免费人成视频x8x8入口观看| 亚洲熟女毛片儿| 久久午夜亚洲精品久久| 在线观看免费视频日本深夜| 免费在线观看成人毛片| 91麻豆精品激情在线观看国产| 精品卡一卡二卡四卡免费| 视频在线观看一区二区三区| 精品人妻1区二区| 国产aⅴ精品一区二区三区波| 国产精品av久久久久免费| 成人特级黄色片久久久久久久| 最新在线观看一区二区三区| 亚洲男人天堂网一区| 不卡av一区二区三区| 亚洲色图 男人天堂 中文字幕| 在线视频色国产色| 脱女人内裤的视频| 男女视频在线观看网站免费 | 国产精品精品国产色婷婷| 黄网站色视频无遮挡免费观看| 在线av久久热| 亚洲成av片中文字幕在线观看| 99国产精品一区二区三区| 欧美人与性动交α欧美精品济南到| 日韩 欧美 亚洲 中文字幕| 国产精品野战在线观看| 18美女黄网站色大片免费观看| 亚洲精品在线观看二区| 黑人欧美特级aaaaaa片| а√天堂www在线а√下载| 国产高清视频在线播放一区| 久久伊人香网站| 国产精品自产拍在线观看55亚洲| 精品国产亚洲在线| 老司机福利观看| 成人免费观看视频高清| 国产亚洲av高清不卡| 性欧美人与动物交配| 一二三四社区在线视频社区8| 欧美不卡视频在线免费观看 | 久久精品亚洲精品国产色婷小说| 久久性视频一级片| 中文字幕人成人乱码亚洲影| 一区二区三区国产精品乱码| 日韩大码丰满熟妇| 国产在线观看jvid| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看 | 自线自在国产av| 91大片在线观看| 制服丝袜大香蕉在线| 99久久久亚洲精品蜜臀av| 日韩欧美在线二视频| 俄罗斯特黄特色一大片| 国产成人欧美| www.精华液| 淫秽高清视频在线观看| 亚洲成人免费电影在线观看| 色综合欧美亚洲国产小说| 成人亚洲精品一区在线观看| 国产视频一区二区在线看| 亚洲第一欧美日韩一区二区三区| 久久久水蜜桃国产精品网| 变态另类成人亚洲欧美熟女| 国产成人欧美在线观看| 久久久久久国产a免费观看| 中文亚洲av片在线观看爽| 成人三级做爰电影| 亚洲av电影在线进入| 欧美日韩黄片免| 午夜成年电影在线免费观看| av在线天堂中文字幕| 久久婷婷成人综合色麻豆| 亚洲第一电影网av| 性色av乱码一区二区三区2| 日本免费一区二区三区高清不卡| 亚洲天堂国产精品一区在线| av视频在线观看入口| 99国产极品粉嫩在线观看| 人人澡人人妻人| 99久久无色码亚洲精品果冻| 91成人精品电影| 国产激情偷乱视频一区二区| 丝袜人妻中文字幕|