• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分子轉(zhuǎn)動和激光脈沖對多光子激發(fā)控制的影響

    2014-06-23 06:51:52馮海冉鄭雨軍王德華
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:物理化學(xué)信息工程大學(xué)物理

    馮海冉 李 鵬 鄭雨軍 王德華

    (1濟(jì)寧學(xué)院物理與信息工程系,山東曲阜273155;2山東大學(xué)物理學(xué)院,濟(jì)南250100;3魯東大學(xué)物理與光電工程學(xué)院,山東煙臺264025)

    1 Introduction

    Molecular multiphoton processes have been researched hotspot for more than 20 years.Considerable interest has been focused on the influence of molecular-orientation on multiphoton processes.1-8Considering molecular rotational motion,the orientation of molecules relative to the polarization of a laser field is an important factor for the control of multiphoton excitations.However,most theoretical works have examined the problem by solving the time-dependent Schr?dinger equation.Few analytical studies have been conducted on the influence of molecular rotation on the control of multiphoton processes.For the past years,applications of the dynamic Lie-algebraic approach have steadily advanced.9-15Algebraic methods have been extensively used to investigate problems in nuclear physics,molecular physics,and quantum optics,etc.In the algebraic framework,the Hamiltonian system is given using a set of dynamic algebra,and the time-evolution operator of the quantum system can be directly obtained only if operators in the Hamiltonian close under communication with every element of the dynamic algebra.Computational time is saved by avoiding the solution of the time-dependent Schr?dinger equation,and analytical expression of the vibrational transition probability can be achieved using the algebraic approach.We have successfully studied the control of vibrational excitation for small molecules using the Lie-algebraic approach.16,17We have also discussed long-time average absorbed energy spectra and the average number of photons absorbed by the molecule in a normal sinusoidal laser field when rotational motions are considered.18Given that the algebraic model can be expanded to discuss the influence of molecular rotation,we can also discuss the influence of rotation on controlling infrared multiphoton excitation.Control of multiphoton vibrational excitations can enable selective vibrational transition and dissociation on demand,which helps regulate the chemical reaction and the preparation of quantum bits.

    Studying the influence of molecular rotations on controlling infrared multiphoton excitation can help elucidate not only the interference effect of molecular alignment and orientation but also the impact of rotational energies,hence,the two aspects are emphases of our research and the rotational excitations are not considered here.In this study,the influence of rotation on controlling infrared multiphoton excitation in diatomic molecules is studied by the analytical algebraic approach.Transition probability with various rotational channels is analytically given using the method.To manifest the influence of rotations,we first study multiphoton resonant excitation in a normal sinusoidal laser field,considering both pure vibrational and ro-vibrational modes.We then discuss the selective multiphoton excitation of two modes in a chirped and shaped laser field.The parameters of laser pulses are also vital factors affecting quantum control.Accordingly,the influences of laser shape and initial laser phase are also studied.

    2 Theoretical framework

    The Hamiltonian of the system is

    where Hmrepresents the Hamiltonian of free vibrational-rotational diatomic molecule and Hiis its interaction Hamiltonian with a laser field.

    According to the quadratic anharmonic Lie-algebraic model,19-22

    where?is Planck′s constants divided by 2π,mis the reduced mass of molecules,ris the distance between two nuclei,r0is the distance at equilibrium,lis the angular moment quantum number,ε(t)is the polarized laser field,andμis the molecular dipole moment function.

    Both rotational term in the molecular Hamiltonian and the molecular dipole moment can be expanded in a series at equilibrium

    where19

    wherer0is the distance at equilibrium,Dis the dissociation energy,andαis the Morse parameter.

    Thus the Hamiltonian operator of the system can be written as

    where

    whereθis the angle between the molecular orientation and the axis of the polarized field.

    Given that we choose

    the Hamiltonian system(Eq.(1))in the interaction picture reads as

    whereχ0is the anharmonicity parameter,A0is the identity operator and I0,A-,A+have communication relations

    Considering that the four operators can construct a four-dimensional Lie-algebra,the time evolution operator can be represented as23-25

    The time-evolution operator UIsatisfies in the interaction picture

    The set of differential equations can then be given by substituting Eq.(10)into Eq.(11)

    with the initial conditions

    The time-dependent population probability from the initial ro-vibrational state|vi,l> to the target ro-vibrational state|vf,l> is

    where

    The analytical expression of transition probability in different ro-vibrational channels is obtained,and many concrete examples can be studied using this expression.

    The corresponding long-time average probability is defined as

    3 Results and discussion

    Here,we take OH and OD molecules as examples.All calculations are carried out using atomic units(a.u.).The parameters are taken from references,26-30namely,ω0=0.01664 a.u.,χ0=0.02323 a.u.,D=0.1614 a.u.,α=1.156 a.u.,Be=0.8598×10-5a.u.,αe=0.3253×10-5a.u.,De=0.8748×10-5a.u.for OH andω0=0.0122 a.u.,χ0=0.01645 a.u.,D=0.1636 a.u.,α=1.142 a.u.,Be=0.4556×10-5a.u.,αe=0.1321×10-5a.u.,De=0.8748×10-5a.u.for OD.ω0is the angular frequency of a anharmonic oscillator,χ0is the corresponding anharmonicity parameter,Dis the dissociation energy,αis the Morse parameter,Be,αe,andDeare the corresponding rotational constants.First,we discuss molecular multiphoton excitations and provide a concrete comparison between purely vibrational and the rovibrational cases in the first subsection.We then study the influence of rotations and laser phases in controlling infrared multiphoton excitation.The differences in the optimum laser parameters are also given in the second subsection.

    3.1 Vibrational and ro-vibrational multiphoton excitations

    This subsection demonstrates the influence of rotation on molecular multiphoton excitations.To study the influence of rotation,we calculate the probabilities in the purely vibrational case(molecular orientation is aligned with the field)and in the ro-vibrational case(l=1).In these cases,the laser field isε(t)=ε0sin(ωLt).The laser intensityε0is chosen as 0.0015 a.u.,and the angleθis averaged over-π/2-π/2 in the calculation.The initial state of the molecules is set at the ground state att=0.Fig.1 and Fig.2 depict the long-time average probabilities of OH and OD from the ground state to the first,second,and third excited states using Eq.(17).According to the definition of multiphoton resonance transition,31

    whereωris the resonant transition frequency,ωnis the n-photon transition frequency,Ef-E0is the energy gap between the ground state and thefth excited state,these resonant transitions correspond to one,two,and three-photon transitions,respec-tively.Efis the energy eigenvalue that can be written as30,32

    Fig.1 Long-time average probabilities from the ground to the first,second,and third states of OH as a function of laser frequency

    Fig.2 Long-time average probabilities from the ground to the first,second,and third states of OD as a function of laser frequency

    where the first two terms denote the anharmonic oscillator energy and the rigid rotor energy,and the last two terms represent vibration-rotation interaction and centrifugal distortion,respectively.Fig.1 and Fig.2 show that the average probabilities in the ro-vibrational case are much smaller than those in the purely vibrational case.We also calculate the transition probability in various rotationall-channels and find minimal changes in probability values.These findings indicate that the molecule experiences different orientations in the polarized laser field in the ro-vibrational case.Thus,the effective interaction strength in the ro-vibrational case is lower than that in the purely vibrational case.Thus,the molecular orientation in the laser field is very important to the ro-vibrational transition.This result coincides with previous ones.33,34

    Few changes are observed in the values of the resonant frequencies for the two cases,but differences are still found upon more accurate calculations.The resonant frequency of the three-photon excitation in the ro-vibrational case changes from 0.014707 a.u.(in the purely vibrational case)to 0.0147069 a.u.for OH and 0.011197 a.u.(in the purely vibrational case)to 0.0111967 a.u.for OD.The shifting value of the resonant frequency is aboutωL≈0.1 cm-1,which may be due to correctional functions of the rotational energy for molecular vibrational anharmonicity.However,the rotational energy is still lower than the vibrational energy.

    Fig.3 and Fig.4 show the time-dependent transition probabilities in the purely vibrational calculation(l=0)and in the ro-vibrational calculation for OH and OD molecules(l=1).The resonant probabilities are clearly found to have periodic behaviors.The resonant transition periods for the two cases are summarized in Table 1.For single-photon resonant transition,the corresponding period minimally changes in the two cases.However,the two and three-photon resonances are definitely long-time phenomena,consistent with the report of reference.35Moreover,the periods of ro-vibrational transitions become longer than those of vibrational transitions in the multiphoton resonances because the rotational energy has the corrected action on molecular anharmonicity.Non-resonant multiphoton transitions also appear earlier in the purely vibrational case than in the ro-vibrational case.Compared with OH molecule,the period of multiphoton transition for the OD molecule becomes longer in the ro-vibrational case.In other words,the resonant periods have larger changes in the OD molecule than in the OH molecule when the rotational factor is considered.The reasonis that although rotation energy has a little corrected action on molecular anharmonicity,the larger vibrational anharmonicity still cannot be overcome.Moreover,the anharmonicity of OH molecule is larger than that of OD molecule,so the influence of rotations on OD molecule is more obvious than that on OH molecule.This result is similar to a previously reported one.36

    Fig.3 Average time-dependent transition probabilities for the one,two,and three-photon resonant transitions of OH as a function of time

    Fig.4 Average time-dependent transition probabilities for the one,two,and three-photon resonant transitions of OD as a function of time

    3.2 Control of ro-vibrational multiphoton excitations

    In the previous section,we obtain the transition frequency of three-photon excitation and find the rotation energy has little corrected action on molecular anharmonicity.In order to observe correctional functions of the rotational energy and interference effect of molecular orientation on controlling multiphoton excitation,the three-photon excitations of OH and OD are taken as examples.

    The laser field is

    where the laser shape functions are square-sinusoidal,Gaussian,or triangular shapes,respectively.

    Table 1 Resonant transition periods(unit in a.u.)of OH and OD molecules

    in whichτis the laser pulse duration.Φ(t)is the phase of the laser field pulse as follows:

    whereΦ0is the laser initial phase.We further calculate threephoton excitation probabilities in the purely vibrational and rovibrational cases(l=1)for comparison.When the rotation of the molecule is considered,the relationship between the molecular orientation and the polarized direction of the laser field becomes important.The maximum transition probabilities can be given as functions of the time and molecular orientation angleθ.We first calculate three-photon excitation probabilities at different laser shapes when the molecular orientation angleθis equal to zero.The laser parameters Δω1are the resonant transition frequency,and the chirped term Δω2and the laser pulse durationτcan be adjusted to obtain the optimum selective transition.

    Fig.5 shows that the best selective three-photon excitation can be achieved when the laser shape is the Gaussian function.Although the three-photon excitation probability can reach ahigh value that is close to the one under the control of the square-sinusoidal and triangular laser pulse shape,oscillations of the population can be found in two cases.In addition,the three-photon excitation probability of the triangular shape case is smaller than those in the other two cases.Accordingly,we study the influence of rotations on controlling three-photon excitation under the Gaussian-shaped and chirped-laser pulse.Wecan obtain complete three-photon vibrational excitation whether in the purely vibrational or in the ro-vibrational cases.The optimum laser parameters are given in Table 2;the pulse duration isτ=18×105a.u.,and the laser intensity isImax=4.25×109W·cm-2for OH andImax=5.05×109W·cm-2for OD,respectively.Figs.6-9 show the maximum three-photon transition probabilities as functions of the time and molecular orientation angleθin both OH and OD cases.We can also see that higher transition probabilities are achieved when the rotation is considered.

    Fig.5 Maximum three-photon excitation probabilities as functions of the time by the three kinds of laser shaped and chirped pulses in OH

    Table 2 Optimum laser parameters(in a.u.)of OH and OD molecules

    However,oscillations appear in the population which can be seen in Fig.7 and Fig.9,suggesting that rotational interference can decrease the selectivity of molecular multiphoton vibrational excitation.In addition,the highest excitation probability occurs only when the molecule is oriented along the direction of laser polarization.Fig.10 and Fig.11 show the initial laser phase dependence of the two cases,the maximum probabilities occur at different initial laser phases,which exhibit different modulation functions.In the interaction between the ultra-shortpulse and molecules,the frequency chirp is induced by the changes of laser initial phase,37-40which produces modulation actions on the maximum excitation probabilities.A comparison of Fig.10(a)and Fig.10(b)indicates that the modulation actions in the ro-vibrational case are stronger than that in the pure-vibrational case.The range in the values of the maximum probabilities is from 0.96 to 1 in the ro-vibrational case,while the maximum probabilities range from 0.975 to 0.978 in the pure-vibrational case.The same result can be seen from the Fig.11(a,b).Furthermore,oscillations are found in Fig.10(a)and Fig.11(a),which reflect the sensitivity of the initial phase modulations in the non-resonant excitation.However,oscillations become stronger when the initial laser phase is at π/2 or 3π/2,and the oscillations in OD are smaller than those in OH.This is an interesting phenomenon which is valuable to be further studied.We think that we should firstly confirm whetherthe phenomenon happens in the others or more molecules and hope that the further explanations are given in the subsequent works.

    Fig.6 Maximum three-photon transition probabilities as functions of the time and molecular orientation angle θ by the Gaussian shaped and chirped pulse in OH

    Fig.7 Control of three-photon vibrational transition with the molecular orientation angle using the Gaussian shaped and chirped pulse in the ro-vibrational case for OH

    Fig.8 Maximum three-photon transition probabilities as functions of the time and molecular orientation angle θ by the Gaussian shaped and chirped pulse in OD

    Fig.9 Control of three-photon vibrational transition with the molecular orientation angle using the Gaussian shaped and chirped pulse in the ro-vibrational case for OD

    Fig.10 Initial laser phase dependence at the maximum of the selective three-photon vibrational transition probability of OH

    Fig.11 Initial laser phase dependence at the maximum of the selective three-photon vibrational transition probability of OD

    4 Conclusions

    We analytically study the influence of rotations and laser shapes on controlling infrared multiphoton processes in diatomic molecules using the Lie-algebraic approach.Results indicate that the molecular orientation in the laser field has a greater effect on transition probability,and that the effect of rotations on infrared multiphoton excitation depends on the anharmonicity of molecules.More importantly,control of molecular alignment and orientation is necessary to obtain multiphoton selective vibrational transition because the maximum value of multiphoton transition probability occurs only when the molecule is oriented along the direction of laser polarization.Furthermore,the rotational interference may decrease the selectivity of the molecular vibrational transition.However,the correct laser shape and initial laser phase may help achieve a better multiphoton vibrational transition on demand.This approach can be extended to triatomic molecules,and bending vibration can be considered.

    (1) Kumarappan,V.;Holmegaard,L.;Martiny,C.;Madsen,C.B.;Kjeldsen,T.K.;Viftrup,S.S.;Madsen,L.B.;Stapelfeldt,H.Phys.Rev.Lett.2008,100,093006.doi:10.1103/PhysRevLett.100.093006

    (2) Chu,X.Phys.Rev.A2008,78,043408.doi:10.1103/PhysRevA.78.043408

    (3) Dimitrious,K.I.;Constantoudis,V.;Komninos,T.;Komninos,Y.;Nicolaides,C.A.Phys.Rev.A2007,76,033406.doi:10.1103/PhysRevA.76.033406

    (4) Ramakrishna,S.;Seideman,T.Phys.Rev.Lett.2007,99,113901.doi:10.1103/PhysRevLett.99.113901

    (5) Nakajima,K.;Abe,H.;Ohtsuki,Y.J.Phy.Chem.A2012,116,11219.doi:10.1021/jp3052054

    (6) Kharin,V.Y.;Popov,A.M.;Ikhonova,T.V.Laser Physics2012,22,1693.doi:10.1134/S1054660X12110060

    (7) Chu,X.;Groenenboom,G.C.Phys.Rev.A2013,87,013434.doi:10.1103/PhysRevA.87.013434

    (8)Liu,B.K.;Wang,Y.Q.;Wang,L.Acta Phys.-Chim.Sin.2010,26,3157.[劉本康,王艷秋,王 利.物理化學(xué)學(xué)報,2010,26,3157.]doi:10.3866/PKU.WHXB20101220

    (9) Iachello,F.Chem.Phys.Lett.1981,78,581.doi:10.1016/0009-2614(81)85262-1

    (10) Van Roosmalen,O.S.;Benjamin,I.;Levine,R.D.J.Chem.Phys.1984,81,5986.doi:10.1063/1.447600

    (11) Benjamin,I.;Levine,R.D.;Kinsey,J.L.J.Phys.Chem.1983,87,727.doi:10.1021/j100228a005

    (12) Zheng,Y.J.;Ding,S.L.J.Chem.Phys.1999,111,4466.doi:10.1063/1.479210

    (13) Zheng,Y.J.;Ding,S.L.Phys.Rev.A2001,64,032720.doi:10.1103/PhysRevA.64.032720

    (14) Zheng,Y.J.;Ding,S.L.Phys.Lett.A1999,256,197.doi:10.1016/S0375-9601(99)00207-8

    (15) Qu,S.S.;Sun,W.G.;Wang,Y.J.;Fan,Q.C.Acta Phys.-Chim.Sin.2009,25,13.[渠雙雙,孫衛(wèi)國,王宇杰,樊群超.物理化學(xué)學(xué)報,2009,25,13.]doi:10.3866/PKU.WHXB20090103

    (16) Feng,H.R.;Ding,S.L.J.Phys.B2007,40,69.doi:10.1088/0953-4075/40/1/007

    (17) Feng,H.R.;Liu,Y.;Zheng,Y.J.;Ding,S.L.;Ren,W.Y.Phys.Rev.A2007,75,063417.doi:10.1103/PhysRevA.75.063417

    (18) Feng,H.R.;Cheng,J.;Yue,X.F.;Zheng,Y.J.;Ding,S.L.Chin.Phys.Lett.2011,28,073301.doi:10.1088/0256-307X/28/7/073301

    (19) Levine,R.D.Chem.Phys.Lett.1983,95,87.doi:10.1016/0009-2614(83)85071-4

    (20) Levine,R.D.Intramolecular Dynamic,1st ed.;Reidel:Dordrecht,1982.

    (21) Cooper,I.L.;Gupta,R.K.Phys.Rev.A1997,55,4112.doi:10.1103/PhysRevA.55.4112

    (22) Cooper,I.L.J.Phys.Chem.A1998,102,9565.doi:10.1021/jp982149r

    (23) Rau,A.R.P.;Zhao,W.C.Phys.Rev.A2005,71,063822.doi:10.1103/PhysRevA.71.063822

    (24) Alhassid,Y.;Levine,R.D.Phys.Rev.A1978,18,89.doi:10.1103/PhysRevA.18.89

    (25)Wei,J.;Norman,E.Proc.Am.Math.Soc.1964,15,327.doi:10.1090/S0002-9939-1964-0160009-0

    (26) Korolkov,M.V.;Paramonov,G.K.Phys.Rev.A1997,56,3860.doi:10.1103/PhysRevA.56.3860

    (27) Stranges,S.;Rithcer,R.;Alagia,M.J.Chem.Phys.2002,116,3676.doi:10.1063/1.1448283

    (28)Amstrup,B.;Henriksen,N.E.J.Chem.Phys.1992,97,8285.doi:10.1063/1.463399

    (29) Elghobashi,N.;Krause,P.;Manz,J.;Oppel,M.Phys.Chem.Chem.Phys.2003,5,4806.doi:10.1039/b305305a

    (30) Herzberg,G.Molecular Spectra and Molecular Structure I.Spectra of Diatomic Molecules,1st ed.;D.Van Mostrand Company,Inc.:Princeton,1950;pp 560,106.

    (31) Jakubetz,W.;Just,B.;Manz,J.;Schreier,H.J.J.Phys.Chem.1990,94,2294.doi:10.1021/j100369a019

    (32) Dai,Y.;Ding,S.L.Int.J.Quantum Chem.1999,71,201.doi:10.1002/(SICI)1097-461X(1999)71:2<201::AID-QUA9>3.0.CO;2-A

    (33) Broeckhove,J.;Feyen,B.;Van Leuven,P.Int.J.Quantum Chem.1994,52,173.doi:10.1002/qua.560520818

    (34) Geng,Z.H.;Dai,Y.;Ding,S.L.Chem.Phys.2002,278,119.doi:10.1016/S0301-0104(02)00404-4

    (35) Walker,R.B.;Preston,R.K.J.Chem.Phys.1977,67,2017.doi:10.1063/1.435085

    (36) Chang,J.;Wyatt,R.E.J.Chem.Phys.1986,85,1840.doi:10.1063/1.451185

    (37) Bartels,R.A.;Weinacht,T.C.;Wagner,N.;Baertschy,M.;Greene,C.H.;Murnane,M.M.;Kapteyn,H.C.Phys.Rev.Lett.2001,88,013903.doi:10.1103/PhysRevLett.88.013903

    (38) Comstock,M.;Lozovoy,V.V.;Dantus,M.Chem.Phys.Lett.2003,372,739.doi:10.1016/S0009-2614(03)00489-5

    (39) Diels,J.C.;Rudolph,W.Ultrashort Laser Pulse Phenomena,2nd ed.;Academic Press:Burlington,2006;pp 44-46.

    (40) Boyd,R.W.Nonlinear Optics,3rd ed.;Academic Press:Burlington,2008;pp 69-122.

    猜你喜歡
    物理化學(xué)信息工程大學(xué)物理
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    江蘇高速公路信息工程有限公司
    信息工程技術(shù)的應(yīng)用與發(fā)展
    計算機網(wǎng)絡(luò)在電子信息工程中的應(yīng)用
    電子測試(2018年1期)2018-04-18 11:53:48
    Chemical Concepts from Density Functional Theory
    現(xiàn)代信息技術(shù)在大學(xué)物理教學(xué)中的應(yīng)用探討
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    大學(xué)物理與高中物理銜接教育的探討
    物理與工程(2012年1期)2012-03-25 10:04:59
    大學(xué)物理實驗教學(xué)創(chuàng)新模式的探索與實踐
    物理與工程(2012年1期)2012-03-25 10:04:51
    亚洲最大成人手机在线| 直男gayav资源| 久久久久国内视频| 少妇猛男粗大的猛烈进出视频 | 天堂√8在线中文| 在线观看一区二区三区| 日日啪夜夜撸| 又黄又爽又免费观看的视频| 在线播放国产精品三级| 亚洲欧美激情综合另类| 久久亚洲真实| 日韩欧美三级三区| 村上凉子中文字幕在线| 一区二区三区激情视频| 欧美日韩国产亚洲二区| 啦啦啦韩国在线观看视频| 国产aⅴ精品一区二区三区波| 国产v大片淫在线免费观看| 久久午夜福利片| 国产精华一区二区三区| 国产伦人伦偷精品视频| 欧美黑人欧美精品刺激| 91av网一区二区| 国产精品无大码| 成人三级黄色视频| 免费看a级黄色片| 3wmmmm亚洲av在线观看| avwww免费| 午夜福利18| 精品人妻视频免费看| 又粗又爽又猛毛片免费看| 欧美三级亚洲精品| 久久久久免费精品人妻一区二区| 级片在线观看| 人妻久久中文字幕网| 午夜爱爱视频在线播放| 日本爱情动作片www.在线观看 | 少妇丰满av| 99视频精品全部免费 在线| 久久香蕉精品热| 亚洲电影在线观看av| h日本视频在线播放| 伊人久久精品亚洲午夜| 日日夜夜操网爽| 国产大屁股一区二区在线视频| 如何舔出高潮| 欧美3d第一页| 在线看三级毛片| 一级av片app| 日韩欧美在线二视频| 久久久久精品国产欧美久久久| 天堂影院成人在线观看| 又爽又黄a免费视频| 欧美成人免费av一区二区三区| 午夜福利成人在线免费观看| 国产av一区在线观看免费| 一本精品99久久精品77| 欧美高清性xxxxhd video| 精品午夜福利视频在线观看一区| 一级黄片播放器| 乱码一卡2卡4卡精品| 国内精品久久久久精免费| 精品午夜福利视频在线观看一区| 在线免费观看不下载黄p国产 | 精品久久久噜噜| 日本黄色片子视频| aaaaa片日本免费| 亚洲人与动物交配视频| 人妻少妇偷人精品九色| 日韩av在线大香蕉| 制服丝袜大香蕉在线| 黄色视频,在线免费观看| 狠狠狠狠99中文字幕| 啪啪无遮挡十八禁网站| 色综合站精品国产| 日韩强制内射视频| 色播亚洲综合网| 一级毛片久久久久久久久女| 免费大片18禁| 精品久久国产蜜桃| 国产精品爽爽va在线观看网站| 99在线人妻在线中文字幕| 十八禁网站免费在线| 国产亚洲91精品色在线| 黄色女人牲交| 搡老岳熟女国产| 又粗又爽又猛毛片免费看| 身体一侧抽搐| av.在线天堂| 一夜夜www| 亚洲真实伦在线观看| 此物有八面人人有两片| 午夜福利高清视频| 欧美一区二区精品小视频在线| 99久久久亚洲精品蜜臀av| 我的老师免费观看完整版| 成年女人看的毛片在线观看| 国产高潮美女av| 亚洲精品亚洲一区二区| 中文字幕av成人在线电影| 国产精品综合久久久久久久免费| 97碰自拍视频| 久久热精品热| 日本免费一区二区三区高清不卡| 国内精品美女久久久久久| 亚洲一区二区三区色噜噜| 日本黄色视频三级网站网址| 又紧又爽又黄一区二区| 国产老妇女一区| 午夜福利在线观看免费完整高清在 | 欧美一级a爱片免费观看看| 国产久久久一区二区三区| 久久精品国产亚洲av天美| 日本在线视频免费播放| 蜜桃久久精品国产亚洲av| 内地一区二区视频在线| 亚洲avbb在线观看| 欧美高清性xxxxhd video| av黄色大香蕉| 国产精品永久免费网站| 亚洲男人的天堂狠狠| 中文字幕人妻熟人妻熟丝袜美| 精品99又大又爽又粗少妇毛片 | 欧美又色又爽又黄视频| 此物有八面人人有两片| 婷婷精品国产亚洲av在线| 国产三级在线视频| 人人妻人人澡欧美一区二区| 自拍偷自拍亚洲精品老妇| 自拍偷自拍亚洲精品老妇| 午夜福利在线在线| 国产男靠女视频免费网站| 男人舔奶头视频| 午夜免费成人在线视频| 亚洲精品亚洲一区二区| 婷婷精品国产亚洲av在线| 婷婷精品国产亚洲av在线| 99国产极品粉嫩在线观看| 91av网一区二区| 男女下面进入的视频免费午夜| 精品人妻视频免费看| 亚洲美女视频黄频| 男人舔女人下体高潮全视频| 国产精品av视频在线免费观看| 高清日韩中文字幕在线| 国产精品一及| www.色视频.com| 88av欧美| 九九热线精品视视频播放| 国产精品女同一区二区软件 | 国产精品一区二区免费欧美| 亚洲av电影不卡..在线观看| 亚洲av不卡在线观看| 蜜桃久久精品国产亚洲av| 欧美高清性xxxxhd video| 精品国内亚洲2022精品成人| 最近最新中文字幕大全电影3| 国产色婷婷99| 免费一级毛片在线播放高清视频| av专区在线播放| 中文资源天堂在线| 国产黄片美女视频| 日韩中文字幕欧美一区二区| 久久热精品热| 村上凉子中文字幕在线| 日韩中字成人| 国产精品人妻久久久影院| 国产av不卡久久| 久久久精品欧美日韩精品| 观看美女的网站| 少妇猛男粗大的猛烈进出视频 | 亚洲精品久久国产高清桃花| 亚洲国产色片| 国产成人av教育| 夜夜夜夜夜久久久久| 欧美另类亚洲清纯唯美| 国产大屁股一区二区在线视频| 天堂av国产一区二区熟女人妻| 色5月婷婷丁香| 色尼玛亚洲综合影院| 精品午夜福利视频在线观看一区| 俺也久久电影网| 给我免费播放毛片高清在线观看| 熟女人妻精品中文字幕| 日韩强制内射视频| 18禁在线播放成人免费| 69av精品久久久久久| 给我免费播放毛片高清在线观看| 内射极品少妇av片p| 欧美区成人在线视频| 欧美激情久久久久久爽电影| 久久香蕉精品热| 成人国产一区最新在线观看| 婷婷六月久久综合丁香| 国产高清视频在线观看网站| 亚洲狠狠婷婷综合久久图片| 精品欧美国产一区二区三| 女人被狂操c到高潮| 久久精品国产亚洲av天美| 免费一级毛片在线播放高清视频| 伊人久久精品亚洲午夜| 国产精品亚洲一级av第二区| 中文字幕av成人在线电影| 一区福利在线观看| 亚洲av成人av| 深爱激情五月婷婷| 嫩草影院入口| xxxwww97欧美| 亚洲天堂国产精品一区在线| 欧美人与善性xxx| 九九在线视频观看精品| 成人国产一区最新在线观看| 男人舔女人下体高潮全视频| 国产av不卡久久| а√天堂www在线а√下载| 午夜免费激情av| 干丝袜人妻中文字幕| 高清在线国产一区| 波多野结衣巨乳人妻| 熟女电影av网| 自拍偷自拍亚洲精品老妇| 国产一区二区三区在线臀色熟女| 国产日本99.免费观看| 国产探花在线观看一区二区| 91久久精品电影网| 日本a在线网址| 成熟少妇高潮喷水视频| 亚洲经典国产精华液单| 99久久精品热视频| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 在线a可以看的网站| 久久精品国产清高在天天线| 97热精品久久久久久| 校园春色视频在线观看| 黄色一级大片看看| 成人国产麻豆网| 亚洲aⅴ乱码一区二区在线播放| 免费看日本二区| 欧美+日韩+精品| 国内揄拍国产精品人妻在线| 国产精品久久久久久av不卡| 色尼玛亚洲综合影院| 国产免费男女视频| 又粗又爽又猛毛片免费看| or卡值多少钱| 乱系列少妇在线播放| 免费观看精品视频网站| 91久久精品电影网| 床上黄色一级片| 亚洲va在线va天堂va国产| 亚洲av不卡在线观看| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 桃色一区二区三区在线观看| 大又大粗又爽又黄少妇毛片口| 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 国内毛片毛片毛片毛片毛片| 成年免费大片在线观看| 国产精品亚洲美女久久久| 欧美又色又爽又黄视频| 亚洲自偷自拍三级| 亚洲va在线va天堂va国产| 99热精品在线国产| 午夜福利高清视频| 亚洲国产欧美人成| 日本 欧美在线| 内地一区二区视频在线| 老熟妇乱子伦视频在线观看| 两个人的视频大全免费| 久久久久久伊人网av| 中亚洲国语对白在线视频| 亚洲人成网站在线播| 亚洲色图av天堂| 男人舔女人下体高潮全视频| 美女xxoo啪啪120秒动态图| 午夜爱爱视频在线播放| 窝窝影院91人妻| 永久网站在线| 综合色av麻豆| 韩国av在线不卡| 国产色婷婷99| 国产爱豆传媒在线观看| 精品久久国产蜜桃| 简卡轻食公司| 美女被艹到高潮喷水动态| 一进一出抽搐gif免费好疼| 精品一区二区免费观看| 久久午夜福利片| 如何舔出高潮| 搞女人的毛片| 日本五十路高清| a级毛片a级免费在线| 最近在线观看免费完整版| 乱码一卡2卡4卡精品| 熟女电影av网| 亚洲av美国av| 成年人黄色毛片网站| 又黄又爽又刺激的免费视频.| 国产熟女欧美一区二区| 国产精品av视频在线免费观看| 久久精品影院6| 高清毛片免费观看视频网站| 久久精品国产亚洲av天美| .国产精品久久| 日本 av在线| 成年女人毛片免费观看观看9| 淫妇啪啪啪对白视频| 999久久久精品免费观看国产| 日韩欧美三级三区| 成人无遮挡网站| 亚洲av电影不卡..在线观看| 看十八女毛片水多多多| 国产精品av视频在线免费观看| 国产伦人伦偷精品视频| 中文字幕精品亚洲无线码一区| 啦啦啦观看免费观看视频高清| 女同久久另类99精品国产91| 婷婷六月久久综合丁香| 久久亚洲真实| 九九爱精品视频在线观看| 欧美绝顶高潮抽搐喷水| 精品久久久久久,| 女人十人毛片免费观看3o分钟| 婷婷丁香在线五月| 亚洲国产精品合色在线| 91av网一区二区| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产亚洲av天美| 黄色一级大片看看| 一区福利在线观看| 日韩欧美精品免费久久| 亚洲av成人精品一区久久| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av香蕉五月| av视频在线观看入口| 亚洲av不卡在线观看| 欧美精品啪啪一区二区三区| 精品人妻视频免费看| 狠狠狠狠99中文字幕| 久久精品国产鲁丝片午夜精品 | 色综合亚洲欧美另类图片| 一区二区三区免费毛片| 日本在线视频免费播放| 国产黄片美女视频| 99热网站在线观看| 禁无遮挡网站| 99精品在免费线老司机午夜| 亚洲精品亚洲一区二区| 一级毛片久久久久久久久女| 久久草成人影院| 少妇高潮的动态图| 高清日韩中文字幕在线| 毛片女人毛片| 国产在线精品亚洲第一网站| 日韩欧美 国产精品| 亚洲精品粉嫩美女一区| 非洲黑人性xxxx精品又粗又长| a级一级毛片免费在线观看| av中文乱码字幕在线| 日本爱情动作片www.在线观看 | 三级毛片av免费| 成人高潮视频无遮挡免费网站| 久久国产乱子免费精品| 我要搜黄色片| 亚洲不卡免费看| 欧美三级亚洲精品| 精品久久国产蜜桃| 国产久久久一区二区三区| 在线观看免费视频日本深夜| a级毛片免费高清观看在线播放| 精品午夜福利视频在线观看一区| 免费观看在线日韩| 偷拍熟女少妇极品色| av黄色大香蕉| 亚洲精品在线观看二区| 免费人成视频x8x8入口观看| 国内揄拍国产精品人妻在线| 色在线成人网| 欧美一区二区国产精品久久精品| 有码 亚洲区| 麻豆av噜噜一区二区三区| 一个人看视频在线观看www免费| 午夜福利欧美成人| 国产成人影院久久av| 精品久久久久久久久久免费视频| 大型黄色视频在线免费观看| 日韩欧美免费精品| 在线播放国产精品三级| 悠悠久久av| 九九热线精品视视频播放| 国产视频内射| 国语自产精品视频在线第100页| 五月玫瑰六月丁香| 成人二区视频| 精品人妻1区二区| 亚洲成人久久爱视频| 国产白丝娇喘喷水9色精品| 超碰av人人做人人爽久久| 免费一级毛片在线播放高清视频| 免费不卡的大黄色大毛片视频在线观看 | 国产乱人伦免费视频| 毛片女人毛片| 国产成人一区二区在线| 最新中文字幕久久久久| 男插女下体视频免费在线播放| 黄色一级大片看看| 国产黄色小视频在线观看| 别揉我奶头 嗯啊视频| 国产精品综合久久久久久久免费| 99国产精品一区二区蜜桃av| 窝窝影院91人妻| 国产高清激情床上av| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 久久精品影院6| 亚洲图色成人| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 观看免费一级毛片| 两个人的视频大全免费| 嫩草影院新地址| 十八禁国产超污无遮挡网站| 久久欧美精品欧美久久欧美| 欧美黑人巨大hd| 精品一区二区三区av网在线观看| 最好的美女福利视频网| videossex国产| 人人妻人人看人人澡| 一a级毛片在线观看| 成人性生交大片免费视频hd| 欧美日本视频| 久久99热这里只有精品18| 成人av在线播放网站| 特级一级黄色大片| 精品乱码久久久久久99久播| 午夜激情欧美在线| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 国产精品伦人一区二区| 亚洲成人久久性| 国产欧美日韩一区二区精品| 小说图片视频综合网站| 一区二区三区四区激情视频 | 精品免费久久久久久久清纯| 中文资源天堂在线| 最近视频中文字幕2019在线8| 大又大粗又爽又黄少妇毛片口| 国产成年人精品一区二区| 欧美极品一区二区三区四区| av中文乱码字幕在线| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 欧美一区二区亚洲| 国产精品人妻久久久久久| 国产蜜桃级精品一区二区三区| xxxwww97欧美| 国产午夜福利久久久久久| 日本一二三区视频观看| 亚洲中文字幕日韩| 国产精华一区二区三区| 国产精品亚洲一级av第二区| 亚洲黑人精品在线| 国产黄片美女视频| 亚洲最大成人av| 精品久久久久久久久久免费视频| 欧美bdsm另类| 三级毛片av免费| 日韩精品中文字幕看吧| 少妇的逼好多水| 亚洲av免费高清在线观看| 琪琪午夜伦伦电影理论片6080| 老司机午夜福利在线观看视频| 成人毛片a级毛片在线播放| 嫩草影院入口| 一个人看视频在线观看www免费| 免费观看人在逋| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 最近最新中文字幕大全电影3| 97人妻精品一区二区三区麻豆| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区性色av| 亚洲精华国产精华精| 国产毛片a区久久久久| av视频在线观看入口| 成年版毛片免费区| 99久久无色码亚洲精品果冻| 国产精品99久久久久久久久| 国产伦人伦偷精品视频| 一个人看视频在线观看www免费| 少妇裸体淫交视频免费看高清| 亚洲在线自拍视频| 免费高清视频大片| 亚洲三级黄色毛片| 女生性感内裤真人,穿戴方法视频| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 波多野结衣巨乳人妻| 99九九线精品视频在线观看视频| 国产亚洲精品综合一区在线观看| 亚洲内射少妇av| 大又大粗又爽又黄少妇毛片口| 国产精品av视频在线免费观看| 国产亚洲欧美98| 亚洲专区中文字幕在线| 亚洲欧美清纯卡通| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 天堂网av新在线| 搡女人真爽免费视频火全软件 | 国产精品精品国产色婷婷| 国内精品久久久久精免费| 免费av毛片视频| 中出人妻视频一区二区| 午夜免费成人在线视频| 国产淫片久久久久久久久| 国产熟女欧美一区二区| 色播亚洲综合网| 国产精品99久久久久久久久| 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 国内揄拍国产精品人妻在线| 最新在线观看一区二区三区| 三级国产精品欧美在线观看| 午夜福利在线观看吧| 伊人久久精品亚洲午夜| 国内毛片毛片毛片毛片毛片| 赤兔流量卡办理| 深夜精品福利| 精品人妻一区二区三区麻豆 | 欧美日韩瑟瑟在线播放| 国内毛片毛片毛片毛片毛片| 赤兔流量卡办理| 成年女人永久免费观看视频| 国产精品一区二区免费欧美| 国产伦精品一区二区三区视频9| 亚洲男人的天堂狠狠| 亚洲精品日韩av片在线观看| 少妇人妻精品综合一区二区 | 在线免费观看的www视频| 99热这里只有精品一区| 精品久久久久久,| 97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产| 俺也久久电影网| av天堂中文字幕网| 一个人观看的视频www高清免费观看| 内射极品少妇av片p| 国内毛片毛片毛片毛片毛片| 亚洲精品在线观看二区| 久99久视频精品免费| 悠悠久久av| 亚洲四区av| 精品不卡国产一区二区三区| 亚洲国产精品成人综合色| 日本熟妇午夜| 天美传媒精品一区二区| 国产亚洲精品综合一区在线观看| 久久久久久国产a免费观看| 免费在线观看日本一区| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 国产精品永久免费网站| 搡女人真爽免费视频火全软件 | 免费观看人在逋| 亚洲,欧美,日韩| 黄色视频,在线免费观看| 午夜日韩欧美国产| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 亚洲av成人av| 大又大粗又爽又黄少妇毛片口| 日本精品一区二区三区蜜桃| av在线老鸭窝| 美女黄网站色视频| 真实男女啪啪啪动态图| 我的女老师完整版在线观看| 精品人妻一区二区三区麻豆 | 少妇熟女aⅴ在线视频| 我要搜黄色片| 日本熟妇午夜| 日日干狠狠操夜夜爽| 99久久九九国产精品国产免费| 我要搜黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 91久久精品国产一区二区成人| 内射极品少妇av片p| 国产黄色小视频在线观看| 日韩国内少妇激情av| 亚洲国产精品成人综合色| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 精品福利观看| 中国美女看黄片| 国产熟女欧美一区二区| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 亚洲欧美日韩高清专用| ponron亚洲| 在线免费观看不下载黄p国产 | 久久九九热精品免费| 免费在线观看影片大全网站| 成人性生交大片免费视频hd| 亚洲精品亚洲一区二区| xxxwww97欧美| 亚洲精品日韩av片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久久亚洲 | 少妇人妻一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看| www日本黄色视频网|