• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分子轉(zhuǎn)動和激光脈沖對多光子激發(fā)控制的影響

    2014-06-23 06:51:52馮海冉鄭雨軍王德華
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:物理化學(xué)信息工程大學(xué)物理

    馮海冉 李 鵬 鄭雨軍 王德華

    (1濟(jì)寧學(xué)院物理與信息工程系,山東曲阜273155;2山東大學(xué)物理學(xué)院,濟(jì)南250100;3魯東大學(xué)物理與光電工程學(xué)院,山東煙臺264025)

    1 Introduction

    Molecular multiphoton processes have been researched hotspot for more than 20 years.Considerable interest has been focused on the influence of molecular-orientation on multiphoton processes.1-8Considering molecular rotational motion,the orientation of molecules relative to the polarization of a laser field is an important factor for the control of multiphoton excitations.However,most theoretical works have examined the problem by solving the time-dependent Schr?dinger equation.Few analytical studies have been conducted on the influence of molecular rotation on the control of multiphoton processes.For the past years,applications of the dynamic Lie-algebraic approach have steadily advanced.9-15Algebraic methods have been extensively used to investigate problems in nuclear physics,molecular physics,and quantum optics,etc.In the algebraic framework,the Hamiltonian system is given using a set of dynamic algebra,and the time-evolution operator of the quantum system can be directly obtained only if operators in the Hamiltonian close under communication with every element of the dynamic algebra.Computational time is saved by avoiding the solution of the time-dependent Schr?dinger equation,and analytical expression of the vibrational transition probability can be achieved using the algebraic approach.We have successfully studied the control of vibrational excitation for small molecules using the Lie-algebraic approach.16,17We have also discussed long-time average absorbed energy spectra and the average number of photons absorbed by the molecule in a normal sinusoidal laser field when rotational motions are considered.18Given that the algebraic model can be expanded to discuss the influence of molecular rotation,we can also discuss the influence of rotation on controlling infrared multiphoton excitation.Control of multiphoton vibrational excitations can enable selective vibrational transition and dissociation on demand,which helps regulate the chemical reaction and the preparation of quantum bits.

    Studying the influence of molecular rotations on controlling infrared multiphoton excitation can help elucidate not only the interference effect of molecular alignment and orientation but also the impact of rotational energies,hence,the two aspects are emphases of our research and the rotational excitations are not considered here.In this study,the influence of rotation on controlling infrared multiphoton excitation in diatomic molecules is studied by the analytical algebraic approach.Transition probability with various rotational channels is analytically given using the method.To manifest the influence of rotations,we first study multiphoton resonant excitation in a normal sinusoidal laser field,considering both pure vibrational and ro-vibrational modes.We then discuss the selective multiphoton excitation of two modes in a chirped and shaped laser field.The parameters of laser pulses are also vital factors affecting quantum control.Accordingly,the influences of laser shape and initial laser phase are also studied.

    2 Theoretical framework

    The Hamiltonian of the system is

    where Hmrepresents the Hamiltonian of free vibrational-rotational diatomic molecule and Hiis its interaction Hamiltonian with a laser field.

    According to the quadratic anharmonic Lie-algebraic model,19-22

    where?is Planck′s constants divided by 2π,mis the reduced mass of molecules,ris the distance between two nuclei,r0is the distance at equilibrium,lis the angular moment quantum number,ε(t)is the polarized laser field,andμis the molecular dipole moment function.

    Both rotational term in the molecular Hamiltonian and the molecular dipole moment can be expanded in a series at equilibrium

    where19

    wherer0is the distance at equilibrium,Dis the dissociation energy,andαis the Morse parameter.

    Thus the Hamiltonian operator of the system can be written as

    where

    whereθis the angle between the molecular orientation and the axis of the polarized field.

    Given that we choose

    the Hamiltonian system(Eq.(1))in the interaction picture reads as

    whereχ0is the anharmonicity parameter,A0is the identity operator and I0,A-,A+have communication relations

    Considering that the four operators can construct a four-dimensional Lie-algebra,the time evolution operator can be represented as23-25

    The time-evolution operator UIsatisfies in the interaction picture

    The set of differential equations can then be given by substituting Eq.(10)into Eq.(11)

    with the initial conditions

    The time-dependent population probability from the initial ro-vibrational state|vi,l> to the target ro-vibrational state|vf,l> is

    where

    The analytical expression of transition probability in different ro-vibrational channels is obtained,and many concrete examples can be studied using this expression.

    The corresponding long-time average probability is defined as

    3 Results and discussion

    Here,we take OH and OD molecules as examples.All calculations are carried out using atomic units(a.u.).The parameters are taken from references,26-30namely,ω0=0.01664 a.u.,χ0=0.02323 a.u.,D=0.1614 a.u.,α=1.156 a.u.,Be=0.8598×10-5a.u.,αe=0.3253×10-5a.u.,De=0.8748×10-5a.u.for OH andω0=0.0122 a.u.,χ0=0.01645 a.u.,D=0.1636 a.u.,α=1.142 a.u.,Be=0.4556×10-5a.u.,αe=0.1321×10-5a.u.,De=0.8748×10-5a.u.for OD.ω0is the angular frequency of a anharmonic oscillator,χ0is the corresponding anharmonicity parameter,Dis the dissociation energy,αis the Morse parameter,Be,αe,andDeare the corresponding rotational constants.First,we discuss molecular multiphoton excitations and provide a concrete comparison between purely vibrational and the rovibrational cases in the first subsection.We then study the influence of rotations and laser phases in controlling infrared multiphoton excitation.The differences in the optimum laser parameters are also given in the second subsection.

    3.1 Vibrational and ro-vibrational multiphoton excitations

    This subsection demonstrates the influence of rotation on molecular multiphoton excitations.To study the influence of rotation,we calculate the probabilities in the purely vibrational case(molecular orientation is aligned with the field)and in the ro-vibrational case(l=1).In these cases,the laser field isε(t)=ε0sin(ωLt).The laser intensityε0is chosen as 0.0015 a.u.,and the angleθis averaged over-π/2-π/2 in the calculation.The initial state of the molecules is set at the ground state att=0.Fig.1 and Fig.2 depict the long-time average probabilities of OH and OD from the ground state to the first,second,and third excited states using Eq.(17).According to the definition of multiphoton resonance transition,31

    whereωris the resonant transition frequency,ωnis the n-photon transition frequency,Ef-E0is the energy gap between the ground state and thefth excited state,these resonant transitions correspond to one,two,and three-photon transitions,respec-tively.Efis the energy eigenvalue that can be written as30,32

    Fig.1 Long-time average probabilities from the ground to the first,second,and third states of OH as a function of laser frequency

    Fig.2 Long-time average probabilities from the ground to the first,second,and third states of OD as a function of laser frequency

    where the first two terms denote the anharmonic oscillator energy and the rigid rotor energy,and the last two terms represent vibration-rotation interaction and centrifugal distortion,respectively.Fig.1 and Fig.2 show that the average probabilities in the ro-vibrational case are much smaller than those in the purely vibrational case.We also calculate the transition probability in various rotationall-channels and find minimal changes in probability values.These findings indicate that the molecule experiences different orientations in the polarized laser field in the ro-vibrational case.Thus,the effective interaction strength in the ro-vibrational case is lower than that in the purely vibrational case.Thus,the molecular orientation in the laser field is very important to the ro-vibrational transition.This result coincides with previous ones.33,34

    Few changes are observed in the values of the resonant frequencies for the two cases,but differences are still found upon more accurate calculations.The resonant frequency of the three-photon excitation in the ro-vibrational case changes from 0.014707 a.u.(in the purely vibrational case)to 0.0147069 a.u.for OH and 0.011197 a.u.(in the purely vibrational case)to 0.0111967 a.u.for OD.The shifting value of the resonant frequency is aboutωL≈0.1 cm-1,which may be due to correctional functions of the rotational energy for molecular vibrational anharmonicity.However,the rotational energy is still lower than the vibrational energy.

    Fig.3 and Fig.4 show the time-dependent transition probabilities in the purely vibrational calculation(l=0)and in the ro-vibrational calculation for OH and OD molecules(l=1).The resonant probabilities are clearly found to have periodic behaviors.The resonant transition periods for the two cases are summarized in Table 1.For single-photon resonant transition,the corresponding period minimally changes in the two cases.However,the two and three-photon resonances are definitely long-time phenomena,consistent with the report of reference.35Moreover,the periods of ro-vibrational transitions become longer than those of vibrational transitions in the multiphoton resonances because the rotational energy has the corrected action on molecular anharmonicity.Non-resonant multiphoton transitions also appear earlier in the purely vibrational case than in the ro-vibrational case.Compared with OH molecule,the period of multiphoton transition for the OD molecule becomes longer in the ro-vibrational case.In other words,the resonant periods have larger changes in the OD molecule than in the OH molecule when the rotational factor is considered.The reasonis that although rotation energy has a little corrected action on molecular anharmonicity,the larger vibrational anharmonicity still cannot be overcome.Moreover,the anharmonicity of OH molecule is larger than that of OD molecule,so the influence of rotations on OD molecule is more obvious than that on OH molecule.This result is similar to a previously reported one.36

    Fig.3 Average time-dependent transition probabilities for the one,two,and three-photon resonant transitions of OH as a function of time

    Fig.4 Average time-dependent transition probabilities for the one,two,and three-photon resonant transitions of OD as a function of time

    3.2 Control of ro-vibrational multiphoton excitations

    In the previous section,we obtain the transition frequency of three-photon excitation and find the rotation energy has little corrected action on molecular anharmonicity.In order to observe correctional functions of the rotational energy and interference effect of molecular orientation on controlling multiphoton excitation,the three-photon excitations of OH and OD are taken as examples.

    The laser field is

    where the laser shape functions are square-sinusoidal,Gaussian,or triangular shapes,respectively.

    Table 1 Resonant transition periods(unit in a.u.)of OH and OD molecules

    in whichτis the laser pulse duration.Φ(t)is the phase of the laser field pulse as follows:

    whereΦ0is the laser initial phase.We further calculate threephoton excitation probabilities in the purely vibrational and rovibrational cases(l=1)for comparison.When the rotation of the molecule is considered,the relationship between the molecular orientation and the polarized direction of the laser field becomes important.The maximum transition probabilities can be given as functions of the time and molecular orientation angleθ.We first calculate three-photon excitation probabilities at different laser shapes when the molecular orientation angleθis equal to zero.The laser parameters Δω1are the resonant transition frequency,and the chirped term Δω2and the laser pulse durationτcan be adjusted to obtain the optimum selective transition.

    Fig.5 shows that the best selective three-photon excitation can be achieved when the laser shape is the Gaussian function.Although the three-photon excitation probability can reach ahigh value that is close to the one under the control of the square-sinusoidal and triangular laser pulse shape,oscillations of the population can be found in two cases.In addition,the three-photon excitation probability of the triangular shape case is smaller than those in the other two cases.Accordingly,we study the influence of rotations on controlling three-photon excitation under the Gaussian-shaped and chirped-laser pulse.Wecan obtain complete three-photon vibrational excitation whether in the purely vibrational or in the ro-vibrational cases.The optimum laser parameters are given in Table 2;the pulse duration isτ=18×105a.u.,and the laser intensity isImax=4.25×109W·cm-2for OH andImax=5.05×109W·cm-2for OD,respectively.Figs.6-9 show the maximum three-photon transition probabilities as functions of the time and molecular orientation angleθin both OH and OD cases.We can also see that higher transition probabilities are achieved when the rotation is considered.

    Fig.5 Maximum three-photon excitation probabilities as functions of the time by the three kinds of laser shaped and chirped pulses in OH

    Table 2 Optimum laser parameters(in a.u.)of OH and OD molecules

    However,oscillations appear in the population which can be seen in Fig.7 and Fig.9,suggesting that rotational interference can decrease the selectivity of molecular multiphoton vibrational excitation.In addition,the highest excitation probability occurs only when the molecule is oriented along the direction of laser polarization.Fig.10 and Fig.11 show the initial laser phase dependence of the two cases,the maximum probabilities occur at different initial laser phases,which exhibit different modulation functions.In the interaction between the ultra-shortpulse and molecules,the frequency chirp is induced by the changes of laser initial phase,37-40which produces modulation actions on the maximum excitation probabilities.A comparison of Fig.10(a)and Fig.10(b)indicates that the modulation actions in the ro-vibrational case are stronger than that in the pure-vibrational case.The range in the values of the maximum probabilities is from 0.96 to 1 in the ro-vibrational case,while the maximum probabilities range from 0.975 to 0.978 in the pure-vibrational case.The same result can be seen from the Fig.11(a,b).Furthermore,oscillations are found in Fig.10(a)and Fig.11(a),which reflect the sensitivity of the initial phase modulations in the non-resonant excitation.However,oscillations become stronger when the initial laser phase is at π/2 or 3π/2,and the oscillations in OD are smaller than those in OH.This is an interesting phenomenon which is valuable to be further studied.We think that we should firstly confirm whetherthe phenomenon happens in the others or more molecules and hope that the further explanations are given in the subsequent works.

    Fig.6 Maximum three-photon transition probabilities as functions of the time and molecular orientation angle θ by the Gaussian shaped and chirped pulse in OH

    Fig.7 Control of three-photon vibrational transition with the molecular orientation angle using the Gaussian shaped and chirped pulse in the ro-vibrational case for OH

    Fig.8 Maximum three-photon transition probabilities as functions of the time and molecular orientation angle θ by the Gaussian shaped and chirped pulse in OD

    Fig.9 Control of three-photon vibrational transition with the molecular orientation angle using the Gaussian shaped and chirped pulse in the ro-vibrational case for OD

    Fig.10 Initial laser phase dependence at the maximum of the selective three-photon vibrational transition probability of OH

    Fig.11 Initial laser phase dependence at the maximum of the selective three-photon vibrational transition probability of OD

    4 Conclusions

    We analytically study the influence of rotations and laser shapes on controlling infrared multiphoton processes in diatomic molecules using the Lie-algebraic approach.Results indicate that the molecular orientation in the laser field has a greater effect on transition probability,and that the effect of rotations on infrared multiphoton excitation depends on the anharmonicity of molecules.More importantly,control of molecular alignment and orientation is necessary to obtain multiphoton selective vibrational transition because the maximum value of multiphoton transition probability occurs only when the molecule is oriented along the direction of laser polarization.Furthermore,the rotational interference may decrease the selectivity of the molecular vibrational transition.However,the correct laser shape and initial laser phase may help achieve a better multiphoton vibrational transition on demand.This approach can be extended to triatomic molecules,and bending vibration can be considered.

    (1) Kumarappan,V.;Holmegaard,L.;Martiny,C.;Madsen,C.B.;Kjeldsen,T.K.;Viftrup,S.S.;Madsen,L.B.;Stapelfeldt,H.Phys.Rev.Lett.2008,100,093006.doi:10.1103/PhysRevLett.100.093006

    (2) Chu,X.Phys.Rev.A2008,78,043408.doi:10.1103/PhysRevA.78.043408

    (3) Dimitrious,K.I.;Constantoudis,V.;Komninos,T.;Komninos,Y.;Nicolaides,C.A.Phys.Rev.A2007,76,033406.doi:10.1103/PhysRevA.76.033406

    (4) Ramakrishna,S.;Seideman,T.Phys.Rev.Lett.2007,99,113901.doi:10.1103/PhysRevLett.99.113901

    (5) Nakajima,K.;Abe,H.;Ohtsuki,Y.J.Phy.Chem.A2012,116,11219.doi:10.1021/jp3052054

    (6) Kharin,V.Y.;Popov,A.M.;Ikhonova,T.V.Laser Physics2012,22,1693.doi:10.1134/S1054660X12110060

    (7) Chu,X.;Groenenboom,G.C.Phys.Rev.A2013,87,013434.doi:10.1103/PhysRevA.87.013434

    (8)Liu,B.K.;Wang,Y.Q.;Wang,L.Acta Phys.-Chim.Sin.2010,26,3157.[劉本康,王艷秋,王 利.物理化學(xué)學(xué)報,2010,26,3157.]doi:10.3866/PKU.WHXB20101220

    (9) Iachello,F.Chem.Phys.Lett.1981,78,581.doi:10.1016/0009-2614(81)85262-1

    (10) Van Roosmalen,O.S.;Benjamin,I.;Levine,R.D.J.Chem.Phys.1984,81,5986.doi:10.1063/1.447600

    (11) Benjamin,I.;Levine,R.D.;Kinsey,J.L.J.Phys.Chem.1983,87,727.doi:10.1021/j100228a005

    (12) Zheng,Y.J.;Ding,S.L.J.Chem.Phys.1999,111,4466.doi:10.1063/1.479210

    (13) Zheng,Y.J.;Ding,S.L.Phys.Rev.A2001,64,032720.doi:10.1103/PhysRevA.64.032720

    (14) Zheng,Y.J.;Ding,S.L.Phys.Lett.A1999,256,197.doi:10.1016/S0375-9601(99)00207-8

    (15) Qu,S.S.;Sun,W.G.;Wang,Y.J.;Fan,Q.C.Acta Phys.-Chim.Sin.2009,25,13.[渠雙雙,孫衛(wèi)國,王宇杰,樊群超.物理化學(xué)學(xué)報,2009,25,13.]doi:10.3866/PKU.WHXB20090103

    (16) Feng,H.R.;Ding,S.L.J.Phys.B2007,40,69.doi:10.1088/0953-4075/40/1/007

    (17) Feng,H.R.;Liu,Y.;Zheng,Y.J.;Ding,S.L.;Ren,W.Y.Phys.Rev.A2007,75,063417.doi:10.1103/PhysRevA.75.063417

    (18) Feng,H.R.;Cheng,J.;Yue,X.F.;Zheng,Y.J.;Ding,S.L.Chin.Phys.Lett.2011,28,073301.doi:10.1088/0256-307X/28/7/073301

    (19) Levine,R.D.Chem.Phys.Lett.1983,95,87.doi:10.1016/0009-2614(83)85071-4

    (20) Levine,R.D.Intramolecular Dynamic,1st ed.;Reidel:Dordrecht,1982.

    (21) Cooper,I.L.;Gupta,R.K.Phys.Rev.A1997,55,4112.doi:10.1103/PhysRevA.55.4112

    (22) Cooper,I.L.J.Phys.Chem.A1998,102,9565.doi:10.1021/jp982149r

    (23) Rau,A.R.P.;Zhao,W.C.Phys.Rev.A2005,71,063822.doi:10.1103/PhysRevA.71.063822

    (24) Alhassid,Y.;Levine,R.D.Phys.Rev.A1978,18,89.doi:10.1103/PhysRevA.18.89

    (25)Wei,J.;Norman,E.Proc.Am.Math.Soc.1964,15,327.doi:10.1090/S0002-9939-1964-0160009-0

    (26) Korolkov,M.V.;Paramonov,G.K.Phys.Rev.A1997,56,3860.doi:10.1103/PhysRevA.56.3860

    (27) Stranges,S.;Rithcer,R.;Alagia,M.J.Chem.Phys.2002,116,3676.doi:10.1063/1.1448283

    (28)Amstrup,B.;Henriksen,N.E.J.Chem.Phys.1992,97,8285.doi:10.1063/1.463399

    (29) Elghobashi,N.;Krause,P.;Manz,J.;Oppel,M.Phys.Chem.Chem.Phys.2003,5,4806.doi:10.1039/b305305a

    (30) Herzberg,G.Molecular Spectra and Molecular Structure I.Spectra of Diatomic Molecules,1st ed.;D.Van Mostrand Company,Inc.:Princeton,1950;pp 560,106.

    (31) Jakubetz,W.;Just,B.;Manz,J.;Schreier,H.J.J.Phys.Chem.1990,94,2294.doi:10.1021/j100369a019

    (32) Dai,Y.;Ding,S.L.Int.J.Quantum Chem.1999,71,201.doi:10.1002/(SICI)1097-461X(1999)71:2<201::AID-QUA9>3.0.CO;2-A

    (33) Broeckhove,J.;Feyen,B.;Van Leuven,P.Int.J.Quantum Chem.1994,52,173.doi:10.1002/qua.560520818

    (34) Geng,Z.H.;Dai,Y.;Ding,S.L.Chem.Phys.2002,278,119.doi:10.1016/S0301-0104(02)00404-4

    (35) Walker,R.B.;Preston,R.K.J.Chem.Phys.1977,67,2017.doi:10.1063/1.435085

    (36) Chang,J.;Wyatt,R.E.J.Chem.Phys.1986,85,1840.doi:10.1063/1.451185

    (37) Bartels,R.A.;Weinacht,T.C.;Wagner,N.;Baertschy,M.;Greene,C.H.;Murnane,M.M.;Kapteyn,H.C.Phys.Rev.Lett.2001,88,013903.doi:10.1103/PhysRevLett.88.013903

    (38) Comstock,M.;Lozovoy,V.V.;Dantus,M.Chem.Phys.Lett.2003,372,739.doi:10.1016/S0009-2614(03)00489-5

    (39) Diels,J.C.;Rudolph,W.Ultrashort Laser Pulse Phenomena,2nd ed.;Academic Press:Burlington,2006;pp 44-46.

    (40) Boyd,R.W.Nonlinear Optics,3rd ed.;Academic Press:Burlington,2008;pp 69-122.

    猜你喜歡
    物理化學(xué)信息工程大學(xué)物理
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    江蘇高速公路信息工程有限公司
    信息工程技術(shù)的應(yīng)用與發(fā)展
    計算機網(wǎng)絡(luò)在電子信息工程中的應(yīng)用
    電子測試(2018年1期)2018-04-18 11:53:48
    Chemical Concepts from Density Functional Theory
    現(xiàn)代信息技術(shù)在大學(xué)物理教學(xué)中的應(yīng)用探討
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    大學(xué)物理與高中物理銜接教育的探討
    物理與工程(2012年1期)2012-03-25 10:04:59
    大學(xué)物理實驗教學(xué)創(chuàng)新模式的探索與實踐
    物理與工程(2012年1期)2012-03-25 10:04:51
    在线观看免费视频网站a站| 97在线人人人人妻| 丰满少妇做爰视频| 极品人妻少妇av视频| 在线观看一区二区三区激情| a级毛片黄视频| 搡老乐熟女国产| 这个男人来自地球电影免费观看 | 国产黄色视频一区二区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产av码专区亚洲av| 丝袜喷水一区| 久久久久精品性色| 午夜福利视频精品| 有码 亚洲区| 看非洲黑人一级黄片| 国产精品av久久久久免费| 精品视频人人做人人爽| 精品99又大又爽又粗少妇毛片| 热99国产精品久久久久久7| 黄片播放在线免费| 日韩中文字幕视频在线看片| 久久精品亚洲av国产电影网| 午夜福利在线观看免费完整高清在| 亚洲精华国产精华液的使用体验| 中文字幕制服av| 毛片一级片免费看久久久久| 国产亚洲午夜精品一区二区久久| 成人黄色视频免费在线看| 亚洲欧美一区二区三区黑人 | 欧美日韩精品成人综合77777| 国产熟女欧美一区二区| 久久精品熟女亚洲av麻豆精品| 久久久久久免费高清国产稀缺| 又黄又粗又硬又大视频| 欧美精品av麻豆av| 少妇人妻 视频| 日韩一本色道免费dvd| 九草在线视频观看| 日韩电影二区| 十八禁高潮呻吟视频| 国产日韩欧美视频二区| 99久久精品国产国产毛片| 精品第一国产精品| 日韩三级伦理在线观看| 少妇的丰满在线观看| 久久精品亚洲av国产电影网| 国产淫语在线视频| 啦啦啦中文免费视频观看日本| 成年女人毛片免费观看观看9 | 亚洲精品中文字幕在线视频| 高清欧美精品videossex| 久久国产亚洲av麻豆专区| 丰满迷人的少妇在线观看| av又黄又爽大尺度在线免费看| 如日韩欧美国产精品一区二区三区| 边亲边吃奶的免费视频| 老司机影院毛片| 久久鲁丝午夜福利片| 人人妻人人爽人人添夜夜欢视频| 美女午夜性视频免费| 999久久久国产精品视频| 亚洲成人一二三区av| 久久精品夜色国产| 曰老女人黄片| av不卡在线播放| 美国免费a级毛片| 嫩草影院入口| 啦啦啦中文免费视频观看日本| 国产片内射在线| 2018国产大陆天天弄谢| av片东京热男人的天堂| 亚洲色图 男人天堂 中文字幕| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 国产极品天堂在线| 亚洲欧美精品自产自拍| 国产在线视频一区二区| 久久久久久久亚洲中文字幕| 精品人妻一区二区三区麻豆| 婷婷成人精品国产| 色婷婷久久久亚洲欧美| 亚洲国产色片| 成年人午夜在线观看视频| 国产免费视频播放在线视频| 国产精品一区二区在线不卡| 成年女人毛片免费观看观看9 | 18禁观看日本| 免费黄色在线免费观看| 国产免费一区二区三区四区乱码| 最近中文字幕高清免费大全6| 熟女少妇亚洲综合色aaa.| 一区二区av电影网| 一区在线观看完整版| 午夜av观看不卡| 高清黄色对白视频在线免费看| 亚洲成av片中文字幕在线观看 | 不卡视频在线观看欧美| 欧美变态另类bdsm刘玥| 少妇精品久久久久久久| 亚洲图色成人| 999久久久国产精品视频| 亚洲三区欧美一区| 人妻系列 视频| 亚洲三区欧美一区| 侵犯人妻中文字幕一二三四区| 久久午夜福利片| 亚洲精品av麻豆狂野| 中文字幕最新亚洲高清| 久久综合国产亚洲精品| 国产精品一区二区在线不卡| 高清av免费在线| 熟女少妇亚洲综合色aaa.| 日韩大片免费观看网站| 国产麻豆69| 免费播放大片免费观看视频在线观看| 男人操女人黄网站| 男人操女人黄网站| 香蕉国产在线看| 亚洲美女黄色视频免费看| 哪个播放器可以免费观看大片| 91国产中文字幕| 亚洲美女黄色视频免费看| 1024视频免费在线观看| 日本-黄色视频高清免费观看| 亚洲中文av在线| 99re6热这里在线精品视频| 久久亚洲国产成人精品v| 18+在线观看网站| 宅男免费午夜| 国产伦理片在线播放av一区| 亚洲人成网站在线观看播放| 日本91视频免费播放| 久久久久久久国产电影| 丰满饥渴人妻一区二区三| 国产精品一二三区在线看| 亚洲欧美中文字幕日韩二区| 成年人午夜在线观看视频| 久久久久国产精品人妻一区二区| 丰满饥渴人妻一区二区三| 最近2019中文字幕mv第一页| 人妻人人澡人人爽人人| www.精华液| 精品国产露脸久久av麻豆| 搡老乐熟女国产| 乱人伦中国视频| 欧美日韩综合久久久久久| 亚洲国产色片| 国产精品久久久久久av不卡| 大片电影免费在线观看免费| 国产97色在线日韩免费| 精品一区二区免费观看| 哪个播放器可以免费观看大片| 男人操女人黄网站| 18在线观看网站| 一级,二级,三级黄色视频| 叶爱在线成人免费视频播放| 欧美日韩一区二区视频在线观看视频在线| 18禁国产床啪视频网站| 久久久欧美国产精品| 国产精品国产av在线观看| 国产精品香港三级国产av潘金莲 | 另类亚洲欧美激情| 黄色 视频免费看| 99热全是精品| 人妻系列 视频| 人妻系列 视频| 一级黄片播放器| 久久久久国产精品人妻一区二区| 日本欧美国产在线视频| 亚洲欧美清纯卡通| 国语对白做爰xxxⅹ性视频网站| 久久韩国三级中文字幕| 午夜福利视频精品| 一本久久精品| 国产精品久久久久成人av| 99久久精品国产国产毛片| 国产精品久久久久成人av| 亚洲四区av| 久久久久精品性色| 欧美成人午夜精品| 99热全是精品| 少妇精品久久久久久久| 赤兔流量卡办理| 亚洲久久久国产精品| 欧美日本中文国产一区发布| 大陆偷拍与自拍| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 欧美日韩成人在线一区二区| 哪个播放器可以免费观看大片| 免费播放大片免费观看视频在线观看| 国产日韩欧美亚洲二区| 少妇人妻精品综合一区二区| 在线免费观看不下载黄p国产| 少妇熟女欧美另类| 天堂俺去俺来也www色官网| 亚洲国产成人一精品久久久| 在线观看一区二区三区激情| 国产精品不卡视频一区二区| 美女高潮到喷水免费观看| 夫妻性生交免费视频一级片| 亚洲欧美精品自产自拍| av在线观看视频网站免费| 免费高清在线观看视频在线观看| 两性夫妻黄色片| 精品国产一区二区久久| 一级毛片电影观看| 国产精品久久久久久av不卡| 亚洲四区av| 婷婷成人精品国产| 国产免费又黄又爽又色| 国产精品二区激情视频| 欧美最新免费一区二区三区| 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 亚洲国产欧美在线一区| av天堂久久9| 国精品久久久久久国模美| 一本大道久久a久久精品| 麻豆乱淫一区二区| 日韩制服丝袜自拍偷拍| 日韩精品免费视频一区二区三区| 黄片小视频在线播放| 波野结衣二区三区在线| 男女免费视频国产| 电影成人av| 99香蕉大伊视频| 各种免费的搞黄视频| 一边亲一边摸免费视频| 男女边吃奶边做爰视频| 免费观看性生交大片5| 2021少妇久久久久久久久久久| 久久人人爽人人片av| 亚洲伊人色综图| 美女午夜性视频免费| 免费大片黄手机在线观看| 国产有黄有色有爽视频| 男的添女的下面高潮视频| 观看av在线不卡| 欧美中文综合在线视频| 久久人人爽av亚洲精品天堂| 欧美日韩国产mv在线观看视频| 中文字幕精品免费在线观看视频| 麻豆乱淫一区二区| av线在线观看网站| 国产av一区二区精品久久| 精品少妇黑人巨大在线播放| 在线天堂最新版资源| 只有这里有精品99| 最近最新中文字幕免费大全7| 欧美精品av麻豆av| 一二三四中文在线观看免费高清| 美女国产高潮福利片在线看| 国产无遮挡羞羞视频在线观看| 国产精品久久久av美女十八| 亚洲,欧美,日韩| 电影成人av| 最近最新中文字幕免费大全7| 国产在线免费精品| 精品国产露脸久久av麻豆| 这个男人来自地球电影免费观看 | 成人毛片60女人毛片免费| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 亚洲av男天堂| 亚洲国产最新在线播放| videos熟女内射| 欧美精品人与动牲交sv欧美| 毛片一级片免费看久久久久| 人人妻人人爽人人添夜夜欢视频| av网站在线播放免费| 女人被躁到高潮嗷嗷叫费观| 1024视频免费在线观看| 我要看黄色一级片免费的| 国产精品二区激情视频| www.精华液| 18禁动态无遮挡网站| 国产福利在线免费观看视频| 高清不卡的av网站| 久久久欧美国产精品| 七月丁香在线播放| 超碰97精品在线观看| av.在线天堂| xxxhd国产人妻xxx| 1024香蕉在线观看| 一本色道久久久久久精品综合| 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 免费观看性生交大片5| 国产av一区二区精品久久| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 永久网站在线| 嫩草影院入口| 99re6热这里在线精品视频| 亚洲内射少妇av| 亚洲精品国产av蜜桃| 男女啪啪激烈高潮av片| 女性被躁到高潮视频| 女人久久www免费人成看片| 激情五月婷婷亚洲| 国产xxxxx性猛交| 波多野结衣一区麻豆| 一二三四在线观看免费中文在| 美女脱内裤让男人舔精品视频| 久久人人爽av亚洲精品天堂| 亚洲视频免费观看视频| 久久久精品94久久精品| 亚洲人成网站在线观看播放| 97在线视频观看| 91成人精品电影| 99热国产这里只有精品6| 丰满饥渴人妻一区二区三| 欧美精品人与动牲交sv欧美| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频 | 黄色配什么色好看| 两个人看的免费小视频| 热99久久久久精品小说推荐| 国产精品免费大片| 欧美av亚洲av综合av国产av | 免费观看无遮挡的男女| 欧美+日韩+精品| 午夜久久久在线观看| 久久人人97超碰香蕉20202| 亚洲人成电影观看| 午夜激情av网站| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| 另类亚洲欧美激情| 国产精品三级大全| 乱人伦中国视频| 波多野结衣一区麻豆| 最近的中文字幕免费完整| 久久人妻熟女aⅴ| 国产精品久久久久久av不卡| 免费大片黄手机在线观看| 久久久久人妻精品一区果冻| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 天天躁夜夜躁狠狠躁躁| 久久久久精品久久久久真实原创| 国产日韩欧美视频二区| 视频在线观看一区二区三区| 曰老女人黄片| 欧美最新免费一区二区三区| videossex国产| 日本黄色日本黄色录像| 国产精品女同一区二区软件| 久久亚洲国产成人精品v| 国产激情久久老熟女| 日本欧美视频一区| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃| 观看美女的网站| 国产淫语在线视频| av网站在线播放免费| 亚洲欧美色中文字幕在线| 精品一区二区三区四区五区乱码 | 国产人伦9x9x在线观看 | 日日爽夜夜爽网站| 国产欧美亚洲国产| 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看| 9色porny在线观看| 免费在线观看完整版高清| 黑人猛操日本美女一级片| 国产色婷婷99| 久久久久国产一级毛片高清牌| 精品亚洲成国产av| 欧美bdsm另类| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 如何舔出高潮| 日本色播在线视频| 午夜精品国产一区二区电影| 一区在线观看完整版| 国产亚洲一区二区精品| 中文欧美无线码| 亚洲国产精品成人久久小说| 国产福利在线免费观看视频| 在线 av 中文字幕| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 午夜福利在线观看免费完整高清在| 99九九在线精品视频| 伦理电影大哥的女人| 久久精品久久精品一区二区三区| 精品人妻熟女毛片av久久网站| 久久热在线av| 国产一区二区三区综合在线观看| 国产免费视频播放在线视频| 久久久国产精品麻豆| 久久 成人 亚洲| 99国产精品免费福利视频| 9色porny在线观看| 亚洲成av片中文字幕在线观看 | 又黄又粗又硬又大视频| 欧美激情高清一区二区三区 | 亚洲国产欧美网| 亚洲人成77777在线视频| 91精品伊人久久大香线蕉| 国产在线免费精品| 嫩草影院入口| 精品国产一区二区三区久久久樱花| av卡一久久| 岛国毛片在线播放| 热re99久久国产66热| 看十八女毛片水多多多| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| 欧美人与性动交α欧美软件| 在线看a的网站| 女性被躁到高潮视频| 欧美精品一区二区大全| 韩国av在线不卡| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 成人国产麻豆网| 老熟女久久久| 国产97色在线日韩免费| 欧美av亚洲av综合av国产av | 男人爽女人下面视频在线观看| 最近最新中文字幕大全免费视频 | 免费观看无遮挡的男女| 大陆偷拍与自拍| 久久国内精品自在自线图片| 伊人亚洲综合成人网| 免费黄色在线免费观看| 美女主播在线视频| 97在线人人人人妻| 国产成人精品婷婷| 亚洲,欧美精品.| 日本av手机在线免费观看| 黄色配什么色好看| 亚洲国产精品成人久久小说| 精品福利永久在线观看| 亚洲三区欧美一区| 久久精品国产自在天天线| 日日啪夜夜爽| 在线观看三级黄色| 国产成人午夜福利电影在线观看| 国产综合精华液| 黄色配什么色好看| 美国免费a级毛片| 最近最新中文字幕大全免费视频 | 一本大道久久a久久精品| 男女免费视频国产| 一边摸一边做爽爽视频免费| 国产精品一国产av| 九九爱精品视频在线观看| 七月丁香在线播放| 久久婷婷青草| 青青草视频在线视频观看| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 亚洲一码二码三码区别大吗| 日韩 亚洲 欧美在线| 日韩熟女老妇一区二区性免费视频| av卡一久久| 中文字幕人妻丝袜制服| 国产精品免费视频内射| 制服诱惑二区| 日日啪夜夜爽| 有码 亚洲区| 黄片小视频在线播放| 一区二区三区四区激情视频| 欧美日韩综合久久久久久| 免费日韩欧美在线观看| 婷婷色麻豆天堂久久| 婷婷成人精品国产| 色婷婷av一区二区三区视频| 一区福利在线观看| 天堂8中文在线网| 久久久久国产网址| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 性色av一级| 少妇人妻 视频| 午夜影院在线不卡| 热re99久久精品国产66热6| 亚洲美女黄色视频免费看| 九九爱精品视频在线观看| 国产男人的电影天堂91| 久久精品aⅴ一区二区三区四区 | 男人添女人高潮全过程视频| 久久ye,这里只有精品| 日本黄色日本黄色录像| 婷婷色综合www| 日韩av不卡免费在线播放| 婷婷成人精品国产| 国产97色在线日韩免费| 赤兔流量卡办理| 日本av手机在线免费观看| 黑丝袜美女国产一区| 下体分泌物呈黄色| 亚洲美女黄色视频免费看| 亚洲伊人色综图| 大片电影免费在线观看免费| 国产精品二区激情视频| 人妻人人澡人人爽人人| 亚洲精品自拍成人| 纯流量卡能插随身wifi吗| 一本色道久久久久久精品综合| 亚洲精品一二三| 国产成人免费无遮挡视频| 午夜福利在线观看免费完整高清在| 亚洲五月色婷婷综合| 精品国产乱码久久久久久小说| 久久久a久久爽久久v久久| 夫妻午夜视频| 国产一区二区激情短视频 | 大香蕉久久成人网| 伊人久久国产一区二区| 国产精品免费大片| 99国产精品免费福利视频| 亚洲婷婷狠狠爱综合网| 天天躁夜夜躁狠狠久久av| 亚洲精品中文字幕在线视频| 99热网站在线观看| 日韩精品免费视频一区二区三区| 黄色怎么调成土黄色| 香蕉丝袜av| 国产精品免费视频内射| 中文字幕人妻熟女乱码| 亚洲国产毛片av蜜桃av| 中文字幕最新亚洲高清| 90打野战视频偷拍视频| av不卡在线播放| 国产精品成人在线| 日本91视频免费播放| av天堂久久9| 久久久久国产网址| 国产精品久久久久成人av| 麻豆av在线久日| 国产精品国产三级国产专区5o| 久久这里只有精品19| 午夜免费观看性视频| 久久精品久久精品一区二区三区| 叶爱在线成人免费视频播放| 下体分泌物呈黄色| 观看av在线不卡| 久久久a久久爽久久v久久| 激情五月婷婷亚洲| 欧美最新免费一区二区三区| 午夜激情av网站| 日本午夜av视频| 欧美av亚洲av综合av国产av | 一级黄片播放器| 日韩精品有码人妻一区| 亚洲国产看品久久| av国产精品久久久久影院| 寂寞人妻少妇视频99o| 建设人人有责人人尽责人人享有的| 亚洲欧洲国产日韩| 另类亚洲欧美激情| 天美传媒精品一区二区| 亚洲第一区二区三区不卡| 久热久热在线精品观看| 一级片'在线观看视频| 国产一区二区激情短视频 | 人人妻人人澡人人看| 两个人免费观看高清视频| 好男人视频免费观看在线| 男女边摸边吃奶| 国产日韩欧美亚洲二区| 色视频在线一区二区三区| 寂寞人妻少妇视频99o| 午夜精品国产一区二区电影| www.熟女人妻精品国产| 最近中文字幕2019免费版| 天堂俺去俺来也www色官网| 国产精品人妻久久久影院| 看免费成人av毛片| 水蜜桃什么品种好| 日日撸夜夜添| 久久精品国产亚洲av涩爱| 免费日韩欧美在线观看| 日韩精品有码人妻一区| 1024香蕉在线观看| 亚洲四区av| 久久久久精品久久久久真实原创| 亚洲视频免费观看视频| 欧美 亚洲 国产 日韩一| 亚洲熟女精品中文字幕| 成年动漫av网址| 91精品伊人久久大香线蕉| 欧美日韩成人在线一区二区| 免费少妇av软件| 美女福利国产在线| 国产精品国产三级专区第一集| 亚洲欧美色中文字幕在线| 日日爽夜夜爽网站| 丝袜人妻中文字幕| 欧美av亚洲av综合av国产av | 国产深夜福利视频在线观看| 国产日韩一区二区三区精品不卡| 亚洲国产精品一区二区三区在线| 免费黄网站久久成人精品| 丰满迷人的少妇在线观看| 男女免费视频国产| 99久久人妻综合| 在线观看美女被高潮喷水网站| 中文天堂在线官网| videos熟女内射| 一区二区三区四区激情视频| 亚洲精品日韩在线中文字幕| 国产成人精品一,二区| av卡一久久| 日本av免费视频播放| 一区福利在线观看| 一本久久精品| av免费观看日本| 男女无遮挡免费网站观看|