• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adsorption behavior of uranyl ions onto amino-type adsorbents prepared by radiation-inducedgraft copolymerization?

    2014-04-24 09:28:56CHIHongYing遲洪影LIUXiYan劉西艷MAHongJuan馬紅娟YANGXiaoJuan楊曉娟YUMing虞鳴ZHANGJianYong張建勇WANGMin王敏LIJingYe李景燁HiroyukiHoshinaandNoriakiSeko
    Nuclear Science and Techniques 2014年1期
    關(guān)鍵詞:王敏

    CHI Hong-Ying(遲洪影),LIU Xi-Yan(劉西艷),MA Hong-Juan(馬紅娟),YANG Xiao-Juan(楊曉娟),YU Ming(虞鳴),ZHANG Jian-Yong(張建勇),WANG Min(王敏),,LI Jing-Ye(李景燁),,Hiroyuki Hoshina,and Noriaki Seko

    1TMSR Research Center and CAS Key Lab of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China3Quantum Beam Science Directorate,Japan Atomic Energy Agency,1233 Watanuki,Takasaki,Gunma,370-1292,Japan

    Adsorption behavior of uranyl ions onto amino-type adsorbents prepared by radiation-induced
    graft copolymerization?

    CHI Hong-Ying(遲洪影),1,2LIU Xi-Yan(劉西艷),1MA Hong-Juan(馬紅娟),1YANG Xiao-Juan(楊曉娟),1YU Ming(虞鳴),1ZHANG Jian-Yong(張建勇),1WANG Min(王敏),1,?LI Jing-Ye(李景燁),1,?Hiroyuki Hoshina,3and Noriaki Seko3

    1TMSR Research Center and CAS Key Lab of Nuclear Radiation and Nuclear Energy Technology, Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2University of Chinese Academy of Sciences,Beijing 100049,China3Quantum Beam Science Directorate,Japan Atomic Energy Agency,1233 Watanuki,Takasaki,Gunma,370-1292,Japan

    Amino-type adsorbents(ATAs)were prepared by radiation-induced graft copolymerization of 4-hydroxybutyl acrylateglycidylether(HB)ontoapolyethylene-coatedpolypropylene(PE/PP)duplexf i berofanon-wovenfabric,and modif i ed with different amines of ethylenediamine(EDA),diethylenetriamine(DETA),triethylenetetramine(TETA)and diethylamine(DEA).The adsorption behavior of uranyl ions onto the ATAs was studied in batch experiments.The effects of the contact time,initial concentration of the ions,temperature,and pH value. The salinity were investigated along with the adsorption kinetics and the adsorption isotherms.The kinetic experimental data followed the pseudo second-order kinetic model,and the adsorption isotherms correlated well with the Langmuir model.The ATAs showed good eff i ciency in adsorbing uranyl ions,with the best saturation adsorption capacity being 64.26mgg?1for ATA-DETA within 120min.The temperature dependence of ATADETA was quite abnormal and the quickest behavior was obtained at 25?C.ATAs showed good adsorption capacity over a wide pH range of 4.0–8.5,and HCl could be used in the elution process.Salinity of the solution had great effect on the adsorption capacity,3.5%salinity resulted in a 55%loss of capacity from ATA-DETA.

    The selectivity of ATA-DETA showed an order of:UO22+≈Fe3+>Zn2+>VO3–>Co2+>Ni2+.

    Amino-type adsorbents,Radiation induced graft polymerization,Uranyl ions,Adsorption,Selectivity

    I.INTRODUCTION

    Uranium,an important resource of nuclear fuel,mainly resides as sedimentate in terrestrial ores or as dissolved uranyl ions in seawater.The total amount of uranium in seawater is estimated at 4.5 billion tons,about 1000 times the total amount in terrestrial ores,and should be considered as an important fuel sourcefornuclear powerindustry[1–3].However,the low concentration of uranyl ions in seawater,about 3.3μgL?1,is a signif i cant challenge in the developing an economic recovery technique.

    In the past decades,various methods,such as solvent extraction,f l otation,ion-exchange and adsorption etc,have been applied for the recovery of uranium from seawater[4–6].As a high eff i ciency and low cost method,the adsorption of seawater uranyl ions with various types of adsorbents has been widely studied and reported.

    Of all the adsorbents for uranyl ions coordination reported so far,adsorbents functionalized with amidoxime [AO;?C(NOH)?NH2]groups are considered as the most promising materials due to their high capacity and selectiv-ity[7,8].Radiation-induced graft copolymerization(RIGC) of acrylonitrile onto polymeric fabric or f i bers,and then amidoximed,is now a sophisticated technique in Japan[9].A marine experiment using a braid adsorbent reported a loading capacity of 2mgg?1(uranium per adsorbent)[10].Efforts have been made at SINAP in preparing amidoxime-type adsorbent and studying adsorption behavior of the uranyl ions onto the adsorbent[11,12].

    Amines are widely used to form coordination compounds with metal ions.Therefore,an amino-type adsorbent(ATA) is a worthy candidate for studies on uranium extraction from seawater.Several ATAs utilizing RIGC were reported.The precursor monomer containing an epoxy group such as glycidylmethacrylate(GMA)was grafted onto the polymeric matrix and then amino groups were introduced through a ringopening reaction[13].Recently,4-hydroxybutyl acrylate glycidylether(HB)was applied to synthesize metal ion adsorbents,as it contains an epoxy group too,and due to the longer side chain in HB,the adsorbents performed nicely,with higher adsorption amount and faster adsorption rate than those using GMA as the precursor[13].

    In this work,ATAs were prepared by grafting HB onto a non-woven fabric made of polyethylene-coated polypropylene(PE/PP)duplex f i ber,and modif i ed with amines of ethylenediamine(EDA),diethylenetriamine(DETA),triethylenetetramine(TETA)and diethylamine(DEA).The adsorption behavior of the uranyl ions onto the ATAs was investigated.

    Fig.1.Preparation of the amine-type adsorbents.

    II.EXPERIMENTAL SECTION

    Materials:PE/PP duplex f i ber non-woven fabric was obtained from Kurashiki MFG Company,Japan.HB was purchased from Tokyo Kasei Kogyo Co.Ltd,Japan.EDA, DETA,TETA,DEA,surfactant sorbitan monolaurate(Span-20),xylene and isopropyl alcohol,were purchased from Kanto Chemical Co.,Ltd.Standard solutions of uranyl,iron,vanadium,nickel,cobalt and zinc were bought from Analytical Laboratory,Beijing Research Institute of Uranium Geology. HNO3and Na2CO3were purchased from Sinopharm Chemical Reagent Co.,Ltd.,All the materials and reagents were used without further purif i cation.

    Preparation of the ATA:ATAs were prepared using preirradiation-induced graft copolymerization and an amination procedure(Fig.1).Thenon-wovenfabricsampleswerecooled in dry ice and irradiated 30kGy by 1.5MeV electron beam. Graft copolymerization was carried out in an emulsion system containing 5%HB and 0.5%surfactant Span-20 at 40?C for 2 hours.The degree of grafting(DG)of the obtained fabrics,named as PE/PP-g-PHB,was about 150%.Then,the fabrics were aminated by immerging them in an isopropyl alcohol solution added with EDA,DETA,or TETA(to 70%concentration for each agent),at 60?C for 4h.The amination using DEA was done in a 50%DEA water solution at 30?C for 5h.The resulting ATAs were named ATA-EDA,ATA-DETA, ATA-TETA and ATA-DEA according to the amine used.The amino group density(AGD)of PE/PP?g?PHB fabrics grafted with the EDA,DETA,TETA and DEA were 3.0mmolg?1, 1.7mmolg?1,1.6mmolg?1and 2.2mmolg?1-adsorbent,respectively.

    The AGD was estimated by:

    where,Z0and Zfare the weights of grafted fabric before and after amination and M the molecular weight of the amine compound.

    Batch adsorption experiments:To study the adsorption kinetics,ATAs were put into a uranyl ion solution adjusted at pH 8 and kept at 25?C.The samples were taken out for evaluation at 30min,60min,120min,240min and 480min.Once the best ATA was determined,the ATA-DETA adsorbent was used to study the inf l uences of the adsorption.Equilibrium isotherms were determined by varying initial uranium concentration from 1mgL?1to 7mgL?1and using an equilibrium time of 8h.The effect of temperature on the equilibrium uptake of uranyl ions was investigated under similar experimental conditions,except for changes in temperature from 5?C to 35?C.The inf l uence of the initial solution pH on uranyl ions adsorption was studied with an initial concentration of 1mgL?1and pH value was adjusted between 2.0 and 10.0 usingHNO3andNa2CO3solutionsat25?C.Selectivemetalions adsorption of uranyl,vanadium,iron,nickel,zinc and cobalt ions onto DETA-type adsorbent tests were performed by using a mixture of an aqueous solution of 1mgL?1for each of the six metal ions.The solutions for the batch adsorption experiments were stirred at the same rate at different temperatures forvariouscontacttimesina waterbath.Theconcentrationsof uranium were determined by a trace uranium analyzer(WJGIII).Selective metal ion concentrations after adsorption were determined by using an ICP(Inductively Coupled Plasma)analyzer(NexION 300 D).The adsorption amount of the uranium ion was calculated using Eq.(2):

    whereQ(molg?1)is the adsorption amount of uranium onto amine-type materials,C0(mgL?1)andCt(mgL?1)are the initial concentrations of the uranium in the solution before and after adsorption for a certain timet,respectively.V(L)is the volume of the solution,andw(g)is the weight of the dry adsorbent.

    Characterizations:Infrared spectra were taken on a Tensor 27 FT-IR spectrometer(Germany).The pristine and grafted PE/PP duplex f i ber non-woven fabrics are scanned in the wave number range of 4000–800 cm?1.Scanning electron microscopy(SEM)images of the pristine PE/PP and ATADETA were taken on a JSM-6700F scanning electron microscope(JEOL,Japan).Prior to the SEM observation,the carbon tape for sample attachment were sputtered with gold to enhance the electronic conductivity in vacuum.

    III.RESULTS AND DISCUSSION

    A.Adsorbent characterization

    The HB-graft non-woven fabric and the ATAs were characterized by FT-IR.Fig.2 shows typical FI-IR spectra of the ATA-DETA,the trunk polymer and HB-grafted nonwoven fabric.The spectrum of HB-grafted sample exhibitsstrong absorption at about 1730cm?1(C?O stretching)and 1251cm?1(?C?O?C stretching),and the peak at 848cm?1represented the characteristic vibrations of epoxy groups.All these indicate that the HB-graft chains are introduced onto the PE/PP fabric.The ATA-DETA spectrum shows the new characteristic peaks at 1650cm?1and 1555cm?1(N?H bending vibration),indicating the successful modi fi cation of the DETA group.

    SEM images of the virgin PE/PP fabric and ATA-DETA are shown in Fig.3.The surface image of the ATA-DETA revealed the fi ber morphology,crisscrossed by a network of fi bers of about 20μm in diameter(Fig.3(b)).The rough fi ber surface(Fig.3(c))means that the ATAs possess an appropriately high speci fi c surface area,which facilitates the adsorption process of uranyl ions.

    Fig.2.(Coloronline)FT-IRspectraoftrunkPE/PPnon-wovenfabric, HB-grafted non-woven fabric and ATA-DETA.

    Fig.3.SEM images of PE/PP(a)and ATA-DETA at low(b)and high (c)magnif i cation.

    B.Effect of contact time

    The effect of contact time on uranyl ions absorption onto the ATAs was investigated over the time intervals(at 30min, 60min,120min,240min and 480min).As shown in Fig.4(a), the amount of adsorption increased with the contact time and fi nally reached 12.45mgg?1,12.50mgg?1,12.48mgg?1and 12.50mgg?1for ATA-EDA,ATA-DETA,ATA-TETA and ATA-DEA,respectively.After absorption equilibrium,the four ATAs exhibited similar adsorption amount but the time dependence curves show that the adsorption rate is in the order of ATA-DETA>ATA-DEA>ATA-TETA>ATA-EDA.This means that ATA-DETA exhibited the most eff i cient adsorption rate for uranyl ions,especially within the f i rst 30min.As mentioned previously the functional group density of ATAs were 3.0mmolg?1,1.7mmolg?1,1.6mmolg?1and 2.2mmolg?1for ATA-EDA,ATA-DETA,ATA-TETA and ATA-DEA,respectively.Functional groups of the f i rst three type adsorbents were in the form of secondary and tertiary amine when used in aqueous solution and ATA-DEA was of quaternary amine.The most eff i cient adsorbent in this study was ATA-DETA with a functional group density of 1.7mmolg?1.Therefore,the adsorption rate of the materials was affected not only by the density of the amino groups,but also the structure of the amino group.

    A good correlation with adsorption kinetics data can fully explain the adsorption process.The pseudo second-order model in Eq.(3),which is based on adsorption ability on the solid phase,was used to f i t the results obtained from the different amine-type materials.

    wherekis the rate constants of the pseudo second-order adsorption,QtandQeare the amount of adsorbed uranium at timetand equilibrium state.The f i tting results applying the pseudo second-order model to the kinetic data of different ATAs is given in Fig.4(b),and one sees a good linearity with the correlation coeff i cient(R2>0.99)under the experiment conditions.

    As ATA-DETA has the most eff i cient adsorption rate for uranyl ions,we focused on ATA-DETA in the following experiments.

    C.Effect of the initial concentrations

    The effect of initial uranyl ion concentration on the ATADETA adsorption was obtained from 1 to 7mgL?1at a pH 8.0 at 25?C.Fig.5 shows the amount of uranyl ions adsorbed on the ATA-DETA om 8 hours.The amount of adsorbed uranyl ion increases with the initial concentrations and reached a plateau value of 64.26mgg?1,i.e.the maximum equilibrium adsorption amount.

    The Freundlich and Langmuir adsorption models are two typical adsorption equilibrium isotherms widely used to describe adsorption equilibrium.The Freundlich model supposes that a nonideal adsorption surface is heterogeneous with multilayer sorption[14].The linear form of the Freundlich model is given by

    whereKFandnare the Freundlich constants to indicate the adsorption capacity and the extent of the adsorption,respectively[15].Qe(mgg?1)is the amount of solute adsorbed atequilibrium,andCe(mmolL?1)is related to the concentration equilibrium.

    Fig.4.(Color online)(a)Adsorption kinetics of different ATAs(C0=1mgL?1;T=25?C;pH=8)(b)Linearized pseudo-second-order kinetic model for uranium on different ATAs.

    Fig.5.Effecting of the initial concentration on adsorption capacity.

    The Langmuir model assumes that the adsorption of metal ions occurs on a homogeneous surface by monolayer adsorption without any interaction between adsorbed ions[16].The linear form of the Langmuir model is given by:

    where,Qmaxis the Langmuir monolayer adsorption capacity(mgg?1)andKLis the Langmuir equilibrium constant:the ratio of adsorption and desorption rate coeff i cients(Lg?1).

    The plots based on the two linear relationships are shown in Fig.6.The data were linearly correlated,with the correlation coeff i cients(R2)of 0.877 and 0.999 for the Freundlich and Langmuir models,respectively.This indicates that isotherm is a better f i tting model than Freundlich and the adsorption of ATAs for uranyl ions occurred on a homogeneous surface by monolayer adsorption.

    D.Effect of the temperature

    Temperature is an important parameter for ion adsorption. In the early marine experiments in Japan,scientists found materials set in Okinawa showed higher adsorption capacity than that in the north Japan,indicating that high temperature took advantage for uranyl ion adsorption.It was also reported that higher temperature resulted in higher uranyl ion adsorbance for the amidoxime-type adsorbent in laboratory study[11]. These suggest that the adsorption procedure maybe endothermic.However,in this study,25?C was found to be the most optimal temperature for the adsorption of uranyl ions of ATADETA.The effect of the temperature on uranyl ions adsorption onto ATA-DETA is given in Fig.7(a).The pseudo secondorder curves were used to f i t the data obtained at different temperatures for the ATA-DETA adsorption,with good correlation coeff i cients(R2>0.98)(Fig.7(b)).The adsorption rateswere in the order of 25?C>35?C>15?C>5?C.The Arrhenius equation was used to study the temperature dependence of the reaction rate constant,but the activation energy(Ea)could not be calculated from this empirical relationship.This indicates the adsorption process involves both endothermic and exothermic in the complex step.As the dominant uranyl species in seawater are the carbonato complexes[17,18],the amidoxime must compete with and replace the carbonate groups in the sorption process.Literature reports suggest that the dissociation of the tricarbonato uranyl complex(UO2(CO3)34–)may be the rate-determining step[19].However,each step of the dissociation of the tricarbonato was not clear at present,nor the thermodynamics involved in dissociation of each carbonate.To learn more about the adsorption mechanism,a theoretical simulation will be included in our future study.

    Fig.6.(Color online)Fitting of uranium adsorption on ATA-DETA(T=25?C,pH=8,t=8h)(a)Freundlich adsorption isotherm and(b) Langmuir isotherm.

    Fig.7.(Color online)(a)Adsorption kinetics of different temperatures with ATA-DETA(C0=1mgL?1;T=25?C;pH=8)(b)Linearized pseudo-second-order kinetic curves for uranyl ion adsortpion at different temperatures.

    E.Effect of the pH value

    The pH value plays a role in metal ions absorption because of the hydration and complex formation of metal ions.Although the pH value of the seawater is constant at about 7.5–8.5,looking at the effect of the pH value shall be of help to determine the desorption conditions.The results of pH inf l uence(pH 2.0–9.5)is given in Fig.8.

    In the range of pH 4.0–8.5,the adsorption ratios and amount of the uranyl ions were almost the same,while a pH value over 8.5 resulted in a slight decrease.The adsorption ratio and adsorbance of uranyl ions dramatically decreased in an acid condition with a pH value below 4.At pH 2,the ATA-DETA is incapable of adsorbing the uranyl ions.

    The pH effect can be explained in two ways.First,the existing form of(UO2)2+in aqueous solutions is extremely complex.U(VI)mostly exists as((UO2)2+)in its hydrolysis complexes,carbonate complexes and multinuclear hydroxide as a function of pH and concentration under experimental conditions[18,20–22].(UO2)2+were the main species in acidic solution at pH 2–4[23].At pH 4–8.5,(UO2)2+,[UO2OH]+, [(UO2)3O(OH)3]+,[UO2(CO3)],and[(UO2)2(OH)2]2+coexist[19–22].On the other hand,the protonation of amino groups depends greatly on the pH value of the solution,where the lone pair electrons on N are occupied by hydrogen,which makes coordination of amine absent in strong acid condition. This illustrates that desorption procedure can be carried out in acidic solution.

    After adsorption equilibrium in 1mgL?1uranyl ions solution,desorption was carried out with HCl.The desorption ratio of uranyl ions from ATA-DETA under different concentrations of HCl is shown in Table 1.The results show that 0.1M HCl can remove 75.11%uranyl ions from ATA-DETA.Higher concentrationofHClisofhigherdesorptionratioand5MHClcan remove 93.67%uranyl ions from ATA-DETA.

    Fig.8.(Color online)Effect of solution pH on the equilibrium adsorption eff i ciency onto ATAs(C0=1mgL?1;T=25?C;t=24h).

    TABLE 1.Desorption ratio of uranyl ions from ATA-DETA with different concentration of HCl

    F.Effect of salinity

    Salinity is important forthe recoveryor separation ofseawater uranium due to the high average salinity(3.5%)of seawater.Fig.9 shows the salinity effect on equilibrium adsorption amount.

    The salinity was adjusted with NaCl.The adsorption of uranyl ion was affected a little at salinities below 1%,but it decreased quickly with increasing salinity from 1%to 4%,where it began to decrease slowly until 5%salinity,and reached an equilibrium at 6%salinity and 4.76mgg?1of the adsorption. It has been reported that the salinity had great effect on the adsorption of uranyl ions[15–17].However,with a 55%loss of capacityfromtheATA-DETAatsalinityof3.5%,thesaltresistance property of the adsorbents needs to be improved,which is a challenge of adsorbent design.

    G.Effect of interfering ionsy

    In a practical application,co-existing ions which would strongly interact with the amino groups will interfere with the adsorption of uranyl ions.Co2+,Fe3+,Zn2+,Ni2+and VO3–were investigated in this study as the concentration of Fe3+, Zn2+,Ni2+and VO3–and uranyl ions in seawater are at the same level of ppb(μgL?1).Moreover,the distribution coeff icient of Co2+,Fe3+and Ni2+from the amidoxime-type adsorbents are higher than that of uranyl ions[24].Vanadium also attracted wide attention recently as it can be collected on the adsorbent,butthevanadium elutionisdiff i cult.Theadsorption amount of uranyl ions in mix solutions at pH 8 decreased from 12.50mgg?1to 11.92mgg?1when the initial concentrations of interference were all set at 1mgL?1.Fig.10 indicates that the sequence of adsorption amount of metal ions is:UO22+≈Fe3+>Zn2+>VO3–>Co2+>Ni2+.The adsorption capacity of uranium was higher than vanadium,which is an advantage over amidoxime-type adsorbents[25].The interference ofFe3+,however,still presents challenges in the preparation of adsorbents with high selectivity.

    Fig.9.Salinity effects on the equilibrium adsorption amount.(C0= 1mgL?1;T=25?C;t=24h)

    Fig.10.(Color online)Adsorption amount of different metal ions by ATA-DETA(C0=1mgL?1;T=25?C;t=24h,pH=8).

    IV.CONCLUSION

    ATAs exhibit excellent adsorption behavior of uranium with saturation sorption capacities as high as 64.26mgg?1from the ATA-DETA type adsorbent.The sorption kinetics followed a pseudo second-order kinetic model,while the sorption isotherm followed the Langmuir adsorption isotherm model.ATAs showed good adsorption capacity over a wide pH range of 4.0–8.5.Using 0.1M HCl,75.11%uranyl ion could be removed from the ATA-DETA,and the desorption ratio increased to 93.67%with 5M HCl.The most suitable temperature for the adsorption of uranyl ions was 25?C.A salinity of 3.5%resulted in a 55%loss of capacity from ATA-DETA in this study.The selectivity from ATA-DETA was in the order of UO22+≈Fe3+>Zn2+>VO3–>Co2+>Ni2+.The adsorption capacity of uranium was higher than that of vanadium,which is an advantage over other ATAs.The effect of Fe3+,however, remains a challenge.

    [1]Schenk H J,Astheimer L,Witte E G,et al.Sep Sci Technol, 1982,17:1293–1308.

    [2]Scanlan J P.J Inorg Nucl Chem,1977,39:635–639.

    [3]Koske P H,Ohlrogge K,Peinemann KV.Sep Sci Technol,1988,23:1929–1940.

    [4]Elnaggar I M,Elabsy M A,Abdelhamid M M,et al.Solvent Extr Ion Exch,1993,11:521–540.

    [5]Williams W J and Gillam A H.Analyst,1978,103:1239–1243.

    [6]Tabushi I,Kobuke Y,Nishiya T.Nature,1979,280:665–666.

    [7]Egawa H,Kabay N,Jyo A,et al.Ind Eng Chem Res,1994,33: 657–661.

    [8]Das S,Pandey A K,Athawale A,et al.Desalination,2008,232: 243–253.

    [9]TamadaM,SekoN,YoshiiF.RadiatPhysChem,2004,71:223–227.

    [10]Schierz A and Zanker H.Environ Pollut,2009,157:1088–1094.

    [11]Liu X Y,Liu H Z,Ma H J,et al.Ind Eng Chem Res,2012,51: 15089–15095.

    [12]Liu H Z,Yu M,Deng B,et al.Radiat Phys Chem,2012,81: 93–96.

    [13]Ma H J,Yao S D,Li J Y,et al.Radiat Phys Chem,2012,81: 1393–1397.

    [14]Parab H,Joshi S,Shenoy N,et al.Bioresour Technol,2005,96:1241–1248.

    [15]McGinley P M,Katz L E,Weber W J.Water Resour Res,1996,32:3571–3577.

    [16]Langmuir I.J Am Chem Soc,1918,40:1361–1403.

    [17]Kyoichi S and Terukatsu M.J Nucl Sci Tech,1982,19:145–150.

    [18]Bayramoglu G,Celik G,Arica M Y.J Hazard Mater,2006,137: 1689–1697.

    [19]Takao A,Akira G,Tokihiro K.et al.Separation Sci Tech,1992,27:1655–1667.

    [20]Kang M J,Han B E,Hahn P S.Environ Eng Res.2002,7:149–157.

    [21]Meinrath G,Kato Y,Kimura T,et al.Radiochim Acta,1996,75: 159–167.

    [22]Kilincarslan A,Akyil S.JRNC.,2005264:541–548.

    [23]Ma H,Hoshina H,Seko N.J Appl Polym Sci,2013,128:4253–4260.

    [24]Tamada M.Japan Atomic Energy Agency,2009.

    [25]Huheey J M.Inorganic Chemistry,3rd,New York:Harper& Row,1983.

    10.13538/j.1001-8042/nst.25.010302

    (Received October 15,2013;accepted in revised form December 2,2013;published online February 20,2014)

    ?Supported by National Natural Science Foundation of China(Nos. 11175234 and 11105210),the“Strategic Priority Research Program”of the Chinese Academy of Sciences(No.XDA02030200),the“Knowledge Innovation Program”of the Chinese Academy of Sciences(No.KJCX2-YW-N49),and Shanghai Municipal Commission for Science and Technology(Nos.11ZR1445400 and 12ZR1453300)

    ?Corresponding author,wangmin@sinap.ac.cn

    ?Corresponding author,jingyeli@sinap.ac.cn

    猜你喜歡
    王敏
    Numerical studies for plasmas of a linear plasma device HIT-PSI with geometry modified SOLPS-ITER
    Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST
    王敏作品
    A commutation analytical model for quench protection of the CFETR central solenoid model coil
    Improvement of English Listening Teaching in Junior MiddleSchool Guided by Schema Theory
    魅力中國(2018年4期)2018-07-30 11:11:44
    Electricity supplier era of packaging design Current Situation and Prospects
    東方教育(2017年1期)2017-04-20 02:52:09
    山東省原省委常委、濟南市原市委書記 王敏:夫妻聯(lián)手貪 全家齊上陣
    Bromate formation in bromide-containing waters irradiated by gamma rays?
    The effect of bubble plume on oxygen transfer for moving bed biofilm reactor*
    人妻人人澡人人爽人人| 人人澡人人妻人| 久久99蜜桃精品久久| 国产黄片美女视频| 精品亚洲成a人片在线观看| 日本欧美视频一区| 久久久久人妻精品一区果冻| 一区二区av电影网| 男女无遮挡免费网站观看| 一级毛片我不卡| 爱豆传媒免费全集在线观看| 国产av码专区亚洲av| 国产日韩欧美亚洲二区| 午夜91福利影院| 黑人高潮一二区| 久久免费观看电影| 中国美白少妇内射xxxbb| 久久久久国产精品人妻一区二区| 国产亚洲午夜精品一区二区久久| 肉色欧美久久久久久久蜜桃| 久久久精品免费免费高清| 国产精品一区www在线观看| av卡一久久| 一级毛片久久久久久久久女| 精品久久久久久久久av| 97超视频在线观看视频| freevideosex欧美| 少妇被粗大的猛进出69影院 | 亚洲精品色激情综合| 自拍偷自拍亚洲精品老妇| 国产男女超爽视频在线观看| 亚洲久久久国产精品| 国产乱人偷精品视频| 香蕉精品网在线| 午夜福利影视在线免费观看| 亚洲成人手机| 在线观看美女被高潮喷水网站| 免费av中文字幕在线| 少妇人妻久久综合中文| 国产高清三级在线| 一本久久精品| 国产精品欧美亚洲77777| 美女脱内裤让男人舔精品视频| 亚洲国产欧美日韩在线播放 | 欧美日韩亚洲高清精品| 五月玫瑰六月丁香| 如日韩欧美国产精品一区二区三区 | 久久久精品94久久精品| 最新中文字幕久久久久| 亚洲精品自拍成人| 国产精品一区二区三区四区免费观看| 80岁老熟妇乱子伦牲交| 国产乱来视频区| 婷婷色综合大香蕉| 久久国产精品大桥未久av | 桃花免费在线播放| 国产熟女欧美一区二区| 午夜精品国产一区二区电影| 日韩免费高清中文字幕av| 精品久久久久久久久av| 欧美bdsm另类| 午夜福利网站1000一区二区三区| 精品人妻熟女毛片av久久网站| 久热这里只有精品99| 特大巨黑吊av在线直播| 国模一区二区三区四区视频| 亚洲美女视频黄频| 少妇人妻一区二区三区视频| 国产免费福利视频在线观看| 美女中出高潮动态图| 欧美成人精品欧美一级黄| 香蕉精品网在线| 内地一区二区视频在线| av在线app专区| 少妇精品久久久久久久| 国产免费又黄又爽又色| 国产伦精品一区二区三区四那| 男人狂女人下面高潮的视频| 2021少妇久久久久久久久久久| 伦理电影免费视频| 黑人高潮一二区| 亚洲精品乱久久久久久| 精品熟女少妇av免费看| 久久国产乱子免费精品| 免费看光身美女| 国产探花极品一区二区| 精品人妻熟女毛片av久久网站| 免费人成在线观看视频色| 久久久a久久爽久久v久久| 黑人巨大精品欧美一区二区蜜桃 | 久热久热在线精品观看| 国产中年淑女户外野战色| 丰满乱子伦码专区| 永久网站在线| 午夜福利,免费看| 午夜激情福利司机影院| 在线观看国产h片| 久久99蜜桃精品久久| 成人黄色视频免费在线看| 你懂的网址亚洲精品在线观看| 十八禁网站网址无遮挡 | 欧美国产精品一级二级三级 | 亚洲av不卡在线观看| 晚上一个人看的免费电影| 国产精品伦人一区二区| 国产精品一区www在线观看| 国产高清有码在线观看视频| 亚洲国产精品专区欧美| 我的老师免费观看完整版| 国产伦在线观看视频一区| 少妇精品久久久久久久| 久久国内精品自在自线图片| 欧美日韩视频高清一区二区三区二| 国产男女内射视频| 国产一区亚洲一区在线观看| 五月伊人婷婷丁香| 亚洲精品自拍成人| 边亲边吃奶的免费视频| 大陆偷拍与自拍| 欧美激情极品国产一区二区三区 | 18禁在线播放成人免费| 日韩中字成人| 免费av不卡在线播放| 男人添女人高潮全过程视频| 高清毛片免费看| 狠狠精品人妻久久久久久综合| 纯流量卡能插随身wifi吗| 国产日韩欧美亚洲二区| av在线老鸭窝| 在线观看免费视频网站a站| 精品久久久噜噜| 丰满饥渴人妻一区二区三| 国产爽快片一区二区三区| 啦啦啦啦在线视频资源| 国产精品一区www在线观看| 高清欧美精品videossex| 日本爱情动作片www.在线观看| 亚洲成人手机| 久久人人爽av亚洲精品天堂| 免费观看性生交大片5| 六月丁香七月| 插阴视频在线观看视频| 我的女老师完整版在线观看| 又大又黄又爽视频免费| 日本wwww免费看| 十分钟在线观看高清视频www | 丰满迷人的少妇在线观看| 日日摸夜夜添夜夜爱| 亚洲精品国产av成人精品| 亚洲国产色片| 久久ye,这里只有精品| 少妇人妻久久综合中文| 大话2 男鬼变身卡| 久久精品国产亚洲av涩爱| 亚洲精品一二三| 久久久久久久国产电影| 免费观看的影片在线观看| 插阴视频在线观看视频| 久久久久久久久大av| 日本vs欧美在线观看视频 | 国产亚洲一区二区精品| 亚洲美女搞黄在线观看| 久久精品国产鲁丝片午夜精品| 亚洲三级黄色毛片| av视频免费观看在线观看| 伦精品一区二区三区| 最近中文字幕2019免费版| 成年美女黄网站色视频大全免费 | 午夜影院在线不卡| 久久精品国产亚洲网站| 超碰97精品在线观看| 亚洲精品国产av蜜桃| 国产亚洲av片在线观看秒播厂| 伊人久久精品亚洲午夜| 三级国产精品欧美在线观看| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 九九爱精品视频在线观看| 久久久久国产精品人妻一区二区| 99热这里只有是精品在线观看| 成年女人在线观看亚洲视频| 久久女婷五月综合色啪小说| 中文天堂在线官网| 久久久国产一区二区| 夜夜骑夜夜射夜夜干| 嘟嘟电影网在线观看| 成年女人在线观看亚洲视频| 国产有黄有色有爽视频| 美女国产视频在线观看| 婷婷色综合大香蕉| 成人国产麻豆网| 一本色道久久久久久精品综合| 夫妻午夜视频| 国产亚洲91精品色在线| 欧美少妇被猛烈插入视频| 男女边吃奶边做爰视频| av一本久久久久| 一二三四中文在线观看免费高清| 久久青草综合色| 精品国产国语对白av| 观看美女的网站| 国产黄片视频在线免费观看| videossex国产| 在现免费观看毛片| 我要看黄色一级片免费的| 男人和女人高潮做爰伦理| 国产69精品久久久久777片| 精品人妻一区二区三区麻豆| 秋霞伦理黄片| 色网站视频免费| 国产午夜精品久久久久久一区二区三区| 亚洲精品乱久久久久久| 亚洲色图综合在线观看| 黄色毛片三级朝国网站 | 婷婷色av中文字幕| 午夜精品国产一区二区电影| 日本91视频免费播放| 国产精品人妻久久久久久| 成人免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线| 国产精品国产三级专区第一集| 十分钟在线观看高清视频www | a 毛片基地| 欧美日韩亚洲高清精品| 久久婷婷青草| 成人亚洲精品一区在线观看| 亚洲天堂av无毛| 大片电影免费在线观看免费| 国产免费一区二区三区四区乱码| 免费在线观看成人毛片| 免费看av在线观看网站| 日韩精品免费视频一区二区三区 | 精品久久国产蜜桃| videossex国产| 老熟女久久久| 人人妻人人看人人澡| 免费大片黄手机在线观看| 亚洲精品一二三| 尾随美女入室| 美女大奶头黄色视频| 男女边吃奶边做爰视频| 国产美女午夜福利| 久久这里有精品视频免费| 国产女主播在线喷水免费视频网站| 美女国产视频在线观看| 一区二区三区乱码不卡18| 嘟嘟电影网在线观看| 看免费成人av毛片| 亚洲精品久久久久久婷婷小说| 我的女老师完整版在线观看| 免费观看a级毛片全部| 欧美亚洲 丝袜 人妻 在线| 欧美精品国产亚洲| 日韩三级伦理在线观看| 啦啦啦中文免费视频观看日本| 青春草亚洲视频在线观看| 国产日韩一区二区三区精品不卡 | 国产精品.久久久| 亚洲精品亚洲一区二区| 亚洲精品色激情综合| 亚洲高清免费不卡视频| 国产精品久久久久久久久免| 午夜视频国产福利| 高清黄色对白视频在线免费看 | 另类精品久久| 国产又色又爽无遮挡免| 在线观看av片永久免费下载| 搡女人真爽免费视频火全软件| 亚洲欧洲精品一区二区精品久久久 | 久久久国产精品麻豆| 伦理电影大哥的女人| 99re6热这里在线精品视频| 99视频精品全部免费 在线| 亚洲精品第二区| 九九爱精品视频在线观看| 99久久精品一区二区三区| 黄色日韩在线| 少妇人妻一区二区三区视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲图色成人| 日韩在线高清观看一区二区三区| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| 欧美国产精品一级二级三级 | 欧美成人午夜免费资源| av专区在线播放| 高清黄色对白视频在线免费看 | 免费黄网站久久成人精品| 99re6热这里在线精品视频| 国产永久视频网站| √禁漫天堂资源中文www| 老司机影院成人| 丝袜在线中文字幕| 久热久热在线精品观看| 国产无遮挡羞羞视频在线观看| 国产日韩欧美亚洲二区| 亚洲国产日韩一区二区| 亚洲精品,欧美精品| av天堂久久9| 最近手机中文字幕大全| 嘟嘟电影网在线观看| 18+在线观看网站| 男女啪啪激烈高潮av片| 激情五月婷婷亚洲| 久久人人爽人人片av| 久热这里只有精品99| 高清黄色对白视频在线免费看 | 亚洲成人一二三区av| 国产av一区二区精品久久| 99精国产麻豆久久婷婷| 日韩伦理黄色片| 国产精品久久久久久av不卡| 午夜老司机福利剧场| 亚洲精品中文字幕在线视频 | 成人亚洲欧美一区二区av| 成年美女黄网站色视频大全免费 | 大陆偷拍与自拍| av网站免费在线观看视频| 五月伊人婷婷丁香| 久久久久久伊人网av| 在线观看美女被高潮喷水网站| 97精品久久久久久久久久精品| 久久精品国产亚洲av天美| 少妇高潮的动态图| 3wmmmm亚洲av在线观看| 欧美日韩视频高清一区二区三区二| 国产日韩欧美视频二区| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 欧美性感艳星| 亚洲国产欧美日韩在线播放 | 欧美精品国产亚洲| 久久 成人 亚洲| 亚洲精品中文字幕在线视频 | 久久女婷五月综合色啪小说| 国产免费一级a男人的天堂| 69精品国产乱码久久久| 日本猛色少妇xxxxx猛交久久| 黄色毛片三级朝国网站 | 欧美三级亚洲精品| 少妇人妻 视频| 啦啦啦视频在线资源免费观看| 丰满饥渴人妻一区二区三| 国产午夜精品一二区理论片| 边亲边吃奶的免费视频| 777米奇影视久久| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 久久99精品国语久久久| av国产精品久久久久影院| 超碰97精品在线观看| 久久亚洲国产成人精品v| 两个人的视频大全免费| 丰满人妻一区二区三区视频av| 日本欧美国产在线视频| 日本91视频免费播放| 国产av码专区亚洲av| av又黄又爽大尺度在线免费看| 一本大道久久a久久精品| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 亚洲av成人精品一二三区| 欧美日韩国产mv在线观看视频| 久久久久久久亚洲中文字幕| 久久久亚洲精品成人影院| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 国产av码专区亚洲av| 狂野欧美激情性xxxx在线观看| 黄色视频在线播放观看不卡| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 精品久久久久久电影网| 99九九在线精品视频 | 国产永久视频网站| 中国国产av一级| 亚洲精品成人av观看孕妇| 久久av网站| 少妇被粗大猛烈的视频| 亚洲国产最新在线播放| 日韩一区二区视频免费看| av在线观看视频网站免费| 日日摸夜夜添夜夜爱| 国产高清三级在线| 边亲边吃奶的免费视频| 成人18禁高潮啪啪吃奶动态图 | 91久久精品国产一区二区三区| 99热这里只有是精品在线观看| 99国产精品免费福利视频| 一级毛片电影观看| 亚洲,一卡二卡三卡| 国产精品一二三区在线看| 日韩一区二区视频免费看| 全区人妻精品视频| 成人国产麻豆网| 偷拍熟女少妇极品色| 少妇人妻精品综合一区二区| 丝袜喷水一区| 肉色欧美久久久久久久蜜桃| 亚洲欧美成人综合另类久久久| 中文字幕av电影在线播放| 伊人久久国产一区二区| 一级毛片黄色毛片免费观看视频| 少妇的逼好多水| 一级黄片播放器| 国产黄片美女视频| 一级毛片 在线播放| 黄色视频在线播放观看不卡| 国产在线视频一区二区| 女人精品久久久久毛片| 五月天丁香电影| 国产伦在线观看视频一区| 亚洲综合色惰| 午夜激情福利司机影院| 国产在线免费精品| 七月丁香在线播放| 久久久久国产精品人妻一区二区| a级片在线免费高清观看视频| 亚洲精品视频女| 嫩草影院新地址| 欧美成人午夜免费资源| 欧美激情极品国产一区二区三区 | 熟女人妻精品中文字幕| 少妇被粗大的猛进出69影院 | 日韩强制内射视频| 亚洲成人一二三区av| 五月开心婷婷网| 免费不卡的大黄色大毛片视频在线观看| 简卡轻食公司| 日韩成人伦理影院| av福利片在线| 日韩欧美精品免费久久| 赤兔流量卡办理| 国产一区二区三区av在线| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 亚洲av欧美aⅴ国产| 亚洲情色 制服丝袜| 国产乱人偷精品视频| 国内少妇人妻偷人精品xxx网站| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 国产伦在线观看视频一区| 亚洲美女视频黄频| 少妇 在线观看| 99视频精品全部免费 在线| 噜噜噜噜噜久久久久久91| av黄色大香蕉| 自拍偷自拍亚洲精品老妇| 插阴视频在线观看视频| 99re6热这里在线精品视频| 91久久精品国产一区二区成人| 中文字幕av电影在线播放| 嘟嘟电影网在线观看| 国产精品.久久久| 国产伦精品一区二区三区视频9| 一本大道久久a久久精品| 久久久久久久亚洲中文字幕| 亚洲av国产av综合av卡| 能在线免费看毛片的网站| 日韩在线高清观看一区二区三区| 大码成人一级视频| 久热久热在线精品观看| 国产白丝娇喘喷水9色精品| 日韩大片免费观看网站| av女优亚洲男人天堂| 亚洲在久久综合| 国内揄拍国产精品人妻在线| 99久久精品国产国产毛片| 欧美日本中文国产一区发布| 精品久久国产蜜桃| 乱人伦中国视频| 国产精品偷伦视频观看了| 国产精品嫩草影院av在线观看| 国产精品.久久久| 青春草亚洲视频在线观看| 夜夜爽夜夜爽视频| 九九久久精品国产亚洲av麻豆| 妹子高潮喷水视频| 日本黄大片高清| 国产成人a∨麻豆精品| 日日摸夜夜添夜夜添av毛片| 亚州av有码| 国产爽快片一区二区三区| 久久99精品国语久久久| 女性被躁到高潮视频| 国产精品一区二区在线观看99| 校园人妻丝袜中文字幕| 日韩精品免费视频一区二区三区 | 国产精品三级大全| 欧美 日韩 精品 国产| 三级国产精品欧美在线观看| 午夜免费鲁丝| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 成年人午夜在线观看视频| 久久久久国产网址| 色哟哟·www| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| 一本久久精品| 国产探花极品一区二区| 大片电影免费在线观看免费| 国产爽快片一区二区三区| 久久久午夜欧美精品| 亚洲四区av| 国产白丝娇喘喷水9色精品| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| a级片在线免费高清观看视频| 久久久国产一区二区| 在线观看人妻少妇| av福利片在线| 99热6这里只有精品| 22中文网久久字幕| 亚洲欧美清纯卡通| 人妻制服诱惑在线中文字幕| 18禁在线播放成人免费| 国产av一区二区精品久久| 欧美精品国产亚洲| 精品人妻一区二区三区麻豆| 久久国产乱子免费精品| 狂野欧美激情性bbbbbb| 欧美三级亚洲精品| 最后的刺客免费高清国语| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 麻豆成人av视频| 欧美另类一区| 日韩一区二区视频免费看| xxx大片免费视频| 观看免费一级毛片| 99热网站在线观看| 亚洲不卡免费看| 精品国产一区二区久久| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 乱系列少妇在线播放| 国产免费福利视频在线观看| 嫩草影院入口| 欧美日本中文国产一区发布| 国产精品女同一区二区软件| 两个人免费观看高清视频 | 亚洲成人一二三区av| 欧美亚洲 丝袜 人妻 在线| 久久久久精品性色| 欧美xxⅹ黑人| 夜夜骑夜夜射夜夜干| 插逼视频在线观看| 欧美日韩国产mv在线观看视频| av天堂中文字幕网| 美女内射精品一级片tv| www.av在线官网国产| 日韩成人av中文字幕在线观看| 亚洲性久久影院| 青春草亚洲视频在线观看| av视频免费观看在线观看| 亚洲欧洲日产国产| 久久婷婷青草| 一级a做视频免费观看| 秋霞伦理黄片| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 欧美少妇被猛烈插入视频| 人妻 亚洲 视频| 有码 亚洲区| 午夜视频国产福利| 亚洲国产欧美在线一区| 国产乱人偷精品视频| xxx大片免费视频| 成人午夜精彩视频在线观看| 国产高清国产精品国产三级| 免费看光身美女| 好男人视频免费观看在线| 高清午夜精品一区二区三区| 久久久久网色| 高清午夜精品一区二区三区| 美女内射精品一级片tv| 十八禁网站网址无遮挡 | 久久久久久久久久久丰满| av免费观看日本| 久久精品国产亚洲网站| 美女大奶头黄色视频| 欧美 亚洲 国产 日韩一| 欧美日韩一区二区视频在线观看视频在线| 国产av国产精品国产| 欧美+日韩+精品| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 国产亚洲精品久久久com| 久久热精品热| 亚洲av综合色区一区| 人人妻人人澡人人看| 十八禁高潮呻吟视频 | 男人添女人高潮全过程视频| 久久ye,这里只有精品| 午夜免费观看性视频| 久久午夜综合久久蜜桃| 国产成人精品福利久久| 中文字幕精品免费在线观看视频 | 中文字幕免费在线视频6| 街头女战士在线观看网站| 亚洲成人一二三区av| 国产一区二区在线观看日韩| 亚洲人成网站在线播| 日韩大片免费观看网站| 80岁老熟妇乱子伦牲交| 日本爱情动作片www.在线观看| 九九在线视频观看精品| 久久久久国产精品人妻一区二区| av免费观看日本| 蜜桃久久精品国产亚洲av| 爱豆传媒免费全集在线观看|