• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on GPU-accelerated algorithm in 3D f i nite difference neutron diffusion calculation method?

    2014-04-24 09:29:02XUQi徐琪YUGangLin余綱林WANGKan王侃andSUNJiaLong孫嘉龍
    Nuclear Science and Techniques 2014年1期

    XU Qi(徐琪),YU Gang-Lin(余綱林),WANG Kan(王侃),and SUN Jia-Long(孫嘉龍)

    1Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    Research on GPU-accelerated algorithm in 3D f i nite difference neutron diffusion calculation method?

    XU Qi(徐琪),1,?YU Gang-Lin(余綱林),1WANG Kan(王侃),1and SUN Jia-Long(孫嘉龍)1

    1Department of Engineering Physics,Tsinghua University,Beijing 100084,China

    In this paper,the adaptability of the neutron diffusion numerical algorithm on GPUs was studied,and a GPU-accelerated multi-group 3D neutron diffusion code based on f i nite difference method was developed.The IAEA 3D PWR benchmark problem was calculated in the numerical test.The results demonstrate both high eff i ciency and adequate accuracy of the GPU implementation for neutron diffusion equation.

    Neutron diffusion,Finite difference,Graphics Processing Unit(GPU),CUDA,Acceleration

    I.INTRODUCTION

    In the f i eld of reactor physics,numerical solutions of 3-dimentional neutron diffusion equation are always required. Compared with the coarse mesh nodal techniques,the f i nite difference method is considered simpler and more precise, however,it costs unendurable computer time when analyzing a full-size reactor core.

    Since 2006,NVIDIA’s GPUs(Graphics Processing Units) has provided us with tremendous computational horsepower because of the release of CUDA[1].In the f i eld of nuclear reactor physics,the importance of the GPU+CPU heterogeneous platform has been growing gradually.Prayudhatamaet al.[2]implemented a 1-D f i nite difference diffusion code on GPUs in 2010,and obtained up to 70×speedup compared to a corresponding CPU code.In 2011,Kodamaet al.[3]ported the code SCOPE2 to GPUs,they got about 3 times speedup. In the same year,Gonget al.[4]exploited the parallelism of GPUs for theSncode Sweep3D,which was speeded up by about 2 to 8 times.

    In this work,a GPU-accelerated multi-group 3D neutron diffusion code based on f i nite difference method was implemented and optimized.The IAEA 3D PWR benchmark problem[5]was utilized to prove the high computational eff i ciency and accuracy of the GPU version code.The result in this work shows a bright future of GPU applications in nuclear reactor analysis.

    II.NEUTRON DIFFUSION EQUATION

    According to the neutron diffusion theory,we have the multi-group neutron diffusion equation[6]as below,

    wheregis the energy group number,ranging from 1 toG,keffis the effective multiplication factor,and?gis thegthneutronfl ux.We solve this equation by the source iteration methodology[6],which includes inner and outer iterations.The inner iteration computes a group of linear algebra equations in the form of AX=B given the neutron scattering source and fi ssion source.In the outer iteration,we use the neutron fl ux to update the neutron source and get ready for a next inner iteration.

    In this work,we focus on accelerating the inner iteration. Suppose the neutron source on the right hand of Eq.(1)is known,then after discretization on XYZ grid,we can get Eq.(2),which is a linear equation with a 7 diagonal positive de fi nite matrix as the coef fi cient. Eq.(2)is a large-scale sparse matrix problem for full-size reactor analysis.In the perspective of numerical mathematics,Jacobi iteration is ineff i cient,thus,arithmetic techniques, such as CG,SOR,LSOR,ADI(Alternating Direction Implicit method),are needed for eff i cient calculation.

    III.GPU IMPLEMENTATION DETAILS

    In order to test the computational capacity of GPUs,we do not resort to any mathematical skill;instead,the Jacobi iteration method is adopted for the inner iteration.The inner iteration is ported to a GTX TITAN GPU.In the inner iteration,the neutron f l ux is estimated according to the neutron source calculated with the neutron f l ux of the last source iteration.The outer iteration is still remained on CPUs to calculate the neutroneffectivemultiplicationfactoraccordingto theneutronf i ssion source from GPUs.After an outer iteration,the effective multiplication factor is transferred from the CPU memory to the GPU memory to get the neutron source for the next source iteration.Fig.1 shows the tasks distribution and data transfer between GPUs and CPUs during one source iteration.

    Fig.1.Tasks distribution and data transfer between GPUs and CPUs.

    A.Solving neutron f l ux

    The neutron f l ux is solved via Jacobi inner iteration on GPUs.Because of the natural parallelism of the Jacobi iteration,it is of high possibility to implement this algorithm on GPUs with exciting speedups.

    According to CUDA,GPUs have two levels of parallelism, the f i rst level is called grids of thread blocks,while the second level is blocks of threads.One thread block is designed to be mapped to an SM(Streaming Multiprocessor)on GPU chips, and one thread to be mapped to an SP(Streaming Processor)in anSM.InJacobiiteration,themainpartofcomputingtasksare production and addition operations at each f l ux point,which is shown by Eq.(2).To speed up such kind of iterations,the operations at each f l ux point(i,j,k)should be allocated to a specif i c GPU thread so that the computation tasks can be spread among the SPs on GPUs.Fig.2 demonstrates the mapping relationships between f l ux points and threads.As can be seen in Fig.2,one f l ux point is mapped to one GPU thread,and each thread is responsible to update the f l ux at that point.

    For a large-scale 3D reactor model,there will be millions or even tens of millions of f l ux points needed to be updated using the surrounding old f l ux,however,the hardware resources of a GPU chip is limited to create as many threads as the f l ux points.To solve this problem,we update the neutron f l ux layer by layer as is illustrated in Fig.2.After that,there will be enough computing resources for a GPU to accelerate the inner iteration procedure for each layer of f l ux points.

    B.Generating sources and data movements

    When the neutron fl ux is solved after inner iterations,the fi ssion source and the neutron source can be determined by the following equaptions:

    where,Sfissionstands for the fi ssion source andSneutron,gstands fortheneutronsourceofenergygroupg,bothofwhicharecalculated by the neutron fl ux newly updated.In order to reduce dataexchangebetweentheCPUandGPUmemories,thesetwo sources are obtained on GPUs in parallel.

    As shown in Fig.1,there are three data movements during one source iteration.The fi rst data transfer happens after fi ssion source was created,which moves fi ssion source from device memory to host memory to calculate the effective multiplication factorkeffby accumulating the fi ssion source of each fl ux point.The second data movement is for comparison between old and new neutron fl ux,during which the new neutron fl ux is transferred from device to host.The third one transferskeff,a double type variable,back to device memory to get the neutron source.

    C.Data storage

    Fig.2.Mapping relationships between f l ux points and threads.

    For the fi ne grid fi nite difference method,large number of fl ux points lead to large memory space needs.Suppose there areNgenergy groups,andNx,Ny,Nzf l ux points in the X, Y,Z direction respectively,then the memory space to store the eight coeff i cients(including the neutron sourceSi,j,k)would be 4(bytes)×Ng×Nx×Ny×Nz×8 bytes,and the memory for the neutron f l ux would be 4(bytes)×Ng×Nx×Ny×Nzbytes.When analyzing 3D full size reactors using GPUs,all the above data should be allocated to GPU memory,which is of limited volume.For GTX TITAN,the device memory is up to 6GB under 64bit operating systems.

    Under CUDA,a programmer is allowed to manage 7 different kinds of memory space,among which only the global memory and the texture memory are able to be utilized to store the coeff i cient data and the f l ux data.Because texture memory has a texture cache and higher bandwidth than global memory, it is advantageous to access data frequently from it.The only limitation of texture memory is that it is read-only.Thus,the coeff i cient data can be f i lled into texture memory,and the f l ux data be allocated to global memory.

    IV.PERFORMANCE TEST

    In this section,we demonstrate the accuracy and eff i ciency of the GPU accelerated code.Besides,we also discuss a way of performance improvement by overclocking GPU processors.

    A.Experiment platform and benchmark problem

    The accuracy of the GPU version diffusion code is tested by comparing the neutron f l ux computed by CITATION[7]. In order to prove the eff i ciency of the GPU code,we measure the performance of three diffusion codes listed in Table 1. 3DFD-CPU is a serial CPU version code which uses the Jacobi iteration method for inner iterations.3DFD-GPU is obtained by accelerating the inner iteration part of 3DFD-CPU utilizing GPUs.HYPRE-8CORE[8]is a parallel diffusion code running on an 8-core CPU.The computing hardwares of these codes are also shown in Table 1.

    The IAEA PWR benchmark problem,shown in Fig.3, is used for the numerical experiment.This is an important benchmark problem widely used to test the performanceof the neutron deterministic codes.The core is composed of 177 fuel assemblies,9 of which are fully rodded and 4 of which are partially rodded.There are 64 ref l ector assemblies surrounding the core.The size of the assemblies is 20cm×20cm×340cm,while the size of 1/4 core is 170cm×170cm×380cm.

    TABLE 1.Experiment platform

    Fig.3.Horizontal section of the core.

    Fig.4.Power distribution comparison of 3DFD-GPU and CITATION (grid size=2cm).

    B.Accuracy of the GPU code

    To prove the accuracy of GPU computation,we compare the power distribution of 3DFD-CPU with that of CITATION.CITATION,developed by ORNL,is an industrial class code for solving the neutron diffusion equation.The comparison results are shown in Fig.4.The convergence criterion is set so that the simulation comes to an end when the effective multiplication factor relative error is less than 1.0×10?6and the maximum point f l ux relative error is less than 1.0×10?5.The computing grid size used in Fig.4 is 2cm,there are 1372750 spatial f l ux points.

    In Fig.4,the relative error stands for the difference of the code result from the benchmark result.The power distribution of the GPU version code is close to that of CITATION.The accuracy comparison tells us that there is no need to worry about the accuracy and reliability of GPUs.

    C.Eff i ciency of the GPU code

    We use the codes listed in Table 1 to testify the computing power of GPUs.Firstly,3DFD-GPU is compared with the 8-core CPU parallelized code HYPRE-8CORE,and then a comparison of computing time between 3DFD-GPU and 3DFDCPU is made.

    AccordingtoRef.[8],theauthorutilizedtheMPI-basedparallelized linear algebra library HYPRE[9]to accelerate the diffusion code.Here we call the corresponding code in Ref.[8] as HYPRE-8CORE.HYPRE is a library developed by LLNL for solving large sparse linear systems of equations on massively parallel computers.On an 8-core tower server,the inner iteration part of the diffusion code is accelerated by the parallelized Conjugate Gradient algorithm.During simulation,the computing grid size is set to be 2.5cm,and the convergence standard is thatKeffrelative error converges to 1.0×10?5and the maximum point f l ux relative error to 1.0×10?4.The computation speed comparison between 3DFD-GPU and HYPRE-8CORE is shown in Table 2.

    TABLE 2.Eff i ciency comparison of 3DFD-GPU and HYPRE-8CORE

    In Table 2,although the HYPRE-8CORE is accelerated by an 8-core server,3DFD-GPU performs better.

    The performance comparison of 3DFD-GPU and 3DFDCPU is shown in Fig.5.We use six kinds of grid sizes, from 5cm×5cm×5cm to 1cm×1cm×1cm,to demonstrate the acceleration characteristic of GPUs for Jacobi iteration.Table 3 lists the grid sizes and the corresponding grid numbers.The convergence criterion is thatKeffrelative error converges to 1.0×10?6and the maximum point f l ux relative error to 1.0×10?5.

    Fig.5.(Color online)Performance comparison between 3DFD-GPU and 3DFD-CPU.

    TABLE 3.Grid sizes and spatial grid numbers

    Figure 5 shows the amazing accelerating power of GPUs compared with CPUs,especially when the grid size is set to 2cm,a speedup factor of 86 was obtained.This phenomenon is caused by latency hiding,when the problem scales up and the amount of data increases,all cores on GPU are working at full capacity,then data transfer from the GPU memory by part of thread blocks can be operated while other blocks are executing the computational task.However,as can be seen from Fig.5,it should be noticed that oversized data amount may decrease the speedups,because the communication overhead between the host and the device increases and the sequential part of the code may play an increasingly important role in the whole process.

    Fig.6.(Color online)Performance improvement of overclocked GPUs.

    D.Performance improvement by overclocking

    In order to get the same performance with lower energy consumption,NVIDIA decreased the base clock of GPUs of Kepler series,while increased the number of streaming processors in streaming multiprocessors(SMX).The base core clock of GTX TITAN is 837MHz,which is lower than that of GTX 580(Fermi architecture,1544MHz).We use the overclocking utility NVIDIA Inspector to set the core clock to be 1166MHz and the memory clock to be 3334MHz.Fig.6 shows the performance improvement after overclocking.In Fig.6,the runtime and the speedup factor of 3DFD-GPU before and after overclocking are compared with each other,where the speedup factor is relative to the runtime of 3DFD-CPU.

    Through overclocking,the GPU acceleration effect is improved.The performance improvement depends on the scale of the analyzed problem,that is to say,more obvious performance enhancement can be obtained when the grid number increases.

    V.CONCLUSION

    In this work,a GPU-accelerated multi-group 3D neutron diffusion code based on f i nite difference method was developed to speed up the f i nite difference methodology and examine the performance of GPUs.The IAEA 3D PWR benchmark problem is used as the problem model in the numerical experiment.By comparing the power distribution obtained from 3DFD-GPU and CITATION,we prove the accuracy of GPU computing.The performance advantage of GPUs is also demonstrated by comparing the runtime of 3DFD-GPU, 3DFD-CPU and HYPRE-8CORE.

    As to the future work,mathematical accelerating techniques,such as the Conjugate Gradient method and the Chebyshev extrapolation method,will be adopted to reduce the runtime of the GPU-based f i nite difference method to the same order of magnitude as the coarse mesh nodal methodology.

    [1]NVIDIA Corporation.CUDA C Programming Guide.2012,3–4 and 71–75.

    [2]Prayudhatama D,Waris A,Kurniasih N,et al.Proceedings of AIP Conference Proceedings,2010,1244:121–126.

    [3]Kodama Y,Tatsumi M,Ohoka Y.Study on GPU Computing for SCOPE2 with CUDA.Proceedings of International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering(M&C2011),Brazil,2001.

    [4]Gong C,Liu J,Chi L,et al.GPU Accelerated Simulations of 3D Deterministic Particle Transport Using Discrete Ordinates Method.Journal of Computational Physics,2011,230(15): 6010–6022.

    [5]Argonne National Laboratory.Benchmark Problem Book.ANL-7416,Suppl.2,1977,277–280.

    [6]Duderstadt J J and Hamilton L J,Nuclear Reactor Analysis.New York(USA):John Wiley&Sons,Inc.,1976,285–314.

    [7]Fowler T B,Vondy D R,Cunningham G W.Nuclear Reactor Core Analysis Code CITATION,ORNL-TM-2496,Supplement 2.ORNL,1972,104–140.

    [8]Wu W B,Li Q,Wang K.Parallel Solution of 3D Neutron Diffusion Equation Based on HYPRE.Science and Technology on Reactor System Design Technology Laboratory Annual Report. Chengdu,China,2010,35–40(in Chinese).

    [9]Lawrence Livermore National Laboratory.HYPRE User’s Manual(Version 2.7.0b).2011,1–6.

    10.13538/j.1001-8042/nst.25.010501

    (Received March 14,2013;accepted in revised form September 20,2013;published online February 20,2014)

    ?Supported by the 973 Program(No.2007CB209800)and National Natural Science Foundation of China(No.11105080)

    ?Corresponding author,q-xu09@mails.tsinghua.edu.cn

    国内精品宾馆在线| 色5月婷婷丁香| 国产有黄有色有爽视频| 久久精品久久久久久噜噜老黄| 国产男人的电影天堂91| 插阴视频在线观看视频| 久久久久久久国产电影| 91狼人影院| 人妻夜夜爽99麻豆av| 久久久久精品久久久久真实原创| 午夜福利视频精品| 啦啦啦啦在线视频资源| 亚洲av中文字字幕乱码综合| 边亲边吃奶的免费视频| 国产亚洲91精品色在线| 男人和女人高潮做爰伦理| 97在线人人人人妻| 欧美日韩综合久久久久久| 亚洲精品日韩av片在线观看| 日本爱情动作片www.在线观看| 国产黄色视频一区二区在线观看| 久久久精品免费免费高清| 夜夜看夜夜爽夜夜摸| 成人黄色视频免费在线看| 亚洲精品国产成人久久av| 色婷婷久久久亚洲欧美| 成年女人在线观看亚洲视频| 爱豆传媒免费全集在线观看| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜添av毛片| 黄色日韩在线| 小蜜桃在线观看免费完整版高清| 国产伦精品一区二区三区四那| 国产91av在线免费观看| 国产午夜精品一二区理论片| av黄色大香蕉| 国产成人精品一,二区| 中文字幕亚洲精品专区| 亚洲精品国产av蜜桃| 国产高清三级在线| 人妻 亚洲 视频| 一个人免费看片子| 少妇精品久久久久久久| 久久精品国产a三级三级三级| 精品亚洲乱码少妇综合久久| 久久久精品免费免费高清| 欧美老熟妇乱子伦牲交| 观看免费一级毛片| 国产在线一区二区三区精| 色视频www国产| 精品99又大又爽又粗少妇毛片| 99热全是精品| 国产视频内射| 国产精品久久久久久精品古装| 亚洲欧美日韩卡通动漫| 亚洲内射少妇av| 久久影院123| 国精品久久久久久国模美| 一本一本综合久久| 亚洲成人一二三区av| 国产久久久一区二区三区| 久久国产精品男人的天堂亚洲 | 伦精品一区二区三区| 老司机影院毛片| 亚洲精品视频女| 18禁裸乳无遮挡动漫免费视频| 精品久久久久久久末码| 国产色爽女视频免费观看| 老司机影院毛片| 又大又黄又爽视频免费| 18禁裸乳无遮挡免费网站照片| 久久精品国产a三级三级三级| 国产男女超爽视频在线观看| 国产亚洲91精品色在线| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 欧美精品一区二区免费开放| 欧美成人a在线观看| 纯流量卡能插随身wifi吗| 欧美激情国产日韩精品一区| 欧美精品一区二区免费开放| 久久97久久精品| 91精品国产九色| 精品少妇黑人巨大在线播放| 在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 国产日韩欧美亚洲二区| av.在线天堂| 国产精品一及| av女优亚洲男人天堂| 美女中出高潮动态图| 国产精品一区二区性色av| 又粗又硬又长又爽又黄的视频| 国产成人免费无遮挡视频| 成人二区视频| 看十八女毛片水多多多| 七月丁香在线播放| 一本一本综合久久| 人妻 亚洲 视频| 国产爱豆传媒在线观看| 一级毛片电影观看| 成年免费大片在线观看| 成人高潮视频无遮挡免费网站| 日本av免费视频播放| 久热久热在线精品观看| 欧美97在线视频| 国产精品一区二区性色av| 久久人人爽人人爽人人片va| 国产亚洲精品久久久com| 又黄又爽又刺激的免费视频.| 夜夜看夜夜爽夜夜摸| 国产精品人妻久久久影院| 精品人妻熟女av久视频| 国产伦精品一区二区三区四那| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| videos熟女内射| 亚洲欧美一区二区三区黑人 | 卡戴珊不雅视频在线播放| 亚洲图色成人| 成人毛片a级毛片在线播放| 精品久久国产蜜桃| 妹子高潮喷水视频| 成人亚洲欧美一区二区av| 亚洲av.av天堂| 婷婷色综合www| 国产大屁股一区二区在线视频| 大陆偷拍与自拍| 日日撸夜夜添| 男人和女人高潮做爰伦理| 青春草视频在线免费观看| 日本黄大片高清| 久久人人爽人人爽人人片va| 性色av一级| 在线精品无人区一区二区三 | 亚洲国产毛片av蜜桃av| 男的添女的下面高潮视频| 欧美国产精品一级二级三级 | 91精品一卡2卡3卡4卡| 免费人妻精品一区二区三区视频| 天天躁日日操中文字幕| 成人综合一区亚洲| 在线观看免费日韩欧美大片 | 丰满乱子伦码专区| 极品教师在线视频| 人体艺术视频欧美日本| 夫妻午夜视频| 国产91av在线免费观看| 午夜福利高清视频| 亚洲色图综合在线观看| 亚洲人成网站高清观看| 黄片无遮挡物在线观看| 六月丁香七月| 秋霞伦理黄片| 精华霜和精华液先用哪个| 亚洲色图综合在线观看| 亚洲第一av免费看| 汤姆久久久久久久影院中文字幕| 嫩草影院入口| 国产av一区二区精品久久 | 男人和女人高潮做爰伦理| 男女无遮挡免费网站观看| 国产黄色免费在线视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲图色成人| 亚洲激情五月婷婷啪啪| 女人十人毛片免费观看3o分钟| 熟妇人妻不卡中文字幕| 日韩欧美 国产精品| 丰满乱子伦码专区| 蜜桃亚洲精品一区二区三区| 精品熟女少妇av免费看| 亚洲国产精品一区三区| videos熟女内射| 两个人的视频大全免费| 亚洲精品久久午夜乱码| tube8黄色片| 国产爱豆传媒在线观看| 午夜福利视频精品| 欧美一级a爱片免费观看看| 日韩一本色道免费dvd| 偷拍熟女少妇极品色| 亚洲美女搞黄在线观看| 国产成人精品久久久久久| a级毛片免费高清观看在线播放| 日本黄色片子视频| 一级毛片黄色毛片免费观看视频| 99九九线精品视频在线观看视频| 中文字幕久久专区| 亚洲欧美日韩无卡精品| 乱系列少妇在线播放| 熟女av电影| 美女主播在线视频| 亚洲国产色片| 99re6热这里在线精品视频| 精品一区二区免费观看| 女性被躁到高潮视频| 97超碰精品成人国产| 一区二区三区精品91| 欧美zozozo另类| 一个人免费看片子| 国产 一区精品| 嫩草影院入口| 欧美日本视频| 丰满人妻一区二区三区视频av| 国产黄色视频一区二区在线观看| 波野结衣二区三区在线| 国产精品三级大全| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| 欧美成人一区二区免费高清观看| 欧美日本视频| 国产成人精品婷婷| 久热久热在线精品观看| 亚洲欧美一区二区三区黑人 | 国产精品国产三级国产专区5o| 网址你懂的国产日韩在线| 国产亚洲91精品色在线| 高清毛片免费看| 中文天堂在线官网| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 免费高清在线观看视频在线观看| 丰满少妇做爰视频| 中国美白少妇内射xxxbb| 男女下面进入的视频免费午夜| 春色校园在线视频观看| 人妻一区二区av| 九九久久精品国产亚洲av麻豆| 国产精品嫩草影院av在线观看| 另类亚洲欧美激情| 亚洲怡红院男人天堂| 免费观看的影片在线观看| 久久精品熟女亚洲av麻豆精品| 日韩一本色道免费dvd| 午夜免费鲁丝| 欧美97在线视频| 街头女战士在线观看网站| 六月丁香七月| 国产成人午夜福利电影在线观看| 一级毛片 在线播放| 三级国产精品片| 三级经典国产精品| 欧美少妇被猛烈插入视频| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 国产精品国产三级国产专区5o| 精品国产一区二区三区久久久樱花 | 欧美zozozo另类| 国产成人a区在线观看| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| 观看免费一级毛片| 五月伊人婷婷丁香| 亚洲人与动物交配视频| 一级毛片黄色毛片免费观看视频| 精品久久久久久久久亚洲| 一级毛片 在线播放| 在线观看一区二区三区激情| 国产又色又爽无遮挡免| 男人狂女人下面高潮的视频| 国产在线男女| 天堂中文最新版在线下载| av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 久久久久久久久久人人人人人人| 美女xxoo啪啪120秒动态图| 极品少妇高潮喷水抽搐| 看非洲黑人一级黄片| 精品人妻熟女av久视频| 国产成人精品久久久久久| 日本av手机在线免费观看| 美女中出高潮动态图| 日韩不卡一区二区三区视频在线| 一级av片app| 成人毛片a级毛片在线播放| 大片免费播放器 马上看| 尾随美女入室| 久久ye,这里只有精品| 老师上课跳d突然被开到最大视频| av播播在线观看一区| 日韩免费高清中文字幕av| 亚洲欧美成人精品一区二区| 久久久久视频综合| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片 | 大片电影免费在线观看免费| 99久久人妻综合| 欧美亚洲 丝袜 人妻 在线| 日本一二三区视频观看| 五月开心婷婷网| 成人影院久久| 国产成人精品一,二区| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 全区人妻精品视频| 女人十人毛片免费观看3o分钟| 免费人成在线观看视频色| 又大又黄又爽视频免费| 免费看av在线观看网站| 纵有疾风起免费观看全集完整版| 亚洲va在线va天堂va国产| 欧美+日韩+精品| 国产亚洲欧美精品永久| 国产 一区 欧美 日韩| 日本午夜av视频| 男人爽女人下面视频在线观看| 看十八女毛片水多多多| 高清不卡的av网站| 99国产精品免费福利视频| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 欧美日韩视频精品一区| 亚洲精品成人av观看孕妇| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 欧美+日韩+精品| 精品久久国产蜜桃| 免费人成在线观看视频色| 免费不卡的大黄色大毛片视频在线观看| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| 男人爽女人下面视频在线观看| 网址你懂的国产日韩在线| 18禁在线播放成人免费| 免费看不卡的av| 国产精品人妻久久久影院| 亚洲av在线观看美女高潮| 国产精品无大码| 亚洲精品成人av观看孕妇| 国产成人精品久久久久久| 亚洲综合精品二区| 人体艺术视频欧美日本| 午夜老司机福利剧场| 岛国毛片在线播放| 免费观看性生交大片5| kizo精华| a级毛片免费高清观看在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱久久久久久| 丝袜喷水一区| 一级毛片 在线播放| 国产乱人偷精品视频| freevideosex欧美| 久久青草综合色| 精品99又大又爽又粗少妇毛片| 免费在线观看成人毛片| 伦理电影大哥的女人| 一级毛片电影观看| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区| 亚洲va在线va天堂va国产| 99久久精品一区二区三区| 亚洲美女视频黄频| 丰满少妇做爰视频| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 国产淫片久久久久久久久| 亚洲在久久综合| 亚洲欧洲日产国产| 精品亚洲成国产av| 亚洲美女黄色视频免费看| 黄色视频在线播放观看不卡| av福利片在线观看| 丰满乱子伦码专区| 免费少妇av软件| 身体一侧抽搐| 欧美一区二区亚洲| 日韩视频在线欧美| 国产精品秋霞免费鲁丝片| 国产乱来视频区| 你懂的网址亚洲精品在线观看| 久久6这里有精品| 国产在线男女| 国产精品国产三级国产av玫瑰| 国产精品伦人一区二区| 欧美精品一区二区大全| 国产高清有码在线观看视频| 成年女人在线观看亚洲视频| av在线观看视频网站免费| 最近手机中文字幕大全| 亚洲欧美日韩东京热| 亚洲欧洲日产国产| 亚洲av在线观看美女高潮| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 国产大屁股一区二区在线视频| 亚洲精品视频女| av国产久精品久网站免费入址| av专区在线播放| 汤姆久久久久久久影院中文字幕| 能在线免费看毛片的网站| 国产在线男女| 欧美日韩精品成人综合77777| 国产黄色视频一区二区在线观看| 黄色一级大片看看| 精品久久久久久久久av| 伊人久久国产一区二区| 身体一侧抽搐| 国产欧美另类精品又又久久亚洲欧美| 日本黄色片子视频| 新久久久久国产一级毛片| 成人一区二区视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲国产最新在线播放| 一级毛片aaaaaa免费看小| 精品人妻视频免费看| 大片免费播放器 马上看| 国产免费又黄又爽又色| 3wmmmm亚洲av在线观看| 国产精品99久久99久久久不卡 | 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 一区在线观看完整版| 国产 精品1| 精品国产一区二区三区久久久樱花 | 精华霜和精华液先用哪个| 黄片wwwwww| 国产在视频线精品| 蜜桃在线观看..| 日韩精品有码人妻一区| 亚洲av免费高清在线观看| 精品国产露脸久久av麻豆| 日韩欧美精品免费久久| 我的老师免费观看完整版| a 毛片基地| 日韩一本色道免费dvd| 久久久久性生活片| 欧美日韩视频精品一区| 毛片女人毛片| 中文字幕人妻熟人妻熟丝袜美| 女的被弄到高潮叫床怎么办| 成人亚洲欧美一区二区av| 精品午夜福利在线看| 久久久久国产精品人妻一区二区| 中文资源天堂在线| 亚洲一级一片aⅴ在线观看| 国产视频内射| 性色av一级| 在线播放无遮挡| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 在线观看av片永久免费下载| 久久99热这里只频精品6学生| 最近最新中文字幕大全电影3| 22中文网久久字幕| 精品少妇久久久久久888优播| 国产久久久一区二区三区| av在线蜜桃| 九色成人免费人妻av| 国产美女午夜福利| 欧美人与善性xxx| 一本色道久久久久久精品综合| 水蜜桃什么品种好| 网址你懂的国产日韩在线| 一级a做视频免费观看| 亚洲成人一二三区av| 91久久精品电影网| 天天躁日日操中文字幕| 小蜜桃在线观看免费完整版高清| 国产精品国产三级国产av玫瑰| 性色avwww在线观看| 亚洲人成网站高清观看| 又大又黄又爽视频免费| 狂野欧美白嫩少妇大欣赏| 久久久欧美国产精品| 少妇人妻 视频| 免费在线观看成人毛片| 大话2 男鬼变身卡| av卡一久久| 小蜜桃在线观看免费完整版高清| 国产精品国产三级国产av玫瑰| 熟女人妻精品中文字幕| 夜夜看夜夜爽夜夜摸| 国产成人a∨麻豆精品| 日本黄色日本黄色录像| 国产高清国产精品国产三级 | 高清黄色对白视频在线免费看 | 久久久久久久亚洲中文字幕| 免费av中文字幕在线| 国产午夜精品一二区理论片| 青春草亚洲视频在线观看| 又黄又爽又刺激的免费视频.| 久久精品国产自在天天线| 久久久久久久精品精品| 一区二区三区免费毛片| 久久亚洲国产成人精品v| 成人国产av品久久久| 免费看不卡的av| 日本vs欧美在线观看视频 | 日韩一区二区视频免费看| 精品久久国产蜜桃| 久久久久久久久久成人| 欧美zozozo另类| 国产黄片美女视频| 亚洲综合精品二区| 在线观看av片永久免费下载| 妹子高潮喷水视频| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 国产一区亚洲一区在线观看| 联通29元200g的流量卡| 亚洲av电影在线观看一区二区三区| 日本黄色日本黄色录像| 伦理电影免费视频| 精品亚洲成a人片在线观看 | 视频中文字幕在线观看| 99久久人妻综合| 国产黄片美女视频| 多毛熟女@视频| 欧美 日韩 精品 国产| 菩萨蛮人人尽说江南好唐韦庄| 亚洲不卡免费看| 久久久成人免费电影| 国产精品麻豆人妻色哟哟久久| 多毛熟女@视频| 亚洲性久久影院| 男男h啪啪无遮挡| 精品人妻偷拍中文字幕| 国产91av在线免费观看| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 亚洲精品国产av成人精品| 亚洲av国产av综合av卡| 国产深夜福利视频在线观看| 一级毛片电影观看| 夫妻性生交免费视频一级片| 亚洲欧美日韩另类电影网站 | 狂野欧美白嫩少妇大欣赏| 亚洲欧洲国产日韩| 另类亚洲欧美激情| 国产精品精品国产色婷婷| 99精国产麻豆久久婷婷| 99热这里只有是精品在线观看| 精品一区二区免费观看| 午夜免费观看性视频| av一本久久久久| 久久精品熟女亚洲av麻豆精品| 你懂的网址亚洲精品在线观看| 一区二区三区精品91| 日韩大片免费观看网站| 熟妇人妻不卡中文字幕| 国产欧美另类精品又又久久亚洲欧美| 日韩欧美一区视频在线观看 | 国产亚洲91精品色在线| 99热这里只有是精品50| 精品久久国产蜜桃| 91精品一卡2卡3卡4卡| 国产亚洲最大av| 秋霞伦理黄片| 久久久国产一区二区| 久久久精品免费免费高清| 中国国产av一级| 亚洲欧美日韩东京热| 大片免费播放器 马上看| 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看| av网站免费在线观看视频| 日韩 亚洲 欧美在线| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 久久久久久久亚洲中文字幕| 免费久久久久久久精品成人欧美视频 | 日韩成人av中文字幕在线观看| 成人免费观看视频高清| 91在线精品国自产拍蜜月| 亚洲天堂av无毛| freevideosex欧美| 亚洲熟女精品中文字幕| 免费看av在线观看网站| 边亲边吃奶的免费视频| 久久精品夜色国产| 亚洲经典国产精华液单| 亚洲精品国产成人久久av| 久久av网站| 九色成人免费人妻av| 午夜视频国产福利| 国产成人91sexporn| 啦啦啦啦在线视频资源| 欧美bdsm另类| a级毛色黄片| 精品国产乱码久久久久久小说| 成年人午夜在线观看视频| 国产欧美亚洲国产| 国产黄片视频在线免费观看| 久久久精品免费免费高清| a级毛片免费高清观看在线播放| 国产av码专区亚洲av| 亚洲四区av| 成人黄色视频免费在线看| 日韩亚洲欧美综合| 26uuu在线亚洲综合色| 蜜桃在线观看..| 观看美女的网站| 在线观看av片永久免费下载| 国产69精品久久久久777片| 777米奇影视久久| 国产成人精品一,二区| 黑人猛操日本美女一级片| 亚洲国产高清在线一区二区三| 女性被躁到高潮视频| 久久久成人免费电影| 国产淫片久久久久久久久| 亚洲伊人久久精品综合| 久久av网站| 色视频在线一区二区三区| 中文字幕av成人在线电影| 99热6这里只有精品| 国产成人精品婷婷|